Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
1 - 100 of 201 results
-
-
Immobilized Lipases for S-Naproxen Synthesis: Techniques, Materials, and Pharmaceutical Applications - A Review
Authors: Mukaddes Saklan, Serkan Sayın, Elif Ozyilmaz and Mustafa YilmazAvailable online: 10 February 2026More LessNaproxen is a widely used Non-Steroidal Anti-Inflammatory Drug (NSAID) and is notable for its analgesic, antipyretic and anti-inflammatory properties. It shows its pharmacological effect by inhibiting Cyclooxygenase (COX) enzymes and suppressing prostaglandin synthesis. This mechanism plays an important role in reducing inflammation and controlling pain. The pharmacokinetic properties, bioavailability and side effect profile of naproxen are the determining factors in the selection of synthesis methods. In recent years, factors such as environmental sustainability and stereoselectivity have become increasingly important in the synthesis of S-naproxen, and enzymatic synthesis methods have gained prominence. Enzymatic processes offer high stereoselectivity, providing the advantage of producing S-naproxen in the preferred enantiomer form. Moreover, the use of biocatalysts reduces energy consumption by making the reaction conditions milder and avoiding the use of toxic reagents for an environmentally friendly production process. The review focuses on the chemical structure, pharmacological effects, biotransformation mechanisms, and enantiomeric properties of naproxen. The review also includes current formulation approaches to address solubility and bioavailability issues of naproxen. This review contributes to the understanding of current strategies to enhance the therapeutic efficacy of naproxen and highlights potential areas for future research.
-
-
-
Discovery of Novel SARS-CoV-2 3CLpro Inhibitors from Natural Products using FRET-based Assay
Authors: Tianyu Zhang, Hongming Tang, Xianlong Ye, Jixia Wang, Han Zhou, Longying Liu, Liangliang Zhou, Fangfang Xu, Pan Wang, Tao Hou, Yanfang Liu, Xinmiao Liang and Liangji LiuAvailable online: 09 February 2026More LessIntroductionThe coronavirus 3C-like protease (3CLpro) is essential for SARS-CoV-2 replication, making it a key target for antiviral drug development. Natural products represent a valuable source of bioactive compounds. This study aimed to identify novel 3CLpro inhibitors from natural compounds through a combination of virtual screening and experimental validation.
MethodsRecombinant 3CLpro was expressed, purified, and evaluated for enzymatic activity using Fluorescence Resonance Energy Transfer (FRET) assays under optimized conditions. Out of 583 virtually screened compounds, 30 were selected for experimental validation. Epitheaflagallin 3-O-gallate (ETFGg) was further analyzed for binding interactions using Molecular Dynamics (MD) simulations.
ResultsETFGg exhibited strong binding affinity (−66.90 kcal/mol) and inhibitory activity (IC50 = 8.73 ± 2.30 μM) against 3CLpro. MD simulations revealed stable interactions with key residues (HIE163, THR190, GLN192) in the 3CLpro active site.
DiscussionOur findings demonstrate that ETFGg is a potent and stable inhibitor of SARS-CoV-2 3CLpro, with a binding profile distinct from known inhibitors such as ebselen. The substrate inhibition kinetics observed suggest a novel allosteric mechanism, which may provide a new strategy for targeting 3CLpro. This study supports the value of natural product libraries combined with computational and FRET-based screening for discovering antiviral leads.
ConclusionETFGg was identified as a promising 3CLpro inhibitor with high binding stability, highlighting its potential as a lead compound for the development of anti-COVID-19 drugs.
-
-
-
Inhibition of Circular RNA 006029 Alleviates Pancreatic β-Cell Injury Through the AKT/mTOR Signaling Pathway
Authors: Zhen Wang, Zheli Luo, Li Wang, Jiaxing Feng, Kunlin Huang, Ying Zheng and Zhiguang ZhouAvailable online: 04 February 2026More LessIntroductionType 1 Diabetes Mellitus (T1DM) is characterized by the damage of pancreatic β-cells induced by autoimmune responses. Circular RNAs (circRNAs) play important regulatory roles in the pathogenesis of T1DM, but the underlying mechanisms require further substantiation.
MethodsThis study focused on a novel circRNA, circ006029, to investigate its regulation on β-cell damage. The potential involvement of circ006029 in β-cell proliferation, apoptosis, autophagy, and inflammatory responses was investigated using CCK-8, qRT-PCR, and immunoblot assays. The utilization of a cytokine mixture, and specific molecular blockers Rapamycin and Capivasertib, was applied to investigate the pathway by which circ006029 regulates β-cell damage. Transcriptome sequencing and bioinformatics analysis were conducted to explore differentially expressed mRNAs related to circ006029 regulation.
ResultsThe expression of circ006029 was observed to increase in damaged MIN6 cells. The inhibition of circ006029 serves a protective role in MIN6 β-cells by promoting β- cell proliferation and attenuating apoptosis. circ006029-knockdown could augment β- cell autophagy and attenuate apoptosis through the AKT/mTOR signaling pathway. Moreover, circ006029 might be involved in the inflammatory response of MIN6 cells.
DiscussionThe knockdown of circ006029 was demonstrated to alleviate β-cell inflammation and reduce cell apoptosis. The promotion of β-cell proliferation and heightened autophagy also substantiated the protective effects of circ006029 silence. Furthermore, we also proved that circ006029 might contribute to autophagy via the AKT/mTOR signaling pathway. All the results implied that the presence of circ006029 may drive a detrimental regulatory role in pancreatic β-cells. This may provide valuable evidence that circ006029 might be a potential target for alleviating β-cell damage in T1DM and rebuilding β-cell function.
ConclusionThese findings suggest that circ006029 may serve a detrimental role in β- cell damage, which provides new ideas for exploring the mechanism of β-cell damage in early insulitis in T1DM.
-
-
-
The Effect of Everolimus Conjugated Albumin Nanocarrier on the Viability of Lung Cancer A549 Cell Line
Authors: Ameneh Baghbani Rizi, Aroona Chabra, Fereshteh Chekin and Bahman Rahimi EsboeiAvailable online: 28 January 2026More LessIntroductionLung cancer is a leading cause of cancer-related morbidity and mortality. The development and evaluation of effective treatment strategies for lung cancer are of high clinical importance. Everolimus (Eve) has been shown to upregulate the expression of phosphatases and inhibit the migration and proliferation of A549 cancer cells. The present study focuses on the synthesis of biodegradable bovine serum albumin (BSA) nanoparticles for the loading and delivery of Eve.
MethodsIn the desolvation process, Eve molecules were kept in the BSA system. The physicochemical properties of the Eve drug containing BSA nanoparticles (Eve@BSA) have been exactly characterized. The loading and release assays of Eve were also studied at different glutaraldehyde percentages, times, and solvents.
ResultsField emission scanning electron microscopy (FE-SEM) analysis of BSA nanoparticles revealed a spherical morphology with an average size of 93.7 ± 3.7 nm. The results demonstrated that BSA nanoparticles are highly efficient carriers, achieving an Eve loading efficiency of approximately 54% at 4% glutaraldehyde. The release of Eve from the BSA nanoparticles was dependent on the solvent and duration of incubation. According to the MTT assay, Eve@BSA exhibited low cytotoxicity and high biocompatibility against L929 fibroblast cells. In contrast, the cytotoxicity of Eve@BSA against A549 cells (IC50 ≈ 47 μg/mL) was significantly higher than that of free Eve (IC50 ≈ 283 μg/mL) after 48 hours.
DiscussionThe synergistic effects of Eva@BSA nanoformulation due to functional groups-rich BSA seemed to improve in vitro antiproliferation efficacies compared with the single treatment of Eve.
ConclusionThe findings confirm the synergistic anticancer effect of Eve@BSA, indicating that this nanosystem may serve as a promising candidate for the treatment of lung cancer.
-
-
-
An Overview of Biosensors and Human Respiratory Syncytial Virus (hRSV): A Systematic Review
Available online: 26 January 2026More LessBackgroundRespiratory syncytial virus (RSV) causes more than 30 million cases of lower respiratory tract infections (LRTIs) and approximately 3 million hospitalizations globally each year. Although RSV is particularly dangerous for young children, older adults and individuals with underlying health conditions or weakened immune systems are also at risk. Rapid diagnosis of RSV infection is crucial to ensure timely treatment and prevent disease spread. While conventional diagnostic techniques exist, many are time-consuming, expensive, or labor-intensive. Biosensors have recently emerged as a promising alternative.
MethodsThis review involved gathering original articles published in English from various databases, including PubMed, Scopus, Web of Science, and Embase, between August and October, 2024. Additionally, reference lists from these articles were examined in Google Scholar for further relevant sources. Out of 147 electronically searched citations, 15 articles met the inclusion criteria.
ResultsGenosensors, particularly those employing Surface-Enhanced Raman Scattering (SERS) and electrochemical detection, demonstrated the most significant potential for RSV diagnosis. Biosensors are increasingly being applied for RSV detection due to their high sensitivity, accuracy, and rapid results. The most prevalent conventional techniques for RSV detection include immunofluorescence (IF), ELISA, cell culture, and RT-PCR (Real-time PCR). While molecular methods are fast and sensitive, they require advanced laboratory equipment and trained personnel. In contrast, biosensors offer a rapid, reliable, and cost-effective diagnostic approach.
DiscussionBiosensors have emerged as a powerful diagnostic platform for RSV, providing faster, more sensitive, and cost-effective detection compared to conventional methods. Continued development and clinical validation of biosensor technologies could transform RSV surveillance and management, especially in low-resource or point-of-care settings.
ConclusionBiosensors represent a significant advancement in RSV diagnostics, particularly in resource-limited settings. Enhancing biosensor technology could improve accessibility, speed, and accuracy in RSV detection, ultimately leading to better patient outcomes and reduced disease transmission.
-
-
-
An Immune Cell Activation Signature for Non - Small Cell Lung Cancer Revealed Tumor Microenvironment Heterogeneity and the Role of RORA in Regulating ZNF490/NDUFA12 Axis
Authors: Yiyi Song, Zhen Zhu, Hong Li, Shuang Song and Xin LinAvailable online: 23 January 2026More LessIntroductionThe development and progression of non-small cell lung cancer (NSCLC) are intricately linked to immune cell activation, but its related signature has not been reported.
MethodsThis study combines in silico and in vitro approaches. TCGA-NSCLC and Gene Expression Omnibus (GEO) datasets were utilized to develop and validate a prognostic signature based on cell activation genes. The signature’s validity was assessed through the identification of genomic, transcriptomic, tumor microenvironment (TME), and single-cell infiltration characteristics. The function of the candidate gene RORA was verified using CCK8, apoptosis, colony formation, wound healing, and transwell assays. The detailed mechanism of RORA was investigated through ChIP-PCR, luciferase assays, Western blot, and ROS detection.
ResultsThe prognostic signature was constructed from TCGA-NSCLC datasets and validated in six independent datasets (GSE30219, GSE33072, GSE37745, GSE41271, GSE42127, GSE50081). The signature was associated with LRP1B and RYR2 mutations, NSCLC-related pathways, drug response, and immune cell infiltration. The candidate gene RORA significantly inhibits the proliferation and migration abilities of NSCLC cell lines (A549 and NCI-H1299). Furthermore, the transcription factor RORA promotes ZNF490 expression, which subsequently inhibits NUDFs expression and oxidative phosphorylation (oxphos).
DiscussionThe signature highlighted its significance with genomic features that were frequently reported as prognostic indicators (LRP1B and RYR2 mutations, cancer-related infiltration and pathway infiltration), and putative treatment response (IC50 in the TCGA dataset). Its detailed mechanism of candidate gene RORA revealed its role in oxphos, highlighting the crosstalk between metabolism and immune activation.
ConclusionThe model is robust and effectively reflects NSCLC heterogeneity while predicting prognosis. RORA promotes the expression of ZNF490 to inhibit NUDFs and oxidative phosphorylation.
-
-
-
Ferroptosis Targeting by β-Sitosterol in Cervical Cancer Radiotherapy
Authors: Yuanyuan Xiao, Yuanqin Zhao, Zhenlei Wang, Changmin Peng, Le li and Shuangyang TangAvailable online: 19 January 2026More LessThis review addresses the challenge of radioresistance in cervical cancer by exploring the role of ferroptosis in enhancing the efficacy of radiotherapy (RT). It emphasizes the radiosensitizing effect of β-sitosterol through modulation of the GPX4/ACSL4 axis. β-Sitosterol targets mitochondrial membranes, inhibits GPX4 activity, and activates ACSL4, promoting polyunsaturated fatty acid synthesis and thereby facilitating ferroptosis. Preclinical models demonstrate that β-sitosterol significantly improves RT sensitivity and increases tumor iron accumulation. The review further proposes a predictive framework based on ox-LDL levels and the ACSL4/GPX4 ratio for potential clinical application, alongside discussions on innovative delivery systems, ferroptosis-apoptosis interactions, microbiota-mediated metabolic effects, and AI-driven optimization of RT-drug combinations. These insights contribute to advancing personalized radiotherapy strategies for cervical cancer.
-
-
-
An Overview of Novel Compounds from Marine Invertebrates: Sources, Structures, and Bioactivities
Authors: Chengqian Pan, Kuntai Yang, Zongyang Li, Haohang Ni and Syed Shams ul HassanAvailable online: 19 January 2026More LessMarine invertebrates exhibit a vast taxonomic diversity, encompassing multiple phyla ranging from Porifera (sponges) to Echinodermata. These organisms inhabit complex marine environments and have evolved a diverse array of unique bioactive substances with various pharmacological effects, including antibacterial, antiviral, antitumor, and anti-inflammatory properties. As a result, they have long served as a crucial source of active natural products. The application prospects of these natural products are expanding rapidly across various fields, including medicine, cosmetics, and biotechnology, offering new possibilities for human health and sustainable development. This review compiles information on 159 novel natural products derived from marine invertebrates, which were first discovered in 2024. These compounds, originating from a diverse range of marine invertebrates, encompass various chemical classes, including terpenoids, alkaloids, peptides, and other unique categories. This review places a strong emphasis on elucidating their origins, intricate chemical structures, and promising biological activities. By presenting the latest discoveries and advancements in the field, this comprehensive review aims to offer valuable references and novel insights for the research and development of innovative antibacterial, antitumor, and anti-inflammatory drugs.
-
-
-
CXCL5/CXCR2 Axis Related to Neutrophilic Inflammation in Ulcerative Colitis: A Comprehensive Analysis Integrating eQTL, pQTL, and Transcriptome Data
Authors: Yiyi Feng, Yichuan Xv, Jingyi Shan, Enjia Guo, Jiang Lin, Hong Pan, Miaoxia Dong and Jianling MoAvailable online: 16 January 2026More LessBackgroundAn excessive inflammatory response plays a central role in the pathogenesis of ulcerative colitis (UC), but the specific cytokines involved remain unclear. This study aimed to identify inflammatory factors associated with UC and explore the possible mechanisms of the identified targets.
MethodsProtein quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) for inflammatory cytokines were obtained from a genome-wide pQTL study and the eQTL consortium, respectively. Summary data for UC from the exploration and validation cohorts were derived from a genome-wide association study and the Finngen cohort. MR and colocalization analyses were conducted to identify causal associations between inflammatory cytokines and UC. Bioinformatics analyses were employed to explore the involved biological processes of candidate targets. Immunohistochemistry was used to validate the expression of these candidate targets in colon tissues.
ResultsAmong all inflammatory cytokines, a significant causal association was identified between C-X-C motif chemokine ligand 5 (CXCL5) and UC. Using eQTL data, a significant genetic association was established between the mRNA expression of CXCL5 and its receptor, C-X-C motif chemokine receptor 2 (CXCR2), with UC. Colocalization analysis further supported these identified links. Differential expression analysis confirmed the dysregulation of the CXCL5/CXCR2 axis in UC patients. Enrichment and immune infiltration analysis indicated that the CXCL5/CXCR2 axis was involved in neutrophil chemotaxis and immune activation in UC. Moreover, CXCL5 expression was found to correlate with neutrophil extracellular trap (NET) formation in UC. Immunohistochemistry further confirmed the dysregulation of the CXCL5/CXCR2 axis in colon tissues of UC patients.
DiscussionThe CXCL5/CXCR2 axis has been implicated to play a significant role within a broader inflammatory network that includes Interleukin (IL)-17, NF-κB, and Tumor Necrosis Factor (TNF) signaling pathways. Additionally, this axis interacts with macrophages and T cells, further contributing to the complexity of inflammatory responses in UC.
ConclusionThere is a significant association between CXCL5/CXCR2 and UC under the MR assumption, which is potentially linked with colonic chemotaxis and activation of neutrophils. These findings highlight the potential of CXCL5/CXCR2 as a therapeutic target for UC. However, future functional studies are needed to validate these findings and explore the exact mechanisms by which CXCL5/CXCR2 influences immune cell crosstalk in UC.
-
-
-
Prognostic and Immune Infiltration Analysis in ESCC Using a Ferroptosis-EMT Biomarker Signature
Authors: Zhidong Wang, Cheng Gong, Ce Chao, Youpu Zhang, Yiongxiang Qian, Min Wang, Bin Wang and Yang LiuAvailable online: 16 January 2026More LessIntroductionLimited studies have explored how ferroptosis and Epithelial-Mesenchymal Transition (EMT) jointly affect the prognosis of Esophageal Squamous Cell Carcinoma (ESCC). This study aimed to develop a clinical prognostic model based on the combined impact of ESCC.
MethodsGene expression levels and clinical data of ESCC patients were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Using Cox regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, we identified nine prognostic genes to build a predictive model. Immune cell infiltration was evaluated using CIBERSORT and single-sample Gene Set Enrichment Analysis methods. Finally, in vitro experiments were conducted to assess the oncogenic effects of ACSL3 and VIM.
ResultsWe developed a Ferroptosis-EMT Integrated Score (FEIS) based on nine key genes. High-FEIS patients had worse survival, increased immune infiltration, and higher expression of immune checkpoints. A nomogram was built for prognosis prediction, and in vitro studies confirmed the tumor-promoting roles of ACSL3 and VIM.
DiscussionThe FEIS model robustly predicts ESCC prognosis by integrating ferroptosis and EMT, offering novel biomarkers for personalized immunotherapy, though further validation is warranted.
ConclusionOur study introduced a novel prognostic tool that integrates ferroptosis and EMT-related biomarkers and offers valuable insights for developing personalized treatment strategies for ESCC patients.
-
-
-
Stereoselective Synthesis, Anticolon Cancer Activity, Molecular Docking, and Dynamics Simulation Studies of Spirooxindole Derivatives
Authors: Rajat Ghosh, Afzal B. Shaik, Richie R. Bhandare, Bhima Sridevi and Pratap Chandra AcharyaAvailable online: 16 January 2026More LessBackgroundSpirooxindoles have been reported to be effective anticancer drug candidates by displaying promising pre-clinical results. Therefore, to find out a lead spirocyclic oxindole template, a series of spirooxindole derivatives bearing pyrrolizidine (14a-e) and N-methyl pyrrolidine (15a-e) were synthesized using an efficient multicomponent, one-pot, and stereoselective [3+2] cycloaddition reaction and evaluated in vitro against HT29 and HCT116 human colon cancer cell lines.
MethodsThe pyrrolizidine and N-methyl pyrrolidine spirooxindole derivatives were synthesised in excellent regio- and stereoselectivity using previously optimized reaction conditions. They were evaluated in vitro against cell lines HT29 and HCT116. In silico ADME profiling, molecular docking, and dynamics simulation studies were performed to ascertain the probable mode of action of the lead derivative.
Results and DiscussionThe spirooxindoles were characterized using FTIR, ESI-MS, 1H and 13C NMR, purity was determined by RP-HPLC, and stereochemistry was confirmed by X-ray crystallography. Compound 14a produced the best anti-colon cancer activity with IC50 values of 62.66 and 9.55 µM against HT29 and HCT116 human colon cancer cell lines, respectively. The in silico studies revealed that MDM2 protein inhibition is a probable mode of anti-colon cancer activity, supported by the data obtained in the molecular docking and molecular dynamics study.
ConclusionThe described [3+2] cycloaddition reaction proved to be a highly efficient and catalyst-free reaction. The in vitro cell viability assays and in silico studies revealed that more spirooxindoles can be designed with a varied degree of substitution to target colon cancer.
-
-
-
A Comprehensive Review on Extracellular Vesicles, Liposomes, and Biohybrid Nanocarriers for Enhanced Wound Healing and Precision Drug Delivery
Authors: Jzit Weii Chen, Fong Fong Liew, Hsiao Wei Tan and Ivy ChungAvailable online: 16 January 2026More LessNanomedicine has advanced drug delivery by addressing key challenges such as poor solubility, instability, and off-target effects. Yet, despite its promise, clinical translation remains limited, with few FDA-approved formulations and ongoing biocompatibility concerns. Extracellular vesicles (EVs), particularly those derived from mesenchymal stem cells, offer natural advantages as nanocarriers, including biocompatibility, immunomodulatory effects, and regenerative properties. However, their therapeutic application is constrained by low drug-loading capacity, rapid clearance, and batch-to-batch variability. To overcome these limitations, biohybrid vesicles—fusions of natural EVs and synthetic liposomes—have emerged as an innovative platform. These hybrids combine the biological targeting and immune-evasive features of EVs with the scalability, structural stability, and tunable drug-release capabilities of liposomes. Advanced fabrication methods, including freeze-thaw cycling, co-extrusion, and pH-mediated fusion, enhance biohybrid vesicle integrity and production. Surface modifications such as PEGylation and ligand attachment further improve biodistribution and cell-specific uptake. This review focuses on extracellular vesicles (EVs), liposomes, and biohybrid vesicles, examining their cellular interactions, design strategies, and therapeutic potential. It also explores the biological pathways involved in tissue repair and regeneration, while addressing key translational challenges such as standardisation and large-scale manufacturing. By leveraging the complementary advantages of natural and synthetic systems, biohybrid EVs represent a promising next-generation platform for precision nanomedicine. The review summarises current progress and proposes a roadmap for advancing these technologies toward clinical application, with a specific focus on wound management.
-
-
-
Ubiquitination-based Classification and a Prognostic Signature Identify the Role of TRIM21 in Sarcoma Progression
Authors: Lin Zhang, Weihao Lin, Jinhui Liu, Yuheng Hong, Zheng Cao, Zhentao Yu, Xiaoli Feng and Yibo GaoAvailable online: 15 January 2026More LessIntroductionSarcomas are heterogeneous mesenchymal tumors with poor responses to systemic therapies. Ubiquitination is a post-translational modification that regulates various physiological processes and cancer growth.
MethodsWe analyzed the transcriptomic data of 256 sarcoma patients from The Cancer Genome Atlas (TCGA) to define the network and prognostic value of predefined ubiquitination-related genes and performed subgroup analyses. Additionally, the role of TRIM21 in sarcoma progression was explored using cellular experiments.
ResultsWe identified two ubiquitination-related clusters, and patients in the two clusters were characterized by different survival outcomes, enriched pathways, and characteristics of the tumor microenvironment. A ubiquitination-related signature involving LRRC41, RNF125, TRIM21, and UBE3D was identified to predict prognoses. The signature was associated with patient prognoses in the public sarcoma cohorts and our independent cohort. Immunohistochemistry analyses revealed that the risk score and CD8 could distinguish patients with different survival outcomes in our cohort. Mechanistically, different risk groups were also characterized by distinct enriched pathways and characteristics of the tumor microenvironment. Cellular experiments revealed that TRIM21 overexpression could suppress tumor progression in sarcomas.
DiscussionThis study provided a novel classification for sarcoma patients based on expressions of ubiquitination-related genes. The classification and the prognostic model may facilitate the understanding of sarcoma pathogenesis, the prediction of prognosis and immunotherapy response for sarcoma patients. Meanwhile, it was confirmed that TRIM21 suppressed sarcoma progression and identified it as a potential target for therapeutic interventions.
ConclusionThe classification and signature stratify sarcoma patients for prognosis and immunotherapy response, with TRIM21 representing a promising therapeutic target.
-
-
-
Clinical Features of Hypo- and Hypervitaminosis of Fat-Soluble Vitamins in Pediatric Patients
Available online: 15 January 2026More LessFat-soluble vitamins (A, D, E, and K) are crucial for pediatric health, contributing to normal cellular function, growth, immune defense, and development. Unlike water-soluble vitamins, they are absorbed with dietary fats and stored in the liver and adipose tissue, leading to risks of deficiency (hypovitaminosis) and toxicity (hypervitaminosis) in certain physiological and pathological conditions. This narrative review aimed to summarize the clinical manifestations, diagnostic considerations, and management of hypo- and hypervitaminosis of fat-soluble vitamins in pediatric populations. A comprehensive literature review was conducted, highlighting the physiological roles, symptoms of deficiency and toxicity, diagnostic strategies, and treatment options, with particular focus on high-risk groups, including neonates and children with malabsorption or dietary restrictions. Pediatric patients are especially vulnerable to vitamin imbalances due to rapid growth and specific developmental needs. Deficiencies can result in vision problems, bone disorders, immune dysfunction, and coagulation issues, while excess intake can lead to toxicity. Management strategies include clinical assessment, biochemical testing, supplementation, dietary counseling, and public health interventions. Early detection and preventive measures are essential. Future research is needed to explore non-classical roles of these vitamins and optimize supplementation guidelines.
-
-
-
Novel Metabolic Reprogramming and Circadian Rhythm Related Molecular Subtyping and Prognostic Signature for Ovarian Cancer
Authors: Qingyuan Zeng, Yan Wang, Yanzi Wang, Yang Yu, Yumei Lv, Mingyi Wang and Zhu HuangAvailable online: 15 January 2026More LessIntroductionOvarian cancer (OC), characterized by high mortality and lacking early diagnostic markers, poses a significant health threat. This study investigated the expression of metabolic reprogramming and circadian rhythm-related genes (MRCRRGs) in OC and their association with clinical features.
MethodsOC datasets and MRCRRG lists were sourced from TCGA, GEO, and GeneCards. Comprehensive bioinformatics analyses included calculating Metabolic Reprogramming and Circadian Rhythm Scores (MRCR.Score), identifying MRCR score-related genes (MRCRSRGs), building a Cox regression model, performing clustering for subtype identification, analyzing immune cell infiltration and immune checkpoint gene expression, conducting differential expression analysis, and performing Gene Set Enrichment Analysis (GSEA).
ResultsWe identified 138 MRCRRGs. MRCR. Score differed significantly between OC and controls. Thirty-four MRCRSRGs were identified, and a Cox model based on four genes was developed. Clustering revealed two distinct OC subtypes with significant overall survival differences. Immune infiltration analysis showed significant expression differences in 26 immune cell types, and immune checkpoint genes differed between subtypes. Differential expression identified 89 genes (88 upregulated, 1 downregulated). A six-gene predictive model demonstrated moderate accuracy. GSEA revealed significant enrichment of key pathways, notably Fcgr3a-mediated IL-10 synthesis.
DiscussionFindings demonstrate strong links between MRCRRGs, OC subtypes, patient survival, and the tumor immune microenvironment. Enrichment of pathways like Fcgr3a-mediated IL10 synthesis suggests novel OC mechanisms. Reliant on bioinformatics, the study provides insights into OC heterogeneity.
ConclusionThis study establishes a foundation for understanding MRCRRG molecular mechanisms in OC. The identified subtypes, prognostic model, immune landscape alterations, and enriched pathways offer valuable insights for future experimental validation and potential diagnostic/therapeutic strategies.
-
-
-
Development of New Drugs from the Iminosugar Class
Authors: Bo Luo, Li Shen and Yongmin ZhangAvailable online: 15 January 2026More Less
-
-
-
Atranorin Triggers Intrinsic and Extrinsic Apoptosis and Suppresses Migration in Human Melanoma Cells
Authors: Mine Ensoy and Demet Cansaran-DumanAvailable online: 15 January 2026More LessIntroductionMalignant melanoma is a highly aggressive skin malignancy characterised by metastatic properties and resistance to conventional therapies. This indicates a necessity to explore novel, efficacious treatment modalities. Atranorin, a secondary metabolite derived from lichen, has demonstrated a diverse range of bioactivities. However, the antineoplastic mechanisms of atranorin in melanoma remain underexplored.
MethodsHuman melanoma cancer cell lines (A-375, G-361, and MDA-MB-435) and normal human melanocytes were treated with various concentrations of atranorin. Cell viability and proliferation were evaluated by MTT assay, apoptosis was assessed using Annexin V-FITC/PI flow cytometry, and cell cycle distribution was determined by PI staining and flow cytometry. Gene expression of apoptosis-related markers was quantified by qRT-PCR, and protein levels were analyzed by Western blot. Cell migration was evaluated by the wound healing assay.
ResultsAtranorin demonstrated selective toxicity in human melanoma cancer cells, exhibiting minimal effect on normal human melanocytes. In a study on human malignant melanoma A-375 cells, it was found that atranorin, at an IC50 concentration of 12 μM, significantly increased the number of apoptotic cells by approximately 11-fold. Furthermore, the results of the study indicated that atranorin induced G1 phase arrest and inhibited migratory capacity by around 60%. Molecular profiling revealed the upregulation of the intrinsic (APAF1, BAX, and CASP9) and extrinsic (FAS, FADD and CASP10) apoptotic pathways, and the downregulation of the anti-apoptotic genes BCL2, MCL1, and BIRC5. In line with these observations, protein analyses revealed increased levels of cleaved caspase-3, caspase-9, and PARP, thereby providing evidence for the activation of apoptotic cascades.
DiscussionIn this study, the therapeutic effect of atranorin was comprehensively evaluated for the first time on A-375 melanoma cells, and it was highlighted as a natural compound with strong anti-cancer potential.
ConclusionThis study is the first to demonstrate the potent anti-melanoma effect of atranorin. This demonstrates the natural compounds' effects on cell proliferation, cell cycle progression, and the suppression of metastasis. These findings emphasize the potential of atranorin as a novel natural compound for use in adjunctive or targeted melanoma therapy, and highlight the need for further preclinical and clinical evaluation.
-
-
-
Investigating the Mechanism of NAD+ Metabolism in Atrial Fibrillation: A Risk Gene Analysis
Authors: Fei Guo, Guanghui Zhu, Wanyue Sang, Jianfeng Luo, Yaodong Li and Jian XuAvailable online: 13 January 2026More LessIntroductionThis study explored potential atrial fibrillation (AF) risk genes via nicotinamide adenine dinucleotide (NAD+) metabolism using tissue samples and the Gene Expression Omnibus (GEO) database.
MethodsA cross-sectional study was conducted on atrial tissues from patients undergoing left atrial appendage resection. Whole transcriptome sequencing was performed on 3 AF and 3 control samples. The GSE115574 and GSE79768 datasets were analyzed, yielding 51 NMRGs. DE-mRNAs were screened and overlapped to obtain DE-NMRGs. LASSO and RFE algorithms identified critical genes, and enrichment and drug-prediction analyses were conducted. Gene expressions were validated in 5 additional patients using qRT-PCR.
ResultsThree key genes (SLC6A6, ATP1B4, and BEX2) were identified, associated with energy metabolism pathways and potentially influencing AF progression through immune response modulation.
DiscussionPrevious studies reported the role of NAD+ metabolism in AF, but its mechanism is unclear. This study identified SLC6A6, ATP1B4, and BEX2 as gene signatures linking NAD+ metabolism to AF. These genes are involved in metabolic or electrophysiological processes that can predispose to arrhythmogenesis. However, their specific mechanisms of action remain unclear, and further research is needed.
ConclusionThe study identified three key genes (SLC6A6, ATP1B4, and BEX2) involved in NAD+ metabolism, with diagnostic potential for AF patients and associations with energy metabolism and immune infiltration.
-
-
-
Exploring the efficiency of Deep Eutectic Solvents (DESs) as Sustainable Systems for Recent Advances in Drug Discovery and Synthesis: A Comprehensive Review
Available online: 13 January 2026More LessTraditional organic solvents often pose environmental and toxicity concerns in the synthesis of active pharmaceutical ingredients (APIs), the cornerstone of pharmaceutical drugs. Deep eutectic solvents (DESs), characterized by their versatility and efficiency as both solvents and catalysts, offer a promising alternative for sustainable drug synthesis. The dual capacity of DESs as green solvents and catalysts holds significant potential for enhancing the sustainability and efficiency of drug-synthesis processes. This study comprehensively explores the synthesis of various drug scaffolds, including those relevant to central nervous system (CNS) disorders, inflammation, cancer, and other therapeutic areas. By examining reaction mechanisms and parameters, the research provides valuable insights into the high yields achievable using DESs. The review also highlights the effectiveness of different types of DESs in drug synthesis, including natural DESs (NADESs), reactive DESs (RDESs), water-based DESs (WDESs), and ionic liquid-based DESs (IL-DESs). Among these, NADESs are the most commonly used, with choline chloride (ChCl)–based DESs standing out as the most popular, utilized in over (30) different combinations mentioned in the review. The most frequently used ChCl-based DES was ChCl/urea, followed by ChCl/taurine. The collected data provide important information, including optimal DES combinations, ratios, concentrations, and reaction conditions for producing drug scaffolds with the highest yields. The numerous synthetic results presented in this article demonstrate that widespread adoption of DESs in both research and industrial settings could have a significant positive environmental impact, owing to their low toxicity, renewability, affordability, and energy-efficient catalytic properties. This review offers a thorough exploration of the use of DESs in drug synthesis. By analyzing key chemical equations, reaction procedures, reaction mechanisms, yields, and critical parameters from reported studies, this report aims to present a valuable resource to guide researchers in optimizing synthetic strategies and advancing the application of DESs in pharmaceutical chemistry.
-
-
-
Cancer-Associated Fibroblast-Derived Gene Signature Predicts Prognosis and Exhibits Correlations with Aggressive Tumor Features in Hepatocellular Carcinoma
Available online: 13 January 2026More LessIntroductionCancer-associated fibroblasts (CAFs) play vital roles in HCC initiation and progression via multicellular, stromal-dependent processes. Despite their acknowledged significance, the comprehensive role of CAF-related gene signatures in HCC remains underexplored. Given the established role of CAFs in HCC progression and therapy resistance, we aimed to develop a CAF-derived gene signature for prognosis prediction.
MethodsThis comprehensive analysis used RNA sequencing data from The Cancer Genome Atlas database and a validation cohort from the International Cancer Genome Consortium database. Differential gene expression analysis identified CAF-related genes associated with HCC prognosis. A gene signature was developed using the least absolute shrinkage and selection operator algorithm and Cox regression analysis, and its prognostic value was evaluated through Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC) analysis. The signature’s associations with immune cell infiltration, chemotherapeutic response, and functional enrichment were investigated to further evaluate the prognostic value of CAF-related genes.
ResultsIn total, 256 differentially expressed CAF-related genes were identified between samples with high and low CAF infiltration. After systematic analysis, a prognostic signature, including 23 genes, was constructed. Kaplan-Meier and ROC analyses demonstrated the robust predictive potential of our risk model for patients with HCC. Univariate/multivariate Cox regression analyses further confirmed that the risk model was an independent prognostic factor for HCC in both the testing and validation cohorts. The signature stratified patients into high- and low-risk groups with distinct survival (log-rank p < 0.001), achieving areas under the curve of 0.848 (1 year), 0.795 (3 years), and 0.781 (5 years). Patients in the high-risk group were more responsive to vinblastine, docetaxel, and navitoclax. Patients in the low-risk group had greater chemosensitivity to olaparib. Moreover, the stromal score was significantly higher in the high-risk group. Finally, the signaling pathways enriched in the high-risk group were mainly associated with HCC progression.
DiscussionWe established a CAF-related gene signature model as an independent prognostic predictor for HCC. This model may also guide adjuvant chemotherapy and targeted therapy, though further validation across diverse cohorts is needed to confirm its clinical utility.
ConclusionThe CAF-related gene signature exhibited good predictive potential concerning the prognosis of patients with HCC.
-
-
-
Enhanced Antioxidant and Anti-bacterial Potential of Brugmansia suaveolens Conjugated Chitosan Nanoparticles
Available online: 13 January 2026More LessIntroductionChitosan nanoparticles (CNPs) are broadly explored for drug delivery due to their biocompatibility, biodegradability, and non-toxicity. This study encapsulated Brugmansia suaveolens leaf ethanol extract (BSLEE) into CNPs to enhance antioxidant and antibacterial activity.
Materials and MethodsThe optimization of synthesis, such as chitosan concentration of (1:1) to cross-link BSLEE, maintaining an optimal acidic pH (~4.5-5.5), and applying mild stirring at 50 rpm resulted in an encapsulation efficiency ranging from 26.33 to 48.58%, indicating the successful encapsulation of BSLEE within the CNPs. Characterization by UV-Vis, FTIR, SEM, XRD, EDX, and zeta potential confirmed successful formulation, with semi-crystalline, porous nanoparticles.
ResultsDPPH, FRAP, and total phenolics assay indicate BSLEE CNPs exhibited stronger antioxidant activity in the range of 30.42 ±0.77% to 55.85± 0.69% of DPPH inhibition, 34.73±2.71 to 121.44±1.83 µg/ml FSE, and 58±2.27 to 149.5±2.48 µg GAE/ml, respectively, when compared to crude BSLEE. The antibacterial effectiveness of BSLEE CNPs against S. aureus and E. coli was more significant when compared to the BSLEE and chitosan alone, attributed to enhanced membrane permeability and disruption of the bacterial cell membrane.
DiscussionAntibacterial studies showed significant inhibition against S. aureus and E. coli, linked to improved membrane disruption. The BSLEE CNPs demonstrated promising biocompatibility and potential for application in antimicrobial and antioxidant therapies, warranting further clinical validation and in vitro findings of BSLEE-conjugated chitosan nanoparticles.
ConclusionThe BSLEE CNPs showed promising pharmacological properties like antibacterial efficacy against E. coli and S. aureus, indicating their potential as an alternative approach to combat bacterial infections.
-
-
-
Exploring the Regulatory Effects of Curcumin on CD47-Over Expressing Esophageal Cancer Cells via Network Pharmacology with Preclinical Validation
Authors: Yan Kang, Xiao Li, Hongchao Zhen, Jing Wang, Haishan Lin and Bangwei CaoAvailable online: 13 January 2026More LessIntroductionEsophageal cancer (EC) is a significant clinical challenge due to its aggressiveness and poor prognosis. CD47, a transmembrane protein, inhibits macrophage phagocytosis and is linked to tumor advancement and poor outcomes. The interaction between curcumin (CUR) and CD47 and its effects on EC needs further studies.
MethodsThis study identified common target genes of CUR and EC through network pharmacology, and then found core genes via protein-protein interaction (PPI) analysis. In vitro experiments were conducted to investigate the effects of CUR on cell proliferation, apoptosis, and migration, and to explore the underlying mechanisms. in vivo xenograft experiments were also carried out to evaluate the effects and mechanisms of CUR on tumor growth.
ResultsCD47 was highly expressed in EC, and CUR shared ten common target genes with EC. Enrichment analysis and PPI network supported PTGS2 and BAX as core genes. in vitro, CUR could inhibit the proliferation and migration of CD47-overexpressing EC cells and induce apoptosis. In the xenograft model, CUR could inhibit tumor growth (p = 0.0144). The mechanism of CUR may be related to multiple components of the MAPK signaling pathway, especially ERK1/2 and its phosphorylation. Additionally, CUR treatment reduced the COX-2 expression level. Immunohistochemistry showed that both BAX and Bcl-2 proteins were upregulated, but the upregulation of BAX protein was significantly more pronounced than that of Bcl-2.
DiscussionOur study has confirmed that CUR inhibits CD47-overexpressing esophageal cancer cells. This mechanism may be achieved by blocking ERK1/2 and its phosphorylation, reducing COX2 levels, and enhancing BAX protein expression.
ConclusionThis study highlights CUR's potential in treating EC, particularly in CD47 overexpression cases. These results clarify the molecular interactions and provide a basis for future research on CUR-based therapies targeting EC progression pathways.
-
-
-
EGF Family-Based Prognostic Model Reveals AREG as a Key Regulator in Cervical Cancer Progression
Authors: Ruina Jiang, Jianfeng Zheng, Xuefen Lin, Siping Wang, Xintong Cai, Li Liu and Yang SunAvailable online: 09 January 2026More LessIntroductionThis study investigates the prognostic value of Epidermal Growth Factor (EGF) family genes in Cervical Cancer (CC) and experimentally validates the role of AREG in the progression of CC.
MethodsTranscriptome and clinical data of CC were obtained from the TCGA database. We constructed a prognostic model using LASSO Cox regression analysis based on candidate EGF family genes. Multiple bioinformatics approaches were employed to analyze functional pathways and immune characteristics. The biological function of Amphiregulin (AREG) was validated through in vitro experiments, including colony formation, CCK8 proliferation assay, wound healing assay, transwell assay, macrophage polarization analysis using the co-culture system, and in vivo subcutaneous tumor formation in nude mice. Combination therapy with anti-AREG and anti-PD-L1 antibodies was evaluated in a murine C57BL/6 model.
ResultsWe identified 116 EGF family-related genes associated with CC progression and established a prognostic model. High-risk and low-risk groups showed distinct functional enrichment patterns and immune characteristics. AREG emerged as a key prognostic factor, with significantly elevated expression in CC cells. Knockdown of AREG suppressed CC cell proliferation, migration, and invasion, potentially through modulating Epithelial-Mesenchymal Transition (EMT). AREG promoted M2 macrophage polarization, fostering an immunosuppressive tumor microenvironment. Anti-AREG antibody treatment demonstrated antitumor effects in vitro and in vivo, synergizing with anti-PD-L1 therapy to significantly inhibit tumor growth and reverse EMT.
DiscussionOur findings establish the first EGF family-based prognostic model for CC and reveal AREG's dual role in promoting EMT and reshaping the immune microenvironment. The observed synergy between AREG inhibition and PD-L1 blockade provides mechanistic insights for overcoming immunotherapy resistance. Limitations include retrospective data analysis and a lack of multi-omics validation.
ConclusionOur study establishes a robust EGF family gene-based prognostic model for CC patients and identifies AREG as a promising therapeutic target. These findings provide new insights for CC prognosis assessment and treatment strategies.
-
-
-
Computational Analysis and in vitro Validation of the Anti-Prostate Cancer Activity of Sesamin from Sesamum indicum
Available online: 09 January 2026More LessIntroductionProstate cancer is the fourth most commonly diagnosed cancer worldwide and the eighth leading cause of cancer-related mortality, primarily affecting elderly males. Conventional therapeutic approaches, while effective in some cases, often come with substantial side effects, posing particular challenges for older patients. As a result, the exploration of natural compounds from traditional Chinese medicine (TCM) as potential anticancer agents has gained increasing attention. Sesamin, a dietary lignan found in sesame seeds and frequently used in TCM, has shown promise in preliminary studies for its antioxidant, anti-inflammatory, and potential anticancer properties. However, its specific effects and underlying mechanisms against prostate cancer cells remain inadequately characterized.
Materials and MethodsThis study investigated the anticancer effects of sesamin on human prostate cancer DU145 cells. Cell viability was evaluated using MTT assays. Apoptosis induction and cell cycle distribution were assessed by flow cytometry. Protein expression levels of PPAR-γ, p21, and p53 were measured using Western blotting. Additionally, in silico molecular docking was performed using the LibDock algorithm to evaluate sesamin’s binding affinity with the target proteins PPAR-γ and p21.
ResultsSesamin treatment significantly reduced the viability of DU145 cells in a dose-dependent manner. Flow cytometry revealed increased apoptosis and cell cycle arrest at the G1 phase. Western blot analysis showed upregulated expression of PPAR-γ and p21, while p53 expression remained largely unchanged. Molecular docking analysis demonstrated strong binding affinity of sesamin to PPAR-γ (LibDock score: 125.03) and p21 (LibDock score: 105.45), supporting its involvement in a p53-independent apoptotic mechanism.
DiscussionThe study demonstrates that sesamin exerts significant anticancer effects on prostate cancer DU145 cells by inhibiting cell viability, inducing apoptosis, and causing G1 phase cell cycle arrest. The upregulation of PPAR-γ and p21, coupled with unchanged p53 expression, suggests that sesamin may activate a p53-independent pathway, a valuable feature in treating prostate cancers with defective p53 signaling. Molecular docking results corroborate these findings, indicating direct interactions between sesamin and its molecular targets.
ConclusionSesamin exhibits promising antiproliferative and pro-apoptotic activities against DU145 prostate cancer cells. Its potential to act as a G1-phase-specific chemotherapeutic agent via a p53-independent mechanism warrants further investigation and development as a natural candidate for prostate cancer therapy.
-
-
-
Citral-Loaded Self Nano-Emulsifying Drug Delivery System Suppresses Metastasis and Enhances Apoptosis in SW620 Colon Cancer Cells
Available online: 09 January 2026More LessIntroductionThe global incidence of colon cancer is rising, highlighting the need for complementary therapeutic approaches using natural products such as citral. A self-nano-emulsifying drug delivery system incorporated with citral (CIT-SNEDDS) was formulated, and prior studies have demonstrated its potent antiproliferative effects on colon cancer cell lines.
Materials and MethodsThe apoptosis-inducing ability of CIT-SNEDDS treatment on SW620 cells was evaluated using Acridine Orange/Propidium Iodide (AO/PI) assay, Annexin V-FITC assay, and cell cycle analysis by flow cytometry. Scratch assay and migration, and invasion assays were performed to assess its anti-metastatic effects.
ResultsThe cytotoxicity assay results showed that SNEDDS with citral (CIT-SNEDDS) significantly reduced cell viability in a dose-dependent manner compared to free citral and SNEDDS without citral. Acridine orange/propidium iodide staining and Annexin V assay results confirmed apoptosis in CIT-SNEDDS-treated cells. Cell cycle analysis indicated that CIT-SNEDDS induced arrest at the S and G2/M phases, which may contribute to apoptosis initiation. The scratch and trans-well assays demonstrated a reduction in SW620 cell migration and invasion capabilities following CIT-SNEDDS treatment, suggesting a potent anti-metastatic effect.
DiscussionThe ability of CIT-SNEDDS to induce apoptosis, disrupt the cell cycle, and inhibit cellular migration in cancer cells aligns with the goals of targeted cancer therapies, which aim to selectively eradicate cancer cells while minimizing effects on healthy tissue.
ConclusionThese findings highlight the therapeutic potential of CIT-SNEDDS for enhancing the efficacy of citral as an anti-tumor and antimetastatic agent for colorectal cancer, warranting further in vivo and preclinical studies to optimize its application.
-
-
-
Exploring the Causal Relationship of Metabolites in Breast Cancer
Authors: Xin Wang, Zihan Xu, Yiyao Zeng and Jie ChenAvailable online: 09 January 2026More LessBackgroundObservational studies have suggested associations between circulating metabolites and breast cancer (BC) risk, but the direction and causality of these relationships remain unclear due to confounding and reverse causation. Therefore, we aimed to evaluate the potential causal effects of 1,400 circulating metabolites on BC subtypes using Mendelian randomization (MR) based on GWAS data from European-ancestry populations.
MethodsTwo-sample and reverse MR analyses were performed to explore potential causal links between metabolites and BC from the FinnGen and Breast Cancer Association Consortium (BCAC) cohorts. The inverse-variance weighted (IVW) approach served as the main analytical method to evaluate these associations. To further ensure the robustness and credibility of the MR findings, sensitivity analyses were conducted, incorporating leave-one-out procedures, the Cochran's Q test, and the MR-Egger intercept test.
ResultsFollowing correction using the False Discovery Rate (FDR) method at a significance level of 0.10, we identified 5alpha-pregnan-3beta,20alpha-diol monosulfate levels (p = 6.7714*10-5, PFDR = 0.0798) and Myristoleate (14:1n5) levels (p =0.0002, PFDR = 0.0798) were associated with an increased risk of ER+ BC. Conversely, the Caffeine to paraxanthine ratio (p =0.0001, PFDR = 0.0798) was associated with a reduced risk. In the reverse MR analysis, interactions were observed between Eicosanedioate (C20-DC) levels, Piperine levels, Caffeine to theobromine ratio, Indolepropionate levels, 1-oleoyl-GPC (18:1) levels, and Oleoylcarnitine levels with BC. Notably, the p-values of intercept terms in MR-Egger regression all exceeded 0.05, suggesting an absence of potential horizontal pleiotropy.
DiscussionThese findings suggested that hormone-related, lipid-related, and diet-derived metabolites might play subtype-specific roles in breast cancer development. The identified metabolites provided mechanistic insights and highlighted potential biological pathways that warrant further functional validation. They may also serve as preliminary biomarkers for future metabolomic and translational research.
ConclusionOur MR study identified several metabolites that may be causally associated with BC risk. These findings offer potential candidates for further mechanistic investigation and highlight the importance of subtype-specific approaches in metabolomics research.
-
-
-
Tigecycline in the Era of Antibiotic Resistance: A Current Review
Available online: 09 January 2026More LessTigecycline (TIG) is a broad-spectrum antibiotic of the tetracycline class that evades the resistance mechanisms common to first- and second-generation tetracyclines and is effective against Gram-negative and Gram-positive bacteria, as well as intracellular bacteria. TIG is indicated for the treatment of intra-abdominal, skin, and soft tissue infections in adults, as well as community-acquired bacterial pneumonia. The clinical performance of the TIG has been the subject of discussion since its introduction due to variable safety and efficacy outcomes. Concerns have arisen regarding its association with increased mortality when used in ventilator-associated pneumonia. In addition, resistance to TIG has been reported, driven by various mechanisms such as expulsion by efflux via chromosomal pumps, target site modifications, mutations in tet genes, and enzymatic inactivation. The latter, particularly due to the emergence of multiple TetX monooxygenase variants, is of growing concern. The rise of resistance to last-line antibiotics like TIG presents a significant public health challenge, given the limited therapeutic alternatives available. Therefore, this review analyzes the safety and efficacy reports of TIG, third-generation tetracyclines, documented clinical cases of resistance, and the underlying mechanisms contributing to resistance.
-
-
-
Comprehensive Analysis to Reveal Nitrogen Metabolism-Associated Genes as a Prognostic Index in Head and Neck Squamous Cell Cancer
Authors: Yiming Shen, Wenfang Sun and Chunfu DaiAvailable online: 09 January 2026More LessBackgroundHead and neck squamous cell carcinoma (HNSCC) has a poor prognosis and a high fatality rate. To predict the prognosis of HNSCC, this study developed a prognostic model based on nitrogen metabolism (NM)-related genes.
MethodsThis study utilized transcriptomic data and clinical information from HNSCC obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify differentially expressed NM-related genes. Subsequently, an NM-related prognostic risk model was established by integrating univariate Cox regression, LASSO regression, and multivariate Cox regression. Its predictive value was validated using Kaplan-Meier and ROC curves. Further analysis using GSVA and CIBERSORT examined the relationship between the risk model and the tumor microenvironment immune status, while also evaluating chemotherapy drug sensitivity across different risk groups. Finally, protein-protein interaction (PPI) networks and key gene screening were employed, and the functional validation of the core genes was conducted through in vitro experiments.
ResultsWe identified 10 key NM-related genes (GLS, ASNS, EXT2, HPRT1, SLC7A5, SMS, B3GNT8, GATM, NAGK, and SULT1B1) to construct a prognostic risk model. The GSVA analysis revealed that the low-risk group was enriched in immune-related pathways, while the high-risk group favored metabolic pathways. Additionally, the low-risk group exhibited higher levels of immune cell infiltration. We discovered that gefitinib, belinostat, erlotinib, and phenformin were more effective against cancer cells with lower risk scores. The PPI network screening identified key hub genes, including LORICRIN. Experimental validation demonstrated that LORICRIN overexpression significantly suppressed migration and invasion in HNSCC cells, suggesting its potential tumor-suppressive role in carcinogenesis and progression.
DiscussionThis study emphasizes the links between NM signatures, immune regulation, and signaling pathways, underscoring their potential in the HNSCC mechanism research.
ConclusionOur study established a NM-related gene signature closely linked to immune microenvironment and drug sensitivity, highlighting potential biomarkers and therapeutic targets for prognosis and personalized therapy in HNSCC.
-
-
-
Synthesis of Enduracididine Free Linear Teixobactin Analogs: Molecular Docking, DFT Calculations, and Their Antimicrobial Activities, Bacterial Cell Wall Lysis and Glucose Assay
Available online: 08 January 2026More LessIntroductionTeixobactin (TX) is a new class of antibiotics with a unique structure and strong efficacy against gram-positive bacteria. It is a “head-to-side-chain” cyclodepsipeptide with considerable potential as a lead molecule for creating novel antibiotics to combat multidrug-resistant pathogens.
MethodsIn this study, we systematically design, synthesize, and evaluate modified Teixobactin analogs (TX1-TX5) for antimicrobial activity. This study presents a novel peptide derived from linearized Teixobactin, with amino acid substitutions at aa1 (N-Me-D-Phe-OH), aa5 (H-L-allo-Ile-OH), and the exclusion of L-allo-Enduracididine at aa10, synthesized using solid-phase peptide synthesis. We employed various software tools, including Molinspiration and SwissADME, to estimate the pharmacokinetic features of the synthesized TX analogs. Molecular docking studies were performed using AutoDock Vina, and PyMOL and Biovia Discovery Studio visualizer were utilized to visualize the protein-ligand interactions. The molecular structures of TX and TX analogs were modeled using the Sinapsis software.
ResultsAntimicrobial susceptibility tests against Staphylococcus aureus, Bacillus subtilis, E. coli, Pseudomonas sp., Aspergillus niger, and Fusarium sp. identified novel TX analogs exhibiting strong bactericidal and fungicidal activity at 80 μg/mL. Bacterial cell wall lysis assays confirmed significant cell wall breakdown upon TX analog treatment. Glucose assay results indicate reduced glucose uptake in bacterial cells treated with TX analogs. Docking studies revealed that the synthesized TX analogs exhibited good binding affinity, ranging from -5.0 to -12.5 kcal/mol, compared with bacterial and fungal proteins, as well as the Delafloxacin and Ketoconazole standards. Density Functional Theory (DFT) computations were employed to investigate chemical reactivity descriptors.
DiscussionIn-vitro studies indicated that TX1 and TX3 showed excellent bactericidal activity by forming inhibition zone diameters (mm) from 6.49 ±0.31 to 11.50 ±0.59 at 70 and 80 μg/mL concentrations against Staphylococcus aureus, Bacillus subtilis, E. coli, and Pseudomonas sp., compared to the standards Streptomycin (+ve) and DMSO (-ve). The TX2, TX3, and TX5 exhibit excellent fungicidal activity with inhibition zone diameters (mm) from 7.23 ±0.25 to 10.23 ±0.30 at 70 and 80 μg/mL concentrations against Aspergillus niger and Fusarium sp., compared to the standards ketoconazole (+ve) and DMSO (-ve). The bacterial cells treated with TX1 displayed more dead cells than the control in all bacterial strains, indicating excellent cell lysis.
ConclusionMass, 1H NMR, and HPLC analysis characterized the synthesized fine TX analogs (TX1-TX5). The DFT and docking studies' electronic characteristic calculations predicted that halogenated (TX1, TX2, and TX4) and methoxy (TX3) substituted analogs have higher stability and electrophilicity, making them suitable agents for antimicrobial activity.
-
-
-
Aspirin Downregulates PDE4D to Inhibit Malignant Progression of Osteosarcoma through the NF-κB/p65 Pathway
Authors: Jinwu Wang, Yan Zhang, Zhuolun Li, Yiqin Li, Peng Zhou, Yao Xu, Long Chen, Houzhi Yang, Chao Zhang, Jinyan Feng and Guowen WangAvailable online: 08 January 2026More LessIntroductionOsteosarcoma is a highly aggressive cancer with a notably low five-year survival rate. Although aspirin has demonstrated potential in inhibiting the malignant progression of osteosarcoma, the underlying mechanisms remain unclear.
MethodsIn this study, RNA sequencing (RNA-seq) was employed to identify the downstream targets of aspirin in osteosarcoma cells. Then, we examined the expression and clinical significance of PDE4D using osteosarcoma patient samples, tissue microarrays, and data from the TARGET and GTEx databases. The effects of PDE4D on cell growth and mobility were assessed by CCK-8, colony formation, transwell, and wound-healing assays. To explore how aspirin influenced the NF-κB/p65/PDE4D axis, we performed qRT-PCR, Western blotting, luciferase reporter assays, etc. Additionally, mouse models with subcutaneous tumors were used to confirm the roles of aspirin and PDE4D.
ResultsOur results showed that aspirin significantly impeded the proliferation, migration, and invasion of osteosarcoma cells by various functional assays. RNA-seq identified PDE4D as a key target modulated by aspirin treatment in osteosarcoma. Clinically, PDE4D was highly expressed in osteosarcoma cells and tissues, and higher levels of PDE4D were linked to poorer patient outcomes. Functionally, PDE4D served as an oncogene that promoted the malignant traits of osteosarcoma both in vitro and in vivo. Mechanistically, our findings revealed that NF-κB/p65 directly interacted with the core region of the PDE4D promoter, increasing its expression.
DiscussionThe findings of this study reveal a novel mechanism whereby aspirin exerts its anti-tumor effects by inhibiting the NF-κB/p65/PDE4D axis, providing a mechanistic basis for its therapeutic potential. Further validation in different animal models of osteosarcoma is warranted.
ConclusionAspirin suppressed the malignant progression of osteosarcoma by targeting the NF-κB/p65/PDE4D axis, positioning PDE4D as a potential therapeutic target for aspirin-based treatment strategies.
-
-
-
Identification and Immune Cell Profiling of Exosome-related Genes in Acute Respiratory Distress Syndrome: An Integrated Bioinformatics Analysis
Authors: Xiaoli Tu, Yu-an Qiu, Yubo Duan and Qian OuyangAvailable online: 08 January 2026More LessBackgroundAcute respiratory distress syndrome (ARDS) is a life-threatening condition associated with high mortality and morbidity. However, targeted therapies that effectively improve patient outcomes remain limited. Exosomes play pivotal roles in intercellular communication and epigenetic regulation.
ObjectiveThis study aimed to identify exosome-related differentially expressed genes (EXORDEGs) in whole blood associated with ARDS and to explore their potential mechanistic roles in the disease.
MethodsTwo gene expression datasets (GSE32707 and GSE66890) were retrieved from the Gene Expression Omnibus for comprehensive bioinformatics analysis. Analytical approaches included Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, protein-protein interaction network construction using the STRING database, and immune infiltration profiling via single-sample gene set enrichment analysis in relation to hub genes.
ResultsWe identified 21 EXORDEGs, primarily enriched in biological processes such as endothelial cell development and apoptosis. Four hub genes—PI3, EEF1A1, ANAPC1, and PSMD2—were robustly associated with ARDS, with PSMD2 showing the most pronounced differential expression. Immune infiltration analysis revealed significant disparities in nine immune cell populations between ARDS and control samples.
DiscussionThe results of this comprehensive bioinformatics analysis identified four EXORDEGs—PI3, EEF1A1, ANAPC1, and PSMD2—with important roles in acute respiratory distress syndrome.
ConclusionThis study first systematically identified EXORDEGs in ARDS, discovering four hub genes and their associations with immune cells. The hub genes may be implicated in endothelial injury, inflammation, and immune dysregulation. These findings provide novel insights into ARDS pathogenesis and highlight potential therapeutic targets for further investigation. Given the disease heterogeneity, our findings primarily reflect common molecular characteristics, while the specific features of different etiological subtypes require further investigation.
-
-
-
PELI3-Mediating Epithelial-Mesenchymal Transition Correlates with Radiation Sensitivity in Non-Small Cell Lung Cancer
Authors: Fannian Li, Xiaoning Li, Haitao Li, Shuai Li, Yanchao Liu, Xianhua Bai, Tianjie Qi, Xiumin Zhao and Yuzheng HeAvailable online: 08 January 2026More LessIntroductionRadiotherapy remains a cornerstone of treatment for non-small cell lung cancer (NSCLC). Despite its critical role, the emergence of radiation resistance remains a significant hurdle, often leading to therapeutic failure and disease progression. This research aimed to investigate the expression of Pellino E3 ubiquitin protein ligase family member 3 (PELI3) in NSCLC and examine its involvement in modulating the tumor's response to radiation.
Materials and MethodsTo quantify PELI3 levels in NSCLC tissues, real-time PCR and Western blotting techniques were employed. The effects of silencing PELI3 on cancer cell proliferation were evaluated using CCK-8 and colony formation assays. Furthermore, an in vivo mouse xenograft model was used to corroborate the in vitro results.
ResultsPELI3 expression was markedly elevated in NSCLC tumor samples relative to normal tissues and showed a strong association with clinical features, such as tumor volume, lymph node involvement, and radiotherapy responsiveness. Further analysis revealed that PELI3 promoted epithelial-to-mesenchymal transition (EMT) following radiation exposure. Suppressing PELI3 expression mitigated radiation-induced EMT in both cellular and animal models.
DiscussionElevated PELI3 promotes radiation-induced EMT and radioresistance in NSCLC. Suppressing PELI3 reverses EMT features and enhances radiosensitivity in vitro and in vivo, highlighting PELI3 as a potential biomarker and therapeutic target to improve radiotherapy outcomes.
ConclusionThese findings suggest that PELI3 could serve as a valuable prognostic marker in NSCLC and may represent a promising target to improve tumor sensitivity to radiotherapy.
-
-
-
Cassia-Derived Natural Flavonoids as Multi-Target Candidates for Lung Cancer Therapy: A Network Pharmacology and Molecular Modeling Study
Authors: Zafer Saad Al Shehri and Abdur RehmanAvailable online: 08 January 2026More LessIntroductionLung cancer remains a major global health burden with high mortality rates and limited therapeutic options. Natural flavonoids, particularly those derived from Cassia species, have shown immunomodulatory and anticancer potential. This study investigates the therapeutic promise of selected Cassia-derived flavonoids targeting key lung cancer-associated proteins: Prostaglandin-endoperoxide synthase 2 (PTGS2), Mast/stem cell growth factor receptor (KIT), and Xanthine dehydrogenase (XDH).
MethodologyEight flavonoids were selected based on literature and database-reported bioactivity. Target prediction was performed using SwissTargetPrediction and STITCH, followed by pathway enrichment via STRING and KEGG databases. Molecular docking was conducted using AutoDock Vina against PTGS2 (PDB: 5IKQ), KIT (1N5X), and XDH (4U0I). Top-ranked complexes underwent 100 ns molecular dynamics (MD) simulations with GROMACS to assess binding stability, RMSD, and conformational behavior. Drug-likeness, ADME, and toxicity profiles were evaluated using SwissADME and ProTox-II. Standard drugs (Trametinib, Nivolumab, Erlotinib) were used for comparison.
ResultsEpicatechin and Hispidulin showed the strongest binding affinities with PTGS2 (−9.04 kcal/mol) and XDH (−8.22 kcal/mol), respectively, with stable RMSD profiles. Chrysoeriol demonstrated the highest binding to KIT (−8.68 kcal/mol), outperforming Nivolumab (−6.03 kcal/mol). All selected flavonoids displayed acceptable pharmacokinetic profiles and low predicted toxicity. MD simulations confirmed the dynamic stability of key complexes.
ConclusionCassia-derived flavonoids represent promising multi-target candidates for lung cancer therapy, particularly through modulation of PTGS2, KIT, and XDH. Their favorable interaction profiles and safety predictions warrant further experimental and in vivo validation.
-
-
-
Molecular Docking and Single-Cell RNA-Seq Analysis Identify PTGS2 as a Key Target of Osthole in the Oral Squamous Cell Carcinoma Microenvironment
Authors: Junyan Jing, Yichen Xu, Zhongyi Hu, Weilong Liu, Ziqian Zhou, Yuejiao Zhong and Yong LuAvailable online: 08 January 2026More LessIntroductionThis study investigates the therapeutic effects of Osthole and elucidates its mechanisms in oral squamous cell carcinoma (OSCC).
Materials and MethodsDifferential expression analysis was performed, followed by nomogram construction, gene set enrichment analysis, and immune infiltration analysis. Molecular docking was conducted to evaluate binding interactions, and single-cell analysis was performed.
ResultsPTGS2 was identified as a key candidate capable of binding with Osthole. Immune infiltration analysis revealed elevated levels of activated inflammatory cells in OSCC. Single-cell analysis further showed high PTGS2 expression in macrophages and mast cells.
DiscussionThis study demonstrates PTGS2’s involvement in OSCC, highlighting its potential as both a biomarker and a therapeutic target.
ConclusionOsthole can modulate OSCC by targeting PTGS2, providing a theoretical basis for OSCC management.
-
-
-
Telmisartan Inhibits Non-Small Cell Lung Cancer by Inducing Ferroptosis through the NRF2/GPX4 Signaling Axis
Authors: Ling-Jie Wang, Peng-Fei Guo, Sai Wang, Yi-Zhao Chen, Hong-Wang Yan and Xue-Lin ZhangAvailable online: 08 January 2026More LessIntroductionNon-Small Cell Lung Cancer (NSCLC) treatment is often challenged by drug resistance. The antihypertensive drug telmisartan has shown anti-tumor potential, but its underlying mechanism remains unclear. Ferroptosis, a newly identified form of cell death, may serve as a promising therapeutic target. The objective is to investigate whether telmisartan inhibits NSCLC by inducing ferroptosis and to elucidate its underlying mechanism.
Methodsin vitro cell assays and in vivo mouse models were used, along with molecular biology techniques, to evaluate the effects of telmisartan on NSCLC and its mechanism of action.
ResultsTelmisartan significantly suppressed NSCLC cell proliferation and tumor growth. Mechanistic studies revealed that telmisartan induced ferroptosis by inhibiting the nuclear translocation of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) and downregulating Glutathione Peroxidase 4 (GPX4) expression. The anti-tumor effect of telmisartan was reversed by ferroptosis inhibitors.
DiscussionTelmisartan can inhibit the proliferation of NSCLC cells in vitro and in vivo and induce cell ferroptosis. Telmisartan can also inhibit the nuclear translocation of NRF2, thereby affecting the expression of GPX4.
ConclusionTelmisartan inhibited NSCLC by inducing ferroptosis via the NRF2/GPX4 axis, offering a new therapeutic strategy and potential clinical application for NSCLC treatment.
-
-
-
Establishment of Centrosome Amplification-Correlated Model to Evaluate the Tumor Immune Microenvironment and Prognosis of Patients with Glioblastoma
Authors: Jiale Li, Zigui Chen, Chunyuan Zhang, Qisheng Luo, Jun Peng and Jiachong WangAvailable online: 08 January 2026More LessIntroductionCentrosome Amplification (CA) is a state where malignant cells contain excessive centrosomes due to cell cycle dysregulation. Altered CA has been observed in Glioblastoma (GBM). This study developed a CA-related gene model to assess the Tumor Immune Microenvironment (TIME) and prognostic outcomes for patients with GBM.
MethodsTCGA-GBM and mRNAseq_325 cohorts were obtained from the Chinese Glioma Genome Atlas (CGGA) database. CA-relevant gene modules and feature genes were identified via WGCNA analysis. Key genes were selected to develop a risk model, followed by validation of the model’s performance. We further compared the gene mutation landscape, TIME characteristics, drug sensitivity, and enriched pathways between high- and low-risk patient groups.
ResultsThe brown module, which showed the highest correlation with CA, was selected to identify CA-related key genes to develop a Riskscore model. The model can accurately categorize patients into high- and low-risk groups and predict their clinical outcomes with precision. Notably, high-risk GBM patients exhibited higher StromalScore and dendritic score, and the Riskscore was positively correlated with fibroblast infiltration. Moreover, patients with different risk levels displayed distinct enriched pathways and gene mutation landscapes. Further, the high-risk group showed an evidently higher CAF score, and the differential relation between drug sensitivity and the Riskscore was detected.
DiscussionThough CA was altered in GBM, its prognostic utility remained to be explored. The current study addressed this gap by developing a 6-gene risk model capable of predicting the prognosis and TIME of GBM patients.
ConclusionA CA-related model was constructed to assess the prognosis and TIME of GBM patients, contributing to the management of GBM in clinical practice.
-
-
-
Single-cell RNA Sequencing Analysis Reveals the Molecular Mechanisms of Neutrophil Dysfunction in Chronic Bone Infection
Authors: Tiejian Li, Shaokui Nan, Hongbin Xie, Yue Song and Wei ChaiAvailable online: 28 November 2025More LessIntroductionNeutrophils play a key role in host immune defense. At present, neutrophils in chronic bone infections exhibit significant heterogeneity but functional alterations that remain poorly understood.
Materials and MethodsA rat model of chronic bone infection induced by Methicillin-Resistant Staphylococcus Aureus (MRSA) was established. Bone marrow cells were analyzed using scRNA-seq with Gene Ontology (GO) and pathway enrichment analysis. Differentially Expressed Genes (DEGs) were identified to assess neutrophil dysfunction, validated by immunofluorescence staining and ROS quantification.
ResultsMRSA-induced chronic bone infection was confirmed by Gram and H&E staining, which showed bacterial colonization and inflammation. Neutrophils from infected rats showed downregulated immune-related genes (e.g., Clec7a, Ccr5) and upregulated immunosuppressive factors (e.g., Nfkbia, IL10ra). Enrichment analysis showed that immune responses and neutrophil functions were inhibited. Immunofluorescence showed neutrophil polarization towards N2 phenotype and reduced Reactive Oxygen Species (ROS) production in the infection group.
DiscussionThis study established a rat model of MRSA-induced chronic bone infection and identified 7 neutrophil subsets via scRNA-seq analysis, with the NeuP2ry10 subset showing the most significant changes. Neutrophils displayed decreased chemotaxis, phagocytosis, and ROS production, along with elevated anti-inflammatory gene expression, suggesting functional suppression and a shift toward an immunosuppressive state.
ConclusionChronic bone infection drives neutrophil polarization toward an N2 anti-inflammatory phenotype, reducing antimicrobial capacity and promoting infection persistence. Targeting neutrophil function may offer new therapeutic strategies for chronic bone infection.
-
-
-
Potential Targets and Mechanism of Action of Wangwei Powder in Tic Disorder Therapy: Bioinformatics and Network Pharmacology Analyses
Authors: Haijiao Lin, Yiquan Li, Liping Sun, Zhongtian Wang and Fushuang YangAvailable online: 31 October 2025More LessIntroductionTic disorders are neuropsychiatric conditions characterized by involuntary motor or vocal tics; however, the mechanisms underlying these disorders and potential therapeutic targets remain unknown. Therefore, this study investigated the mechanisms underlying tic disorders, particularly focusing on the role of mitochondrial energy metabolism, and identified potential targets of traditional Chinese medicine for these disorders.
MethodsMitochondrial energy metabolism-related genes were retrieved from GeneCards and relevant literature. Additionally, Wangwei powder components and their potential targets were obtained from the TCMSP, HERB, and PubChem databases. Bioinformatic analysis was employed to identify key genes and mechanisms involved in tic disorders.
ResultsNotably, 210 target genes of Wangwei powder, 365 mitochondrial energy metabolism-related genes, and 2020 differentially expressed genes in the tic disorder vs. control groups were identified. Based on the intersections of the differentially expressed genes, mitochondrial energy metabolism-related genes, and target genes, aldehyde dehydrogenase 2 (Aldh2), acetyl-CoA acetyltransferase 1 (Acat1), aldehyde dehydrogenase 1a1 (Aldh1a1), and adenylate kinase 2 (Ak2) were identified as key genes in tic disorder pathophysiology. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the key genes were mainly involved in liver development, cellular detoxification of aldehydes, pyruvate metabolism, and fatty acid degradation pathways. Additionally, immune infiltration analysis highlighted notable discrepancies in immune cell populations between the tic disorder and control groups.
DiscussionAldh2, Acat1, Aldh1a1, and Ak2 demonstrate potential as therapeutic targets for TD in WWS. The role of Acat1 in immune modulation and disease progression highlights its promise for immunotherapy. However, further experimental validation is needed to address study limitations.
ConclusionThe results indicate that the key genes (Aldh2, Acat1, Aldh1a1, and Ak2) play a crucial role in the pathogenesis of tic disorders through metabolic pathways and immune cell regulation.
-
-
-
A Bi-directional Mendelian Randomization Study of Idiopathic Pulmonary Fibrosis and Six Diabetes-related Traits
Authors: Yi Nie, Hongmei Li and Haibin WangAvailable online: 31 October 2025More LessIntroductionThe objective of the present study was to explore the bi-directional causal relationship between IPF and diabetes (type 1 diabetes and type 2 diabetes)/diabetic nephropathy/glycemic traits [fasting glucose and glycated hemoglobin (HbA1c)]/fasting blood insulin through MR analysis.
MethodsA bi-directional two-sample Mendelian randomization (MR) study design was adopted to evaluate the causal relationship between IPF and diabetes (type 1 diabetes and type 2 diabetes), diabetic complications (diabetic nephropathy) and glycemic traits [fasting blood glucose, glycated hemoglobin (HbA1c), fasting insulin] in a European population. Genome-wide association study summary data was obtained. The inverse variance weighted (IVW) method with a fixed-effects model was used to estimate the primary causal effects. The causal effects are represented by reporting odds ratios (OR) and their corresponding 95% confidence intervals (CI). The robustness of results was assessed using the MR-Egger and Weighted Median methods.
ResultsIn the forward MR analysis, the IVW method revealed a significant causal effect of IPF on type 2 diabetes (OR=1.031, 95% CI: 1.011-1.052). Similar estimates were obtained through the Weighted Median method. However, no significant causal effects were observed on type 1 diabetes, diabetic nephropathy, fasting blood glucose, HbA1c, and fasting insulin, respectively (p>0.05). We performed the reverse MR analysis using similar methods to the forward MR approach. MR analysis only showed a significant causal association of fasting insulin with IPF risk, with an OR of 3.576 (95% CI: 1.958-6.531).
DiscussionGenetically determined IPF was linked to an elevated risk of type 2 diabetes. The inverse MR analysis indicated that there was no causal impact of genetically predicted type 2 diabetes on the IPF risk.
ConclusionGenetically predicted fasting blood insulin was found to be positively associated with IPF risk.
-
-
-
Identification and Validation of NDRG2 as a Biomarker for Follicular Lymphoma
Authors: Yidong Zhu, Jun He and Rong WeiAvailable online: 29 October 2025More LessIntroductionFollicular lymphoma (FL) is the most prevalent form of indolent lymphoma, characterized by intermittent relapse and remission periods. This study aims to identify potential biomarker genes for FL and elucidate their roles in the disease.
MethodsFL-related microarray datasets were downloaded from the Gene Expression Omnibus database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify potential hub genes. Various machine learning algorithms were applied to improve gene selection accuracy and predictive performance. Mendelian randomization (MR) analysis was carried out to identify genes with causal relationships to FL. Functional enrichment analysis was performed to explore the underlying mechanisms. Finally, the identified biomarker gene was validated in clinical samples using quantitative real-time PCR.
ResultsA total of 60 hub genes were identified through differential expression analysis and WGCNA. Subsequently, 11 characteristic genes were identified using machine learning algorithms. MR analysis revealed 173 genes with causal effects on FL, leading to the identification of one key co-expressed gene, N-myc downstream-regulated gene 2 (NDRG2), as a potential biomarker for FL. NDRG2 demonstrated strong predictive performance. Functional enrichment analysis revealed significant associations between NDRG2 and immune-related pathways in FL. Validation in clinical samples confirmed the relevance of NDRG2 as a biomarker.
DiscussionThe integration of machine learning and MR successfully identified NDRG2 as a promising biomarker with a causal relationship to FL. Validation in clinical samples reinforced the reliability of these findings in clinical practice.
ConclusionBy combining machine learning, MR, and experimental validation, NDRG2 was identified and validated as a promising biomarker for FL.
-
-
-
Integrated Bioinformatic Analysis of the Shared Molecular Mechanisms Between Osteoporosis and Aortic Stenosis
Authors: Yue-jiao Yang, Yang He, Zhao-wei Zhu, Yi-yuan Huang, Liang Tang and Sheng-hua ZhouAvailable online: 29 October 2025More LessIntroductionOsteoporosis (OP) and aortic stenosis (AS) are highly prevalent age-related disorders that frequently coexist. Epidemiological studies suggest a pathological link between OP and AS beyond age, yet the molecular mechanisms underlying this bone-vascular axis remain poorly defined. This study aimed to identify shared genes and pathways contributing to the comorbidity of OP and AS.
MethodsPublicly available AS and OP transcriptomic datasets were retrieved from the GEO database. Weighted gene co-expression network analysis (WGCNA) and differential gene expression (DEG) analysis were conducted to identify disease-associated genes. Candidate hub genes were screened through protein-protein interaction (PPI) network analysis using twelve network topology algorithms. High-confidence genes were obtained by intersecting candidates with AS-related genes from the Comparative Toxicogenomics Database (CTD). Independent cohorts were used to validate candidate genes, and least absolute shrinkage and selection operator (LASSO) regression was performed to assess their diagnostic potential.
ResultsWGCNA revealed 665 shared genes enriched in immune and inflammatory processes, cell adhesion, and glycosaminoglycan biosynthesis. PPI network analysis identified 32 candidate hub genes, and integration with CTD yielded 15 high-confidence genes. Validation across independent datasets confirmed dysregulated expression of CD4, GZMB, and SDC1 in both AS and OP samples. ROC analysis demonstrated high diagnostic accuracy of these genes, with a combined AUC of 0.94.
DiscussionThese findings highlight immune and inflammatory pathways as convergent mechanisms driving both AS and OP. The hub genes CD4, GZMB, and SDC1 participate in immune regulation and extracellular matrix remodeling, suggesting their involvement in the shared pathogenesis of skeletal and cardiovascular degeneration.
ConclusionIntegrative bioinformatics identified CD4, GZMB, and SDC1 as key genes linking OP and AS, providing potential biomarkers and therapeutic targets for managing these age-related comorbidities.
-
-
-
Effects of SGLT2 Inhibitors on Circulating Cyclophilin A Levels in Patients with Type 2 Diabetes
Authors: Furkan Kılıç, Fulya Odabaş, Abdulkadir İltaş, Oguz Akkus, Rabia Akıllı, Gülçin Dağlıoğlu and Gamze AkkuşAvailable online: 29 October 2025More LessObjectiveThis study aimed to evaluate cyclophilin (CypA) levels in patients with diabetes mellitus (DM) before and after treatment. Metabolic variables, such as weight, blood pressure, and plasma glucose, were assessed in these patients.
MethodsThis prospective cross-sectional study was conducted over 24 weeks. We included 38 patients with DM. After confirming the diagnosis of type 2 diabetes, SGLT2i (empagliflozin vs. dapagliflozin) therapy was prescribed to the patients. Weight, body mass index (BMI), waist circumference, body fat ratio, fasting plasma glucose, glycated hemoglobin (HbA1c, %), and CypA levels were measured at 0, 12, and 24 weeks. Patients in the drug subgroup were divided into 2 groups: Empagliflozin (Empa, n=16) and Dapagliflozin (Dapa, n=22).
ResultsWeight (p<0.001), body mass index (p<0.001), percentage of body fat (p<0.001), diastolic blood pressure (p=0.006), fasting plasma glucose (p<0.001), HbA1c (p<0.001), serum creatinine (p<0.001), and CypA (p<0.001) levels after the SGLT2i therapy were statistically decreased compared to pre-treatment values in all patients. When comparing drug subgroups, significant decreases in weight (p=0.013) and percentage body fat (p=0.01) were observed in the Empa group compared with the Dapa group at 24 weeks. Changes in FPG (p=0.399), HbA1c (p=0.102), and CypA (p=0.329) between the two groups seemed to be similar.
DiscussionIn a 24-week study, significant reductions in weight, BMI, body fat percentage, HbA1c, FPG, and diastolic blood pressure with SGLT2i have been reported in those patients. Furthermore, we also observed that cyclophilin A, an oxidative marker of atherosclerosis, plays a destructive role in cardiomyocyte levels, which are decreased during the SGLT2i therapy.
ConclusionBeyond the improvement of metabolic parameters, SGLT2 treatment reduced CypA levels in patients with DM regardless of drug subgroups. These drugs may further prevent the presence of cardiovascular diseases.
-
-
-
Multi-Omics and Mendelian-Randomization Investigation of Mitochondrial Genes in Irritable Bowel Syndrome
Authors: Beibei Xu, Ji Zhang, Yi Huang, Xiuyan Wang, Miaomiao Teng, Xuejian Weng, Yingcong Yu and Endian ZhengAvailable online: 29 October 2025More LessIntroductionThis study aimed to explore potential causal relationships between mitochondria-related genes and irritable bowel syndrome (IBS) using integrative multi-omics analysis.
MethodsGenome-wide association study data for IBS (1,480 cases and 454,868 controls) were integrated with mitochondrial gene data from DNA methylation quantitative trait loci, blood expression quantitative trait loci, and protein quantitative trait loci. Molecular trait associations with IBS were assessed through summary-based Mendelian randomization and co-localization analyses. Steiger filtering analysis was applied to identify causal directions, and candidate genes were independently replicated by two-sample MR in the FinnGen R11 cohort.
ResultsThree primary genes supported by multi-omics evidence—CASP3, GATM, and PDK1—were identified. Increased CASP3 methylation, expression, and protein were positively associated with IBS risk, indicating pro-apoptotic and pro-inflammatory mechanisms, whereas elevated GATM expression and protein were negatively associated, consistent with a protective role via creatine-mediated energy homeostasis.
DiscussionAdditionally, 19 genes were classified as secondary evidence genes and 5 as tertiary evidence genes. Among these, genes such as ACAD10 and MSRA were validated using FinnGen data.
ConclusionThis study represents the first application of multi-omics techniques to elucidate the relationship between mitochondrial genes and IBS. The findings indicate multiple candidate pathogenic genes and highlight the role of mitochondrial dysfunction in IBS pathogenesis. These findings offer new opportunities for the discovery of IBS biomarkers and the development of therapeutic strategies.
-
-
-
Identification of Potential Biomarkers and Drugs for Papillary Thyroid Carcinoma Using Computational Analysis and Molecular Docking
Authors: Tiantian Wang, Jiejun Tan, Zheng Bi, Limei Ma, Sihai Wang, Fuli Zhang and Zhaohui FangAvailable online: 28 October 2025More LessBackgroundPapillary thyroid carcinoma (PTC), the most common thyroid malignancy, presents with multiple variants. This study aimed to identify potential biomarkers and therapeutic candidates for PTC through computational analyses and molecular docking.
MethodsGene expression data related to PTC were obtained from the TCGA-THCA and GEO datasets (GSE35570 and GSE33630) to identify differentially expressed genes (DEGs). Functional enrichment analysis was performed on the DEGs, followed by construction of a protein-protein interaction (PPI) network. Hub genes were identified using recursive feature elimination (RFE) and LASSO regression analyses. A nomogram incorporating these hub genes was developed, and its diagnostic performance was evaluated using receiver operating characteristic (ROC) curves. Furthermore, the relationship between hub genes and immune cell infiltration was investigated. Potential drug candidates targeting the hub genes were predicted and validated through molecular docking.
ResultsCommon DEGs across the three datasets were enriched in pathways such as ECM-receptor interaction, proteoglycans in cancer, and cell adhesion molecules. Significantly enriched GO terms included ‘binding,’ ‘receptor activity,’ ‘integral component of membrane,’ ‘cytoplasm,’ ‘cell adhesion,’ and ‘immune response.’ A PPI network was constructed by intersecting the common DEGs with PTC-related targets. Machine learning algorithms identified three hub genes: SRY-box transcription factor 4 (SOX4), cyclin D1 (CCND1), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1). These hub genes exhibited differential expression in PTC and were used to construct a reliable diagnostic model. Furthermore, molecular docking revealed stable binding between CCND1 and Tipifarnib, suggesting potential therapeutic relevance.
DiscussionWhile previous studies have applied bioinformatics and molecular docking in PTC research, this study uniquely integrates both approaches to identify the hub gene CCND1 and its potential targeting drug, Tipifarnib, as promising molecular markers and therapeutic candidates for PTC.
ConclusionThe hub gene CCND1 and its targeting drug candidate Tipifarnib may contribute to PTC treatment.
-
-
-
Antitumor and Immunoregulatory Effects of Curcumin Analog, (Z)-3-Hydroxy-1-(2-hydroxyphenyl)-3-phenyl prop-2-ene-1-one (DK1), on CT26-Tumor-Bearing BALB/c Mice
Available online: 24 October 2025More LessIntroductionCurcuma longa, commonly known as turmeric, contains curcumin, which is its main compound and has been reported to possess a wide variety of pharmacological activities, such as anti-carcinogenic, anti-malarial, antioxidant, antibacterial, anti-mutagenic, anti-inflammatory, and immunomodulatory effects. Even though it has many strong biological properties, curcumin lacks solubility, which affects its clinical efficacy. DK1 is a curcumin analogue that has been found to possess selective cytotoxicity on breast cancer cells compared to normal breast cells; however, its effectiveness in colon cancer has yet to be validated. This study was performed to investigate the effects of DK1 on colon cancer using an in vivo model in terms of its anti-apoptotic, immunoregulatory, and antioxidant potential. The pathways affected by the DK1 treatment were also evaluated.
MethodsIn this study, male BALB/c mice induced with colon cancer were utilized, and the resulting tumours and spleen were subjected to TUNEL, immunophenotyping, and several antioxidant assays, such as nitric oxide, malondialdehyde, and superoxide dismutase, as well as gene and protein expression analyses.
ResultsK1 treatment led to tumor shrinkage, an increase in apoptotic tumor cells, and elevated populations of helper and cytotoxic T cells by 5% and 3%, respectively. Besides that, the NO and MDA levels were also significantly reduced. This study also observed dysregulations in several oncogenes in the VEGF pathway, such as CMYC, iNOS, and IL-1β genes, which are involved in angiogenesis and inflammation.
DiscussionThe effects of DK1 treatment included antitumor and anti-inflammatory properties against the inoculated CT26 tumour. DK1 showed potential in regulating the inflammation via the VEGF pathway by the significant downregulation of TNF-α and IL-1β pro-inflammatory genes, as well as PTX3, OPN, and serpin-E1 pro-angiogenic proteins.
ConclusionThe results suggested that DK1 may potentially function as an immunoregulator and anti-cancer agent for colon cancer therapy.
-
-
-
Using Disease Models for Mechanistic Studies: Special Focus on Gene Editing
Available online: 24 October 2025More Less
-
-
-
Neutrophil-Related Gene Signatures for Ischemic Stroke Diagnosis
Authors: Rongxing Qin, Xiaojun Liang, Wei Xu, Qingchun Qin, Xinyu Lai, Minshan Xie and Li ChenAvailable online: 20 October 2025More LessIntroductionIschemic stroke (IS) is a major cause of death and disability worldwide. The transcriptional mechanism of neutrophil extracellular trap-related genes (NRGs) and their diagnostic potential remain unknown. This study aims to explore the mechanism of NRGs in IS through machine learning and single-cell RNA sequencing (scRNA-seq).
MethodsWe conducted differential analysis and functional enrichment analysis on the GEO dataset. Machine learning algorithms were used to identify NRGs related to IS. ScRNA-seq analysis was employed to verify the expression of NRGs in different cell types, and cellchat was used to explore the interactions between cell types in the IS. The expression of Eno1 was also verified in the mouse model of middle cerebral artery occlusion (MCAO).
ResultsWe identified 26 differentially expressed NRGs (DE-NRGs). The diagnostic models constructed from five DE-NRGs (ENO1, HMGB1, ILK, ORAI1, SUCNR1) demonstrated high predictive ability. Single-cell analysis revealed that NRGs were highly expressed in the IS group. The experiment verified the significant upregulation of Eno1.
DiscussionThis study employed machine learning and scRNA-seq to identify the DE-NRGs-related diagnostic model, providing a certain theoretical basis for IS risk stratification. More experiments are needed to verify the role of DE-NRGs in IS in the future.
ConclusionThis study identified DE-NRGs with diagnostic capabilities in IS and verified their high expression through scRNA and experimental methods. DE-NRGs may be potential therapeutic targets for IS.
-
-
-
Addressing Unmet Needs in Clostridium difficile Infection: Advances in Diagnosis, Treatment, and Prevention
Available online: 17 October 2025More LessIntroductionClostridium difficile infection (CDI) is a serious global health concern characterized by toxin-induced colonic damage, ranging from diarrhea to life-threatening conditions. Despite improved diagnostics and treatments, recurrence rates of up to 30% underscore persistent gaps in effective disease management.
MethodsCDI pathogenesis is driven by the disruption of the gut microbiota, often due to broad-spectrum antibiotic use. Risk factors such as advanced age, hospitalization, IBD, and immunosuppression increase the severity and recurrence of the infection. The hypervirulent ribotype 027 strain has been associated with increased mortality and treatment resistance, necessitating targeted therapies.
ResultsEmerging treatments such as FMT and monoclonal antibodies show promise for CDI management, with FDA approvals marking progress in microbiome restoration. However, hurdles remain in safety, regulation, and donor screening. Advances in diagnostic and scoring tools have aided in the detection and treatment, but differentiating between colonization and infection remains a challenge. Preventive measures and novel agents such as bacteriocins and bacteriophages offer targeted, microbiome-sparing strategies.
DiscussionDespite recent advances, CDI management remains challenging because of diagnostic uncertainty and frequent recurrences. Innovative treatments such as FMT and monoclonal antibodies are promising but face limitations in safety, access, and cost. Preventive strategies and decision tools help, yet distinguishing colonization from infection remains difficult, underscoring the need for ongoing and multidisciplinary innovation.
ConclusionThis review highlights current approaches to CDI diagnosis, treatment, and prevention, stressing the urgent need for innovative strategies to reduce recurrence. Targeted research and policy efforts are vital to improving outcomes and quality of life for those affected.
-
-
-
RTK AXL and its Isoforms: Regulation and Implications in Cancer
Authors: Ilona Malikova, Aizhan Syzdykova, Nazia Islam, Marina Kriajevska and Eugene TulchinskyAvailable online: 16 October 2025More LessAs a member of the TAM family of receptor kinases, the AXL protein plays an essential role in biological processes that maintain tissue homeostasis. Deregulated AXL signalling in tumour cells is linked to cancer progression, poor prognosis, metastasis, and reduced sensitivity to anti-cancer therapies. The underlying mechanisms are the activation of downstream signalling routes that promote cell survival, invasion and epithelial-mesenchymal transition. Two major AXL isoforms are expressed in human and rodent cells due to alternative splicing. Despite extensive research on AXL in cancer, little is known regarding the functional differences between these isoforms and whether they contribute to cancer differently. This review paper first outlines the structural and functional aspects of TAM biology with a particular focus on AXL. Next, we discuss the different levels of AXL regulation in tumour cells, including proteolytic cleavage, which leads to the formation of both extracellular and nuclear forms of AXL. Finally, we review articles investigating the variations in the function of AXL isoforms and report their associations with cancer. Notably, the formation of isoform 1 is likely to determine the presence of soluble AXL, elevated levels of which have been correlated with cancer progression in several tumour types. The review identifies areas deserving further investigation, such as how changes in isoform expression impact levels of soluble AXL in cancer. Additionally, isoform-specific downstream signalling effects and their impact on metastasis and drug resistance warrant more in-depth investigation.
-
-
-
Innate Immunity Disorders in Non-Infectious Inflammatory Diseases
Available online: 14 October 2025More Less
-
-
-
Investigating the Mechanisms of Mitochondrial Dysfunction in Ischemic Stroke and Predicting Therapeutics Through Machine Learning and Integrated Bioinformatics
Available online: 10 October 2025More LessIntroductionIschemic Stroke (IS) represents the most prevalent subtype of cerebrovascular disease, characterized by complex pathophysiological mechanisms that remain inadequately characterized, particularly concerning mitochondrial dysfunctions. These mitochondrial impairments are increasingly recognized as contributory factors in IS pathogenesis, emphasizing the need for further investigation into the underlying molecular mechanisms involved.
MethodsIn this study, we integrated transcriptomic datasets from the Gene Expression Omnibus (GEO) with the comprehensive MitoCarta3.0 mitochondrial proteome inventory to elucidate the role of dysregulated Mitochondrial-Related Genes (MRGs) in IS. We employed an advanced bioinformatics and machine learning pipeline, incorporating differential expression profiling alongside network-based prioritization using CytoHubba. Rigorous feature selection was conducted through LASSO regression, Support Vector Machine (SVM), and Random Forest (RF) algorithms to derive a robust core MRG signature. Our methodology included training and validation cohorts to construct diagnostic models, which were critically evaluated via Receiver Operating Characteristic (ROC) curves, nomograms, and calibration analyses.
ResultsOur analysis identified a seven-gene signature comprising DNAJA3, ACSL1, HSDL2, ECHDC2, ECHDC3, ALDH2, and PDK4, which demonstrated significant correlation with activated CD8+ T-cell and natural killer cell infiltration. Furthermore, integrative network analyses revealed intricate regulatory interactions among MRGs, microRNAs, and transcription factors. Notably, drug-target predictions indicated Bezafibrate as a promising therapeutic agent for modulating mitochondrial homeostasis in the context of IS.
DiscussionThese findings offer a novel framework for ischemic stroke diagnosis and therapy, yet their computational derivation underscores the need for thorough experimental validation of MRGs and drug candidates, along with the integration of diverse clinical data to confirm their real-world applicability.
ConclusionOur findings underscore mitochondrial dysfunction not only as a critical factor in IS pathogenesis but also as a viable therapeutic target. The identified MRG signature presents potential for clinical application in diagnostic and pharmacological strategies aimed at ameliorating ischemic injury. This study highlights the translational significance of systems biology approaches within cerebrovascular medicine, warranting further mechanistic exploration of mitochondrial-immune interactions in stroke pathology.
-
-
-
Diabetes and Skin Health: Insights into Autoimmunity, Metals, and AGE-Mediated Disorders
Authors: Geir Bjørklund, Monica Butnariu, Leonard Gurgas and Tony HanganAvailable online: 09 October 2025More LessDiabetes mellitus (DM) significantly impacts systemic and skin health, with advanced glycation end-products (AGEs), metal imbalances, and immune dysfunction emerging as central drivers of skin-related complications. Furthermore, dysregulation of essential metals like zinc, copper, and iron exacerbates oxidative damage and immune dysfunction, fostering a detrimental skin environment. Autoimmune processes, increasingly recognized in both type 1 and type 2 DM, contributes towards dermatological conditions such as bullous pemphigoid and vitiligo. Emerging therapeutic strategies, including AGE inhibitors, chelation therapies, antioxidants, RAGE antagonists, and immune modulators, offers promising avenues for intervention. Advances in diagnostic tools, such as LC-MS/MS and ICP-MS, facilitate precise detection of AGEs and metal imbalances, paving the way for innovative therapies. This review underscores the importance of multidisciplinary approaches to address the rising burden of DM-related skin disorders and improve the quality of life of affected individuals.
-
-
-
Exploring the Anti-Glioma Mechanisms of Oridonin: Network Pharmacology and Experimental Insights into EMT Pathways
Authors: Shiliang Chen, Yiran Fei, Xiaoli Jin, Cong Wang, Shiyuan Tong, Yibo He, Changjiang Wu and Zhezhong ZhangAvailable online: 09 October 2025More LessIntroductionGliomas are aggressive brain tumors with a poor prognosis and high recurrence. Oridonin, a traditional Chinese medicine, has shown potential in treating various cancers, but its role in glioma treatment, especially in modulating Epithelial-Mesenchymal Transition (EMT), remains underexplored.
MethodsWe identified 371 potential target genes of Oridonin using various bioinformatics databases. Enrichment analyses, including Differential Expression Analysis, Gene Set Enrichment Analysis (GSEA), and Weighted Gene Co-expression Network Analysis (WGCNA), were performed to link these targets to glioma characteristics. in vitro experiments validated Oridonin's impact on EMT-related gene expression in glioma cells.
ResultsEnrichment analyses identified 19 common genes between Oridonin and glioma targets, with 12 EMT-related core genes. KEGG enrichment highlighted PI3K-Akt, MAPK pathways, and glioma pathways, while DO enrichment included high-grade gliomas. CCK8 assay showed Oridonin IC50 values of 6.92 μM for H4 and 10.54 μM for SW1783 glioma cell lines. WB results indicated increased E-Cadherin and decreased Vimentin, N-Cadherin, and Snail expression after Oridonin treatment. PPI network and single-cell transcriptome analyses identified key genes linked to glioma progression and immune cell infiltration.
DiscussionOridonin may inhibit glioma progression by targeting EMT-related pathways like PI3K-Akt and MAPK. The upregulation of E-Cadherin and downregulation of Vimentin, N-Cadherin, and Snail suggest a reversal of the EMT process. Future work should validate these effects in vivo and explore Oridonin's ability to cross the blood-brain barrier.
ConclusionOridonin may provide a novel therapeutic approach for glioma by targeting EMT-related pathways, offering a foundation for further clinical investigation.
-
-
-
Computational Analysis and In Vitro Verification Insights into Quercetin’s Suppression of Neuroinflammation in BV2 Microglia through NF-κB Pathway Inhibition
Available online: 08 October 2025More LessIntroductionNeuroinflammation, primarily mediated by activated microglia, is a significant contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Quercetin (QCT), a dietary flavonoid, has demonstrated anti-inflammatory and neuroprotective properties; however, the detailed molecular mechanisms behind these effects remain unclear. This study aimed to investigate the anti-inflammatory actions of QCT, particularly focusing on its potential to suppress the activation of microglia and subsequent neuroinflammation.
MethodsBV2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce an inflammatory response and were subsequently treated with various concentrations of QCT. Cell viability was assessed using the MTT assay. Levels of pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide (NO) were quantified through ELISA and Griess reaction methods, respectively. Western blot analysis was conducted to examine inducible nitric oxide synthase (iNOS), NF-κB, IκBα, and phosphorylated IκBα protein expressions. In silico approaches, including protein-protein interaction (PPI) network analysis and molecular docking, were employed to explore potential molecular mechanisms involving NF-κB signaling pathways.
ResultsTreatment with QCT significantly reduced the secretion of IL-6 (96%) and TNF-α (87%), as well as NO production (42%), in a dose-dependent manner. Western blot results demonstrated a marked reduction in iNOS expression and inhibition of NF-κB activation through reduced phosphorylation of IκBα following QCT treatment. Molecular docking indicated a strong binding affinity between QCT and IKKβ, suggesting inhibition of the NF-κB pathway.
DiscussionThe findings indicated QCT to exert potent anti-inflammatory effects in LPS-stimulated BV2 cells by modulating key proteins involved in the NF-κB signaling pathway. Specifically, the docking results implied QCT’s direct interaction with the catalytic subunit IKKβ, inhibiting IκBα phosphorylation and subsequent NF-κB activation. The results have been found to be consistent with previous literature, reinforcing QCT's role in reducing neuroinflammation through specific molecular targets and pathways. Further in vivo studies are necessary to validate the findings.
ConclusionQuercetin effectively suppressed neuroinflammation in microglial cells through inhibition of the NF-κB signaling pathway, reducing levels of critical pro-inflammatory mediators. The outcomes have highlighted the potential of quercetin as a preventive nutraceutical for neurodegenerative diseases, necessitating future in vivo investigations to confirm its therapeutic efficacy.
-
-
-
Neuroinflammatory Human Brain Organoids Enable Comprehensive Drug Screening Studies: Fingolimod and its Analogues in Focus
Authors: Busra Acar, Nihan Aktas Pepe, Aleksandra Zivkovic, Holger Stark and Alaattin SenAvailable online: 08 October 2025More LessIntroductionThe absence of physiologically relevant models for neuroinflammatory brain disorders, such as multiple sclerosis (MS), highlights the need for improved drug screening platforms. To bridge this gap, this study aimed to develop a human brain organoid (hBO) model incorporating essential neural cell types, including astrocytes, microglia, and oligodendrocytes.
MethodshBOs were generated from H9 stem cells, and neuroinflammatory characteristics were elicited by lipopolysaccharide (LPS). The expression of specific neuronal and inflammatory markers was assessed through qRT-PCR, immunofluorescence staining (IFS), and ELISA.
ResultsIFS of mature hBOs with anti-SOX2, anti-SATB2, anti-MAPT, anti-GFAP, anti-MBP, and anti-IBA1 antibodies and images collected with the confocal microscope confirmed the differentiation of H9 cells into cortical neurons, astrocytes, microglia, and oligodendrocyte cell types. Elevated GFAP, IBA1, NF-κB, and IL-6 levels, along with reduced CNPase expression with LPS treatment, were considered reflective of MS-like pathology and were used to test fingolimod and its derivatives. Fingolimod and all its derivatives, specifically ST-1505, decreased MAPT (2.1-fold in ELISA, 1.7-fold in IFS), GFAP (1.8-fold in IFS), TNFα (5.4-fold in qRT-PCR), and FABP (1.5-fold in ELISA) levels, and increased IL-10 (11-fold in qRT-PCR) and MBP (2.9-fold in IFS) levels.
DiscussionThe present data collectively showed LPS to evoke neuroinflammation in the hBO model, while fingolimod and its derivatives, particularly ST-1505, exhibited significant anti-inflammatory and neuroprotective properties by counteracting these evoked changes in the hBO model.
ConclusionThe findings supported the applicability of brain organoids as a model system for drug screening studies for neuroinflammatory brain diseases.
-
-
-
Genetically Predicted Gastroesophageal Reflux Disease and Common Thyroid Disorders: A Two-sample Mendelian Randomization Study
Authors: Hanxin Lv, Xinyu Yang, Ruting Zhang, Yuyang Xie, Xiaohan Ni, Xiaoqin Yang and Bimin ShiAvailable online: 06 October 2025More LessIntroductionThe causality between thyroid disorders and Gastroesophageal Reflux Disease (GERD) remains to be deciphered. This two-sample Mendelian Randomization (MR) study was performed to elucidate the causal association between GERD and thyroid diseases and functions.
MethodsSummary statistics for GERD were retrieved from a published GWAS dataset deposited in the Integrative Epidemiology Unit OpenGWAS database. Thyroid hormone level data were obtained from the ThyroidOmics Consortium, and genetic variants associated with thyroid disorders were sourced from the FinnGen Project. MR statistical analyses used the Inverse Variance Weighted (IVW) algorithm, followed by various sensitivity and reliability analyses. Odds Ratio (OR) and beta coefficient (β) with 95% Confidence Interval (CI) were estimated for categorical and continuous outcomes, respectively. The significant causal association was determined based on a Bonferroni-corrected threshold of p-value < 0.0021 (calculated as 0.05/24 trait pairs).
ResultsThe findings of MR analysis tend to favor the causality of GERD for hyperthyroidism (IVW: OR = 1.517, 95% CI: 1.164 to 1.978, p = 2.04E-03) but not the other thyroid disorders. The reverse MR estimates suggested that thyroid disorders may not affect the susceptibility of GERD. Moreover, genetic proxied GERD was significantly negatively associated with circulating Thyroid Stimulating Hormone (TSH) level (IVW: β = -0.048, 95% CI: -0.078 to -0.019, p = 1.17E-03), whereas the causality of this enteropathy on Free Triiodothyronine (FT3), Free Thyroxine (FT4), Total Triiodothyronine (TT3), FT3/FT4 ratio, and TT3/FT4 ratio (and vice versa) is unfounded.
DiscussionThis MR study indicates that the genetic liability to GERD is significantly detrimental to hyperthyroidism risk and the homeostasis of TSH.
ConclusionThe findings suggest that effective GERD management could mitigate hyperthyroidism risk.
-
-
-
The Role of Beta-Lactam Antibiotics in Reactive Oxygen Species Generation and Therapeutic Implications
Authors: Shibani Basu, Mario Valente and Bimal Krishna BanikAvailable online: 02 October 2025More LessReactive oxygen species (ROS) play a pivotal role in cellular damage and the signaling processes, with their production significantly influenced by antimicrobial agents such as β−lactam antibiotics. This review explores the dual role of β−lactam antibiotics and comparable agents, where relevant in antimicrobial therapy, and their significant impact on cellular oxidative stress through the production of ROS. These antibiotics not only disrupt bacterial cell wall synthesis by binding to DD−transpeptidase domains but also induce the formation of ROS, leading to protein damage via chemical modifications into quinone-like products. This process generates advanced oxidation protein products (AOPPs) that influence gene expression related to protein repair. Furthermore, β−lactam antibiotics uniquely expedite the degradation of cellular proteins, affecting the solute carrier family and leading to transcriptional reprogramming. Despite their efficacy in combating bacterial infections, the production of ROS by these antibiotics also poses risks, including oxidative damage and potential antibiotic resistance. Understanding these mechanisms provides insights into optimizing therapeutic strategies and mitigating adverse effects associated with β-lactam and comparable agents, where relevant.
-
-
-
Apolipoprotein A1 and Lipoprotein(a) as Biomarkers for the “Penumbra Freezing” in Acute Ischemic Stroke: Insights From a Case-Control and Mendelian Randomization Study
Authors: Jianyu Liu, Zhiyao Xu, Yang Wen, Xing Guo, Xiaoyang Chen, Da Liu, Linyan Li and Hua LiuAvailable online: 02 October 2025More LessIntroduction“Penumbra freezing” aims to extend vascular recanalization treatment to acute ischemic stroke (AIS) patients beyond the standard time window by preserving the ischemic penumbra. Efficient biomarkers are crucial for identifying patients eligible for AIS treatment.
MethodsThis study enrolled 141 AIS patients who exceeded the conventional treatment window. Using CT perfusion imaging, patients were categorized into “penumbra freezing” and “non-penumbra freezing” groups based on the EXTEND criteria. Multiple regression analysis assessed the association of nine baseline factors and five blood lipid indicators with “penumbra freezing.” Diagnostic accuracy was evaluated using ROC curves. Mendelian randomization (MR) analysis validated these findings using blood lipid indicators as exposures and penumbra biomarkers as outcomes.
ResultsAmong AIS patients beyond the treatment window, males exhibited better penumbra preservation (OR=0.243, 95% CI=0.072-0.813, p=0.022), while those with hyperlipidemia showed poorer preservation (OR=2.429, 95% CI=1.027-7.747, p=0.043). In the “penumbra freezing” group, ApoA1 levels were significantly lower (1.29 ± 0.03 g/L) compared to the “non-penumbra freezing” group (1.42 ± 0.06 g/L, p=0.034). Conversely, Lp(a) levels were significantly higher in the “penumbra freezing” group (304.63 ± 52.44 mg/L) than in the “non-penumbra freezing” group (110.26 ± 40.71 mg/L, p=0.034). Higher ApoA1 levels increased the likelihood of “non-penumbra freezing” beyond the time window (OR=3.206, 95% CI=1.034-9.938, p=0.044), while elevated Lp(a) levels reduced this likelihood (OR=0.075, 95% CI=0.007-0.848, p=0.036). MR analysis confirmed genetic associations of ApoA1 and Lp(a) with penumbra biomarkers.
DiscussionApoA1 and Lp(a) may be linked to ischemic penumbra status, but further validation is needed due to limitations in sample size and study methodology.
ConclusionApoA1 and Lp(a) are promising biomarkers for identifying AIS patients eligible for “penumbra freezing,” suggesting the potential to extend the treatment window.
-
-
-
Mediating Effects of Plasma Metabolites in Inflammatory Protein- Lymphoma Causality: A Mendelian Randomization Study
Authors: Yueru Ji, Xiaotong Gao, Li Liu, Zhuo Wan and Weiwei QinAvailable online: 02 October 2025More LessIntroductionDiffuse large B-cell lymphoma (DLBCL) pathogenesis is poorly understood, with limited causal evidence linking circulating inflammatory proteins (CIPs) and metabolites to disease risk. Observational studies face challenges from confounding and reverse causation, while existing Mendelian Randomization (MR) analyses lack bidirectional designs and multi-omics integration.
MethodsA bidirectional two-sample MR design was applied using inverse-variance weighting (IVW). Genetic instruments for 91 CIPs derived from Olink proteomic data (14,824 participants). DLBCL genetic associations (1,050 cases; 314,193 controls) were obtained from FinnGen (R10 release). Data for 1,091 blood metabolites and 309 metabolite ratios were sourced from the GWAS Catalog.
ResultsTen CIPs exhibited causal effects on DLBCL. Risk-increasing proteins included: IL-10 (OR=1.46, 95%CI=1.05-2.03), TSLP (1.37,1.01-1.84), IL-17C (1.34,1.05-1.72), NRTN (1.30,1.02-1.66), OPG (1.29,1.01-1.66), and MCP1 (1.26,1.04-1.52). Protective proteins included: CD40 (0.82,0.67-1.00), CXCL9 (0.78,0.61-0.98), CD5 (0.77,0.61-0.97), and MCP3 (0.76,0.58-0.99). Reverse causation was absent for 7 proteins. Mediation analysis revealed 17.2% (p=0.048) of CD5’s protective effect was mediated by 1-methylhistidine.
DiscussionThese findings establish CIPs as causal factors in DLBCL pathogenesis and identify metabolite-mediated pathways as novel mechanistic links. The bidirectional design and multi-omics integration overcome key limitations of prior research, though statistical power for some mediation tests was limited by metabolite GWAS sample sizes.
ConclusionPlasma inflammatory proteins causally influence DLBCL risk, partially mediated by metabolites. This underscores metabolite pathways as potential targets for therapeutic intervention.
-
-
-
LncRNA HYMAI Promotes Endothelial Cell Autophagy via miR-19a-3p/ ATG14 to Attenuate the Progression of Coronary Atherosclerotic Disease
Authors: Shao Ouyang, Zhi-Xiang Zhou, Hui-Ting Liu, Kun Zhou, Zhong Ren, Huan Liu, Qian Xu, Zhaoyue Wang, Wenhao Xiong, Gaofeng Zeng and Zhi-Sheng JiangAvailable online: 02 October 2025More LessBackgroundCoronary atherosclerotic disease (CAD), clinically manifesting as progressive coronary atherosclerosis (As), involves endothelial cell (EC) dysfunction. HYMAI may contribute to atherogenesis by acting on ECs, but its regulation of endothelial injury and role in As pathogenesis remain unclear.
MethodsHYMAI expression was assessed via PCR array in blood samples from healthy individuals, patients with premature coronary atherosclerotic disease (PCAD), and patients with mature coronary atherosclerotic disease (MCAD) (each group consisting of 4 males and 2 females). Using male ApoE−/− and LDLR−/− mice fed with a high-fat diet (HFD) to model As, we evaluated the effects of endothelial-specific HYMAI overexpression on aortic lesions. Autophagy and apoptosis were analyzed in ox-LDL-treated human coronary artery endothelial cells (HCAECs).
ResultsHYMAI levels increased sequentially in healthy individuals, PCAD, and MCAD patients. In HFD-fed ApoE−/− and LDLR−/− mice, aortic atherosclerosis progressed with age, while HYMAI expression in aortic tissue declined. HYMAI overexpression in ECs promoted autophagy and attenuated atherosclerosis. In vitro, ox-LDL suppressed HYMAI, triggering autophagic inhibition and apoptotic activation in HCAECs. HYMAI overexpression rescued ox-LDL-impaired autophagy and suppressed apoptosis through the miR-19a-3p/ATG14 pathway. MiR-19a-3p overexpression reversed autophagic rescue and promoted apoptosis by repressing ATG14.
DiscussionHYMAI upregulation counteracts ox-LDL-treated endothelial autophagic inhibition via the miR-19a-3p/ATG14 pathway, rescuing apoptosis and attenuating As in both in vivo and in vitro settings.
ConclusionOur results demonstrated that HYMAI attenuated As progression in As mice and ox-LDL-treated HCAECs by enhancing endothelial autophagy through the miR-19a-3p/ATG14 axis. These findings establish HYMAI as a novel regulatory mechanism and provide a potential druggable target for As and CAD.
-
-
-
Connexin 43: Roles in the Pathophysiology of Cardiovascular Diseases and Attractive Target for New Drugs
Authors: Yijia Wu, Yixiong Zhan, Duoduo Zha and Yisong QianAvailable online: 01 October 2025More LessConnexin43 (Cx43), encoded by the GJA1 gene, plays a crucial role in the formation of hemichannels and the assembly of gap junctions between adjacent cells, facilitating the efficient transport of ions and small molecules. Increasingly studies have revealed the regulatory roles of Cx43 in endothelial cells. Cx43 is not only implicated in the normal function of endothelial cells such as regulating the endothelial barrier, promoting endothelial angiogenesis, regulating vascular tone, and other subtle regulations, but also contributed to endothelial dysfunction, including inflammatory responses, endothelial cell death, and increased endothelial permeability. Here we provide a summary of the current understanding of Cx43 in the pathogenesis of atherosclerosis, hypertension, stroke, and diabetes. In addition, the potential therapeutic approaches targeting Cx43 are also proposed.
-
-
-
Association between Serum Klotho Levels and Sarcopenia: Result from the NHANES (2011-2016)
Authors: Ting Sun, Lu Liu, Xiaoqi Xie and Li TianAvailable online: 01 October 2025More LessIntroductionKlotho is a multifunctional protein with anti-aging properties that plays a role in regulating vitamin D and phosphate metabolism. Sarcopenia is characterized by the loss of muscle mass and strength and is an important public health concern due to its negative effects on health. The aim of this study was to investigate the association between α-Klotho levels and the frequency of sarcopenia in a diverse population.
MethodsThis study analyzed data from 1,250 participants in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016. Participants were divided into four subgroups based on serum α-Klotho levels. Sarcopenia was assessed using skeletal muscle index and handgrip strength measurements. Multivariable logistic regression analysis was used to determine the association between serum α-Klotho levels and sarcopenia.
ResultsThere was a significant difference in serum α-Klotho levels between patients with sarcopenia and patients without sarcopenia. In an unadjusted multivariable logistic regression model, higher α-Klotho serum levels were associated with a lower risk of sarcopenia (p < 0.05). This trend was maintained in the partially adjusted model, indicating that higher levels of α-Klotho were associated with a lower risk of sarcopenia. However, the fully adjusted model did not show significance.
DiscussionSeveral factors significantly influence the relationship between serum α-Klotho levels and sarcopenia, including sex, ethnicity, alcohol consumption, body mass index (BMI), vitamin D levels, and disease status. Our findings indicate that the risk of sarcopenia is elevated in individuals within the lowest quartile of serum α-Klotho levels. Furthermore, a negative correlation exists between α-Klotho levels and grip strength, observed in both the overall sample and the aging-related subgroup. These results highlight the necessity for further investigation into the complex interplay between α-Klotho and grip strength, particularly in the context of sarcopenia associated with renal disease.
ConclusionSerum α-Klotho levels in different populations are negatively correlated with the risk of sarcopenia, suggesting that α-Klotho may be involved in the occurrence and development of sarcopenia. Therefore, measuring α-Klotho levels in clinical practice may be a valuable diagnostic tool to identify individuals at high risk of developing sarcopenia.
-
-
-
8-Hydroxyquinoline Derivatives as Drug Candidates for the Treatment of Alzheimer's Disease
Available online: 01 October 2025More LessAlzheimer's disease (AD) is the most prevalent form of dementia among older adults worldwide. Amidst several hypotheses to explain the pathobiology of the disease are biochemical indicators such as β-amyloid (Aβ) plaques; neurofibrillary tangles, caused by hyperphosphorylated tau protein; oxidative stress; metal dyshomeostasis; low levels of acetylcholine, and neuroinflammation. Considering the multifactorial nature of AD, there has been an increase in research for novel multitarget compounds, mainly utilizing molecular hybridization for drug design. In this review, we focus on the 8-hydroxyquinoline moiety, a privileged metal-binding agent with Aβ antiaggregating properties, and its derivatives, aiming to have an effect on multiple molecular targets. Furthermore, the most prominent structure-activity relationships found on the analyzed compounds, along with the most promising strategies explored by researchers, are discussed. That way, we hope to provide a comprehensive perspective on the development of anti-Alzheimer agents based on the 8-hydroxyquinoline moiety in the last decade.
-
-
-
Identification of Microvascular Invasion-Related Biomarkers for Personalized Treatment of Hepatocellular Carcinoma
Authors: Wei Xiang, Xue Liu, Tingting Bao, Fei Yang, Jintao Huang, Jian Shen and Xiaoli ZhuAvailable online: 01 October 2025More LessIntroductionHepatocellular Carcinoma (HCC) exhibits high recurrence rates, particularly when accompanied by Microvascular Invasion (MVI). We identified MVI-related biomarkers and established a prognostic model for personalized HCC treatment.
MethodsData were downloaded from The Cancer Genome Atlas (TCGA) and HCCDB databases. Key radiomics features were identified using the support vector machine-recursive feature elimination (SVM-RFE) algorithm, and differential expression analysis was performed with DESeq2. This was followed by functional enrichment analysis using the clusterProfiler package. Through univariate and Lasso regression analyses, we constructed a robust RiskScore model to effectively stratify HCC patients into distinct risk groups based on the median RiskScore value. The model prediction performance was evaluated using ROC curves and Kaplan-Meier (KM) analysis. We used the CIBERSORT algorithm to characterize immune cell infiltration patterns and conducted GSEA to identify differentially activated pathways between the risk groups.
ResultsRadiomic analysis revealed four significant features strongly associated with MVI, enabling the construction of a nomogram model with robust classification performance (AUC = 0.742). Subsequent analysis identified 241 overlapping MVI-related Differentially Expressed Genes (DEGs) enriched in critical tumor proliferation and invasion pathways. A 10-gene RiskScore model was developed, demonstrating excellent prognostic discrimination in training and validation cohorts. CIBERSORT analysis revealed significant correlations between specific immune cell infiltration and the 10 genes. GSEA analysis showed significant enrichment of cell cycle regulation pathways in the high-risk group, suggesting their important role in MVI.
DiscussionThe RiskScore was established using MVI-related features for prognosis assessment in HCC.
ConclusionOur findings provided novel biomarkers and a theoretical basis for the early diagnosis and personalized treatment of HCC.
-
-
-
Endothelin: A Potential Universal Systemic Biomarker
Available online: 30 September 2025More LessBackgroundEndothelins is a family of vasoconstrictive peptides known for their high potency. They are mainly synthesized and secreted by the endothelial cells lining the blood vessels in response to various stimuli. Their main physiological role is the regulation of vascular tone, affecting blood pressure and tissue perfusion.
ObjectiveThe aim of this review was to evaluate the importance of Endothelin-1 (ET-1) plasma levels as a marker in diagnosis, disease burden, or development, due to its vascular effects.
MethodsData was collected and grouped, from several studies in different organ systems, during the last thirty years, were collected. A statistical analysis was performed to reveal any similarities and differences among them.
ResultsET-1 was found to be increased in arterial and pulmonary hypertension. Plasma ET-1 was elevated in patients with heart failure, autoimmune disease, chronic kidney disease, and liver failure. In all these cases, ET-1 was increased at least twice the maximum of normal plasma concentration in healthy subjects, in a similar pattern, independently of the disease background. More importantly, plasma ET-I levels increased even more according to the severity of the disease, not necessarily in a linear manner.
DiscussionPlasma ET-1 levels appears to increase whenever a disorder or dysfunction occurs in kidney, heart, lungs, liver and pancreas. Since, remission is followed by a reduction in the already elevated levels, plasma ET-1 emerges to be an important diagnostic molecule.
ConclusionEndothelin-1 appears to increase similarly across various pathological conditions, making it a potential biomarker for overall human physiological status.
-
-
-
The Potential Mechanism of Quercetin in Treating Diabetic Foot Ulcer Revealed by Network Pharmacology
Authors: Liuwen Huang, Ran Ji, Wenxing Su and Qiliang XuAvailable online: 30 September 2025More LessIntroductionTo identify the critical genes, biological mechanisms, and signaling pathways involved in the therapeutic effects of quercetin on diabetic foot ulcers using network pharmacology and molecular docking approaches.
MethodsWe identified pathological targets of diabetic foot ulcers (DFU) from GeneCards, OMIM, and TTD, and pharmacological targets of quercetin from STP, TCMSP, and PharmMapper. Intersection analysis revealed potential therapeutic targets. Core targets were determined via GO/KEGG enrichment, PPI network construction, and Cytoscape screening algorithms (Degree, Closeness, Betweenness). Molecular docking and dynamics simulations assessed quercetin-core target interactions and binding affinity.
ResultsAfter screening and intersecting the targets of quercetin and diabetic foot ulcers, 236 genes related to quercetin's anti-diabetic foot ulcer effects were identified, with six key genes emerging as critical: SRC, TP53, MAPK1, JUN, HSP90AA1, and AKT1. Enrichment analysis suggested that quercetin may modulate inflammatory imbalance(HSP90AA1), immunosuppression(JUN), and oxidative stress(SRC, TP53, MAPK1, and AKT1) during diabetic foot ulcer progression.
DiscussionThe relationship between these core targets and biological pathways in diabetic foot ulcers requires further experimental validation. Notably, molecular docking and dynamics simulation results confirmed strong binding affinity between quercetin and the core targets, supporting their potential therapeutic relevance.
ConclusionQuercetin exerts anti-diabetic foot ulcer effects by regulating SRC, TP53, MAPK1, JUN, HSP90AA1, and AKT1. These hub genes may serve as promising candidates for future therapeutic interventions in diabetic foot ulcers.
-
-
-
Matricellular Proteins (MCPs) in Rheumatoid Arthritis
Authors: Asiya Kurmanova and Dieter RiethmacherAvailable online: 29 September 2025More LessRheumatoid arthritis is a chronic autoimmune disorder affecting approximately 230 per 100,000 people worldwide. It typically affects joints and bones but may involve other tissues and internal organs as well. Rheumatoid arthritis is twice as common in females compared to males and causes a significant psychological burden on patients and an economic burden on society. During the development of the disease, multiple cellular processes are involved, including the activation of JAK-STAT, MAPK, PI3K-AKT, and Wnt signaling pathways, the subsequent production of cytokines, interleukins, and matrix metalloproteinases, and the stimulation of immune cells, osteoclasts, and fibroblast-like synoviocytes. Matricellular proteins typically support the stability of the extracellular matrix and oversee cellular interactions within it. They are also thought to be involved in several pathological processes, including cancer, diabetes, immune cell recruitment, and cardiovascular diseases. Recent research evidence suggests that matricellular proteins can play both pro- and anti-inflammatory roles in rheumatoid arthritis and may also affect other processes relevant to disease propagation. In conclusion, this review highlights published research that sheds light on the roles matricellular proteins may play in rheumatoid arthritis, as well as their potential as diagnostic and therapeutic targets for the disease.
-
-
-
CD47-SIRPα: A Pivotal Signaling Pathway for Targeting Immunotherapy in Non-Small Cell Lung Cancer
Authors: Luying Zhang, Xueqin Wu, Mingyue Zhu, Yuli Zhou, Kun Liu, Bo Lin and Mengsen LiAvailable online: 29 September 2025More LessNon-Small Cell Lung Cancer (NSCLC) remains a major oncologic challenge with high mortality. The CD47-SIRPα pathway is critical for tumor immune escape by mediating “don't eat me” signaling. Despite progress, the specific mechanism of action of this pathway in NSCLC remains unclear, and the specific role of the CD47-signal in regulating immune escape needs to be further explored. This paper comprehensively analyzes the latest research progress on the CD47-SIRPα signaling pathway in NSCLC, as well as the challenges of CD47-SIRPα as a potential therapeutic target.
-
-
-
Mechanistic Insights into the Ferroptosis-Regulating Effects of EF in the Treatment of Chronic Renal Failure
Authors: Qian Zhang, Xinran Xv, Wanchuan Zhang, Xiang Yang, Jincai Li and Tiejun LiAvailable online: 29 September 2025More LessIntroductionChronic Renal Failure (CRF) is a progressive disease that severely affects patients' quality of life, but its current treatment options remain limited. This study explores the potential mechanism of Eriobotryae Folium (EF) in treating CRF by targeting ferroptosis.
MethodsActive compounds and targets of EF were identified through multiple databases (TCMSP, SwissTargetPrediction, UniProt, GeneCards, DrugBank). Using Cytoscape and STRING, both a compound-target network and a PPI network were generated. GO and KEGG analyses were conducted to explore relevant biological functions and pathways. The binding affinity and stability between critical compounds and target proteins were investigated through molecular docking and Molecular Dynamics (MD) simulations.
ResultsEighteen active compounds and 366 targets of EF were identified, along with 1,267 CRF-related and 1,673 ferroptosis-related targets, with 40 overlapping genes. PPI analysis highlighted AKT1, EGFR, HIF1A, SRC, and ESR1 as key targets. The KEGG analysis indicated MAPK and HIF-1 pathways as major regulatory pathways. Molecular docking suggested quercetin, ellagic acid, and oleanolic acid as potential active compounds, with EGFR and SRC as promising targets. MD simulations confirmed strong and stable binding, especially for EGFR-ellagic acid (-21.38 kcal/mol) and EGFR-oleanolic acid (-24.02 kcal/mol).
DiscussionThis study suggests that EF treats CRF by targeting ferroptosis-related pathways and key proteins, such as EGFR and AKT1. MAPK and HIF-1 signaling pathways further substantiate its significant role in disease regulation.
ConclusionEF may regulate ferroptosis through multiple targets and pathways, offering potential therapeutic benefits for CRF. The findings offer foundational insights for subsequent research and therapeutic development.
-
-
-
Comprehensive Pan-cancer analysis of Pyroglutamylated RFamide Peptide Receptor: Its Potential Biological Functions and Associations with Prognosis and Immunity
Authors: Quanxin Huang, Boyuan Qiu, Tiantian Lu, Mocan Qiu and Daizheng HuangAvailable online: 27 September 2025More LessIntroductionThe receptor for pyroglutamylated RF amide peptide (QRFPR) is a G protein-coupled receptor that plays a role in various physiological and pathological processes. However, a gap remains in our understanding of QRFPR's pan-cancer properties.
MethodsThis study performs an extensive pan-cancer analysis of QRFPR utilizing large-scale genomic datasets, including The Cancer Genome Atlas (TCGA). We evaluated QRFPR expression levels in multiple malignancies and examined their correlations with clinical outcomes. Additionally, we investigated associations between QRFPR expression and immune cell infiltration using bioinformatics tools.
ResultsOur results reveal significant alterations in QRFPR expression across several cancer types, particularly breast, colorectal, and prostate cancers. Elevated levels of QRFPR are linked to poor prognosis in certain malignancies, such as uterine corpus endometrial carcinoma (UCEC) and mesothelioma (MESO), and correlate with increased infiltration of immune cells, especially T cells and macrophages. Pathway enrichment analyses suggest that QRFPR may impact critical signaling pathways associated with cell growth, apoptosis, and immune regulation.
DiscussionThe observed variations in QRFPR expression across cancer types suggest its diverse roles in tumor biology. Its association with unfavorable clinical outcomes in specific cancers, as well as its link to immune cell infiltration, highlights its multifaceted impact on tumor progression and microenvironment modulation.
ConclusionOur findings underscore the potential of QRFPR as a prognostic biomarker and therapeutic target in cancer biology. Further investigations into its functional mechanisms could pave the way for precision medicine approaches in oncology.
-
-
-
Exploring the Potential of Nuciferine in Diabetes Management via PTGS2 Pathway Targeting by Network Analysis and in-silico Modeling Approach
Authors: Sridevi Narayana Murthy and Thirumal MargesanAvailable online: 26 September 2025More LessIntroductionDiabetes mellitus, a chronic metabolic disorder characterized by elevated blood glucose levels, has emerged as a significant global health burden. Chronic inflammation and insulin resistance are central to the pathogenesis of non-insulin-dependent (type 2) diabetes mellitus. PTGS2 (prostaglandin-endoperoxide synthase 2) has been implicated in inflammatory pathways associated with diabetic complications, making it a potential therapeutic target.
MethodsAdvanced computational methodologies were employed to identify potential natural compounds with anti-diabetic activity. Techniques included network pharmacology to establish compound-target-pathway relationships and in silico molecular docking to evaluate binding affinity and interaction profiles of selected phytochemicals with PTGS2.
ResultsPTGS2 and its downstream prostaglandin pathways were strongly associated with diabetic inflammation and insulin resistance. Molecular docking identified Corytuberine and Nuciferine as having high binding affinities with PTGS2. Network pharmacology analysis confirmed Nuciferine’s connection to PTGS2, supporting its role as a bioactive agent targeting diabetes-related inflammatory processes.
DiscussionThe findings suggest that PTGS2 contributes to the progression of insulin resistance and chronic inflammation in type 2 diabetes. Targeting this enzyme with bioactive compounds such as Nuciferine may offer therapeutic benefits. However, translational studies and clinical trials are essential to validate these computational predictions and assess safety and efficacy in vivo.
ConclusionNuciferine exhibits promising potential in modulating PTGS2 activity and improving insulin sensitivity. Continued research and clinical validation are needed to confirm its efficacy and support the development of novel anti-diabetic therapies targeting inflammatory pathways.
-
-
-
The Emerging Role of N-Acetylcysteine in Psychiatry: A Narrative Review of Available Data
Available online: 23 September 2025More LessN-acetylcysteine (NAC), a cysteine derivative with a reactive thiol group, possesses antioxidant and anti-inflammatory properties. Its redox activity plays a central role in scavenging reactive oxygen and nitrogen species and modulating cellular signaling pathways. Recent research highlights its potential role in psychiatric disorders through the modulation of oxidative stress and inflammatory pathways. This narrative review examines the efficacy of NAC in treating psychiatric conditions, including mood disorders, schizophrenia, anxiety disorders, post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), substance use disorders (SUDs), and neurodevelopmental disorders. A comprehensive search of PubMed, Scopus, Embase, PsycINFO, and Google Scholar databases was conducted for studies published between March 1, 2007, and December 30, 2024. The search utilized keywords related to NAC and psychiatric disorders. Data were critically analyzed to evaluate NAC’s therapeutic potential. Preclinical studies demonstrate NAC’s benefits in reducing oxidative stress, inflammation, and modulating neurotransmitter systems. Animal models of depression, schizophrenia, and OCD show symptom reduction through glutamatergic and antioxidant mechanisms. Clinical trials reveal NAC’s efficacy as an adjunct in treating major depressive disorder, bipolar disorder, and schizophrenia, particularly for negative and cognitive symptoms. Evidence for anxiety disorders, PTSD, and OCD is limited but suggests anxiolytic and anti-obsessive effects. In SUDs, NAC shows promise in reducing cravings and substance-seeking behavior, while preliminary findings in autism suggest improvements in irritability and hyperactivity. NAC exhibits potential as an adjunctive treatment for various psychiatric disorders due to its safety profile, low cost, and broad mechanisms of action. However, clinical results are mixed, highlighting the need for larger, well-designed trials to confirm its efficacy and define optimal dosing strategies.
-
-
-
Cancer Stem Cell-targeted Antibody-drug Conjugates for Cancer Immunotherapy
Available online: 11 September 2025More LessCancer stem cells (CSCs) participate in cancer initiation, metastasis, and therapy tolerance, presenting a formidable challenge in cancer treatment. Antibody-drug conjugates (ADCs) have been established as a potential strategy for selectively targeting and eradicating CSCs, thereby overcoming resistance mechanisms and preventing tumor recurrence. ADCs integrate a monoclonal antibody specific to CSC surface markers, such as CD44, CD133, EpCAM, and ALDH1, with a potent cytotoxic payload linked by a stable chemical linker. Upon antigen binding, ADCs undergo receptor-mediated internalization, leading to intracellular payload release and CSC apoptosis. Recent advances in ADC technology have enhanced selectivity and efficacy while minimizing off-target toxicity. Preclinical studies demonstrate that CSC-targeted ADCs, including CD133- and CD44-directed therapies, effectively deplete CSC populations in glioblastoma, breast, colorectal, and lung cancers. EpCAM-targeted ADCs have also shown efficacy in epithelial tumors with potential synergy in combination immunotherapies. Moreover, emerging approaches, such as bispecific antibodies and optimized linker chemistry, further refine CSC-targeted ADCs for clinical applications. Despite these advancements, challenges remain, including CSC heterogeneity, immune evasion, and limitations in biomarker specificity. Addressing these hurdles requires continued innovation in ADC engineering, novel payloads, and combinatory strategies with immune checkpoint inhibitors or CAR-T cell therapies. While clinical evaluations are still in the early phases, preliminary trials underscore the potential of CSC-targeted ADCs in revolutionizing precision oncology. This review explores the mechanisms, recent developments, and prospects of CSC-targeted ADCs, highlighting their transformative potential in cancer immunotherapy.
-
-
-
The Impact of IGFBP6 Knockdown on Cholesterol Metabolism in Breast Cancer Cells
Available online: 11 September 2025More LessIntroductionCholesterol plays a key role in maintaining tumor cell homeostasis. Reduced IGFBP6 expression is associated with an increased risk of breast cancer recurrence. Previous studies showed that IGFBP6 knockdown decreases cholesterol levels in the MDA-MB-231 cell line. This study aimed to investigate how IGFBP6 influences genes involved in cholesterol metabolism.
MethodsWe used MDA-MB-231 breast cancer cells with IGFBP6 knockdown. Transcriptomic and proteomic analyses were performed, with selected gene expression validated by RT-PCR. Correlations between IGFBP6 and cholesterol-related genes were evaluated using public RNA-seq datasets.
ResultsIGFBP6 knockdown in MDA-MB-231 cells resulted in a threefold decrease in low-density lipoprotein receptor (LDLR) expression and a twofold reduction in LDLR adaptor protein (LDLRAP1) mRNA levels, both responsible for exogenous cholesterol uptake. Meanwhile, PCSK9 expression increased 11-fold (p-adj = 1.4E-93), further limiting uptake. Despite the upregulation of genes involved in endogenous cholesterol synthesis (HMGCS1, HMGCR, FDFT1, SQLE, DHCR24), total cholesterol content in knockdown cells decreased, leading to activation of the sterol-dependent transcription factor SREBF1 (OR = 6.44; p-adj = 0.036). Correlation analysis revealed a significant association between IGFBP6 expression and cholesterol synthesis genes in basal-like breast cancer.
DiscussionThe altered expression profile of multiple cholesterol metabolism-related genes with known prognostic value aligns with a transcriptional program typical of poor-outcome basal-like tumors. These findings support the role of IGFBP6 as a regulator of lipid metabolism and a potential biomarker for therapeutic stratification.
ConclusionThe results of this study indicate that the reduction in cholesterol levels observed in breast cancer cells following IGFBP6 knockdown is primarily due to decreased exogenous uptake. These findings highlight the role of IGFBP6 in regulating cholesterol metabolism and further explain its clinical significance in predicting breast cancer recurrence and progression.
-
-
-
Harnessing Vitamin C: Unveiling Its Potential in Cancer Prevention and Treatment
Authors: Antara Roy, Dilip K. Maiti and Bimal Krishna BanikAvailable online: 11 September 2025More LessThe strong antioxidant vitamin C has been researched for its potential use in the prevention and treatment of cancer. Scavenging free radicals and lowering oxidative stress, which is essential in carcinogenesis, helps to protect cells. Excessive levels of vitamin C can produce hydrogen peroxide and selectively kill cancer cells in the tumor microenvironment by exerting pro-oxidant effects. Normal cells might be spared, indicating a possible window for treatment. Additionally, vitamin C affects important cellular functions that contribute to the development of tumors, including angiogenesis, inflammation, immune response modulation, and epigenetic regulation. Sensitizing tumor cells or shielding healthy tissue from harm caused by treatment may increase the effectiveness of traditional cancer treatments. Recent clinical investigations have revisited the use of high-dose intravenous vitamin C in both monotherapy and combination regimens. While some trials report improvements in quality of life, reduced chemotherapy side effects, and extended survival in specific cancer types, robust evidence of a consistent anticancer effect remains lacking due to variability in study design, cancer type, dosing protocols, and patient populations. Nonetheless, these studies have renewed interest in understanding the pharmacodynamics and clinical utility of vitamin C in oncology. Vitamin C should be considered an investigational approach rather than a standard component of cancer therapy. This review provides a comprehensive overview of the biochemical properties of Vitamin C, its anticancer mechanisms, experimental evidence, clinical data, controversies, and future directions.
-
-
-
[18F]FDG PET/CT versus Bone Scintigraphy for the Diagnosis of Bone Metastasis in Breast Cancer: A Systematic Review and Meta-Analysis
Authors: Xinmin Wang, Yufei Xu and Jing JingAvailable online: 09 September 2025More LessIntroductionBreast cancer has become the most commonly diagnosed cancer in women worldwide, with advanced cases often leading to bone metastases that significantly affect prognosis and quality of life. This meta-analysis and systematic review aims to evaluate and compare the diagnostic performance of [18F]FDG PET/CT and bone scintigraphy for detecting bone metastases in breast cancer patients.
MethodsA systematic search was conducted across PubMed, Embase, Web of Science, and Scopus for studies published up to February 2025. Relevant articles were identified using a combination of subject-specific and free-text keywords, including “breast cancer,” “positron emission tomography,” “bone scintigraphy,” and “bone metastasis.” Studies assessing the diagnostic utility of [18F]FDG PET/CT and bone scintigraphy in detecting bone metastases were included. A bivariate random-effects model was used to calculate pooled estimates of sensitivity, specificity, and diagnostic accuracy with 95% confidence intervals (CIs). Potential sources of heterogeneity were explored using meta-regression analysis. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was applied to evaluate the methodological quality of the included studies.
ResultsA total of 1407 publications were initially retrieved, and 13 studies involving 892 patients met the inclusion criteria. The pooled diagnostic performance for [18F]FDG PET/CT demonstrated a sensitivity of 0.91 (95% CI: 0.81-0.96) and a specificity of 0.98 (95% CI: 0.93-1.00), with an area under the curve (AUC) of 0.99 (95% CI: 0.97-0.99). In comparison, bone scintigraphy showed a sensitivity of 0.82 (95% CI: 0.72-0.89), specificity of 0.81 (95% CI: 0.73-0.87), and an AUC of 0.88 (95% CI: 0.85-0.91). Despite its higher diagnostic accuracy, PET/CT exhibited notable heterogeneity across studies, potentially influenced by differences in patient populations and imaging interpretation criteria.
DiscussionOur meta-analysis demonstrated the superior diagnostic performance of [18F]FDG PET/CT over bone scintigraphy, likely attributable to its enhanced sensitivity for osteolytic lesions and integrated anatomical-functional imaging. Nevertheless, considerable inter-study heterogeneity and incomplete clinical data reporting limit the generalizability and robustness, warranting further standardized prospective investigations.
ConclusionThe findings suggest that [18F]FDG PET/CT offers superior diagnostic accuracy compared to bone scintigraphy for detecting bone metastases in breast cancer patients. However, its clinical application requires further validation through large-scale, prospective studies. Additionally, considerations such as cost-effectiveness and accessibility must be addressed before widespread clinical adoption.
-
-
-
Circulating Proteins and Bone Mineral Density: A Proteome-Wide Mendelian Randomization Study
Authors: Tianyi Wang, Liu Liu, Ruiying Han, Yikai He, Yubin Cao, Ding Bai and Yongwen GuoAvailable online: 02 September 2025More LessIntroductionCurrent osteoporosis medications often prove ineffective for various reasons. Alongside optimizing available agents, new genetic targets should be proposed for drug development. Mendelian randomization (MR) may resolve throughput and confounding issues in traditional observational studies for druggable targets.
MethodsWe employed two-sample MR with protein quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) data as exposures and six bone mineral density (BMD) sites as outcomes. By meta-analyzing pQTL evidence, validating eQTL evidence, conducting MR sensitivity tests, and assessing druggability, key druggable targets for BMD were identified. Additionally, we performed functional analysis, drug repurposing annotation, transcriptome analysis, in-house PCR, ELISA, and micro-CT validation to further investigate the functionality and expression levels of these targets across different tissues and conditions.
ResultsOut of 5,928 pQTLs from deCODE and UKB-PPP datasets, 16 were identified as prioritized targets with significant meta pQTL evidence. Tyrosine-protein kinase Lyn (LYN, meta beta -0.09, 95% CI -0.13 to -0.05), Chondroadherin (CHAD, meta beta -0.39, 95% CI -0.18 to -0.20), Tumor necrosis factor receptor superfamily member 19 (TNFRSF19, meta beta -0.03, 95% CI -0.05 to -0.02), and Transforming growth factor beta induced (TGFBI, meta beta -0.04, 95% CI -0.06 to -0.03) were identified as key druggable targets for BMD. R-spondin-3 (RSPO3) and SPARC-related modular calcium-binding protein 2 (SMOC2) were also suggested with consistent MR associations with previous studies.
DiscussionWe identified four novel BMD-related targets (CHAD, LYN, TGFBI, TNFRSF19) through pQTL meta-analysis, and validated RSPO3/SMOC2's positive effects. By integrating multi-tissue transcriptomics and OVX experiments, we further revealed elevated expression of TNFRSF19/TGFBI negatively correlated with BMD, providing new therapeutic insights.
ConclusionThis large-scale Proteome-Wide MR study introduced novel targets for BMD and osteoporosis at transcriptional and translational levels, presenting new prospects for drug repurposing and development.
-
-
-
Azole Antifungals Under Pressure: Therapeutic Challenges and Multifaceted Resistance Mechanisms
Available online: 02 September 2025More LessFungal infections have increased markedly in both incidence and severity over recent decades, driven in part by the emergence of novel pathogenic species harboring sophisticated resistance mechanisms against commonly used antifungal agents. This alarming trend is especially pronounced with azoles, which remain widely used in clinical settings due to their broad-spectrum activity and favorable oral bioavailability. Azoles exert their antifungal effect by inhibiting lanosterol 14α-demethylase, a key enzyme in the ergosterol biosynthesis pathway, thereby compromising the integrity, fluidity, and functionality of the fungal cell membrane. However, the escalating prevalence of multidrug-resistant fungal strains, particularly those resistant to azoles, has significantly complicated therapeutic strategies and represents a growing threat to global public health. This perspective explores the diverse and increasingly complex mechanisms of azole resistance in clinically relevant fungi, particularly species of Candida and Aspergillus, highlighting the urgent need for enhanced surveillance, novel therapeutic approaches, and responsible antifungal stewardship.
-
-
-
Mechanisms of Inflammation Chronification: Gene and Epigenetic Regulation of Intolerant Response (Trained Immunity)
Available online: 29 August 2025More LessAimsThis study aims to elucidate the mechanisms contributing to the transition from acute to chronic inflammation, particularly in the context of atherosclerosis, by investigating the pro-inflammatory responses of cybrid cell lines derived from patients with coronary heart disease.
BackgroundAcute inflammatory reactions are essential components of the innate immune response, typically resolving within hours or days. However, disruptions in this process can lead to chronic inflammation, which is linked to significant morbidity and mortality. Atherosclerosis, characterized by chronic vascular inflammation, poses a major health threat, underscoring the need for understanding its underlying mechanisms.
ObjectivesThe primary objective is to analyze the pro-inflammatory cytokine responses of 14 cellular lines, including 13 cybrids and one maternal line (THP-1), to identify intolerant and tolerant responses to key cytokines associated with inflammation.
MethodsWe utilized cybrid cell lines created by fusing THP-1 monocytic cells with platelets from patients diagnosed with atherosclerosis. Cytokine responses were assessed through quantitative analysis of IL-1β, IL-6, MPC-1, IL-8, and TNF-α secretion. Gene expression profiles were analyzed to correlate cytokine secretion with specific gene regulation patterns, focusing on epigenetic mechanisms influencing immune responses.
ResultsDistinct intolerant and tolerant responses were observed across the cellular lines for key cytokines. Specifically, TC-HSMAM1 and TCP-521 were intolerant to IL-1β, TC-HSMAM1, TC-LSM2, and TC-522 were intolerant to IL-6, six lines exhibited intolerance to MPC-1, and eight lines were intolerant to IL-8. No intolerant responses were noted for TNF-α. Gene expression analysis revealed that at least ten genes correlated with increased cytokine secretion in intolerant reactions, while 23 genes showed higher expression during these intolerant responses, indicating significant roles for DNA modification and chromatin remodeling. An important finding emerged from the study of agents affecting histone modification. Specifically, unlike other agents, sodium butyrate not only exhibited a stronger suppression of the inflammatory response in cells but also eliminated their intolerance to inflammatory stimulation. Therefore, in the near future, sodium butyrate could be regarded as a fundamentally new anti-inflammatory preventive and therapeutic agent, with its mechanism of action rooted in the prevention and suppression of chronic inflammation.
DiscussionIn chronic non-infectious diseases like atherosclerosis the intolerant response or trained immunity can worsen inflammation. This study shows that both genetic and epigenetic regulation contribute to this intolerant response. It was also found that sodium butyrate can prevent the intolerant response, suggesting it may become a new anti-inflammatory agent that suppresses chronic inflammation.
ConclusionOur findings have suggested that the interplay between pro-inflammatory cytokine responses and epigenetic regulation mechanisms is critical in determining whether a cell exhibits a normal or intolerant immune response. Understanding these dynamics may provide insights into the chronic inflammatory processes associated with atherosclerosis and other related conditions.
-
-
-
Diagnosis and Potential Therapy of Brain Diseases Using 64Cu: A Scoping Review
Authors: Yumei An, Xinqi Huang, Mingyuan Xu, Xianzhe Li, Haiyan Shan and Mingyang ZhangAvailable online: 28 August 2025More LessIntroductionThis paper provides a comprehensive review examining the application of copper radionuclides, particularly 64Cu, in the diagnosis and potential therapy of various brain diseases.
MethodsTwo researchers conducted an independent search of the PubMed and Web of Science databases for original research articles published in English. Following a screening process based on titles and abstracts, 42 publications reporting the use of copper radionuclides for diagnosing or treating brain diseases were selected for this review.
ResultsThe analysis revealed that several copper isotopes, namely 60 Cu, 61 Cu, 62 Cu, 64Cu, and 67Cu, have been explored for diagnostic or therapeutic purposes in conditions including Alzheimer’s disease, Wilson’s disease, brain tumors, and traumatic brain injury. The isotopes 60 Cu, 61 Cu, and 62 Cu were primarily associated with diagnostic uses. In contrast, 64Cu and 67Cu were identified as having potential for both diagnosis and therapy (theranostic). Furthermore, the availability of 64Cu was noted to be better compared to 67Cu.
Discussion64Cu radionuclides are frequently employed in imaging techniques for brain pathologies. While their role in radiographic applications is prominent, the therapeutic potential of 64Cu is currently underdeveloped, and current evidence is primarily derived from preclinical studies, highlighting the critical need for clinical trials to validate 64Cu’s efficacy and safety as a theranostic agent in neurological conditions.
Conclusion64Cu holds significant potential for both diagnosis and therapy of various brain diseases. Continued research and development in this area are crucial to unlock its full therapeutic potential and improve patient outcomes.
-
-
-
PROTACs Targeting Molecular Targets in Triple-Negative Breast Cancer
Authors: Gyas Khan, Sarfaraz Ahmad and Md Sadique HussainAvailable online: 28 August 2025More LessTriple-Negative Breast Cancer (TNBC) is defined as a type of breast cancer having the absence of estrogen, progesterone, and human epidermal growth factor receptors. To date, chemotherapeutic drugs and immunotherapy have faced major challenges, including treatment resistance, toxicity, and limited efficacy. Lately, PROTACs have been discovered to assist in the breakdown of difficult-to-target oncoproteins employing the ubiquitin-proteasome system. This review focuses on PROTACs used in TNBC, identifying BET proteins, SRC-1, PARP1, FAK, c-Myc, and CDKs as the primary molecular targets of PROTACs in this type of cancer. PROTACs can help overcome drug resistance, enable prolonged protein degradation, and enhance therapeutic performance of these new therapies in clinical research. BETd-246, ND1-YL2, and pal-pom PROTACs have shown promise in reducing cancer progression and spread in TNBC. Additionally, the use of PROTACs to target EZH2, AR, and TRIM24 demonstrates that this approach offers great flexibility. While these findings are promising, it remains challenging to achieve better pharmacokinetics, maintain product stability, increase bioavailability, enhance selectivity, and prevent potential toxicity. New developments in PROTAC design and clinical results suggest that the strategy could lead to improved treatments for TNBC patients, helping them live longer and better.
-
-
-
Cutting-Edge Innovations: Recent Patents in Medicinal Chemistry
Authors: Arshleen Kaur, Rajesh K. Singh and Rohit BhatiaAvailable online: 27 August 2025More Less
-
-
-
Boswellic Acid Derived Molecules as SARS-Cov-2 Spike Protein Inhibitors: A Comprehensive Virtual Screening, Triplicate Molecular Dynamic Simulation and Biochemical Validation
Available online: 26 August 2025More LessBackgroundCoronavirus disease (COVID-19) is a highly infective disease caused by SARS-CoV-2. The SARS-CoV-2 spike protein binds with the human ACE2 receptor to facilitate viral entry into the host cell; therefore, spike protein serves as a potential target for drug development.
ObjectiveKeeping in view the significance of SARS-CoV-2 spike protein for viral replications, in the current study, we identified the potent inhibitors against SARS-CoV-2 spike protein in order to combat the viral infection.
MethodsIn the current study, we screened an in-house library of ~900 natural and synthesized compounds against the spike protein receptor binding domain (RBD) using a structure-based virtual approach, followed by an in-vitro inhibition bioassay.
ResultsSeven (C1-C7) potent compounds were identified with docking scores ≥ −6.66 Kcal/mol; their drug-likeness, pharmacokinetic, and pharmacodynamic characteristics were excellent with no toxic effect. Those molecules were subjected to a triplicate simulation for 200 ns, which further confirmed their stable binding with RBD. This tight packing of complexes was reflected by calculated binding free energy, which disclosed higher binding free energy of C4, C7 and C6 than C1-C3, while predicted entropic energy demonstrates higher values for C4, C7 and C1 than the rest of the compounds, indicating more thermodynamic stability in protein due to conformational changes in spike protein induced by binding of C4, C7 and C1. These computational analyses were later validated through in-vitro bioassay. Remarkably, C2-C7 displayed significant inhibitory potential with >76 to 89% inhibition and C3, C4, C6 and C7 demonstrated the highest inhibition of RBD.
ConclusionThe current findings suggest that compounds C3 and C6 effectively disrupt the function of RBD of SARS-CoV-2 spike protein and can serve as potential drug candidates for spike protein.
-
-
-
Transcriptome-wide Association Studies Integrating Four Levels Identify Novel Targets for Idiopathic Pulmonary Fibrosis
Authors: Jiaxin Shi and Linyou ZhangAvailable online: 26 August 2025More LessIntroductionIdiopathic pulmonary fibrosis (IPF) is a kind of interstitial lung disease with a poor prognosis. Even though genome-wide association studies (GWAS) have identified numerous loci linked to IPF risk, the underlying causal genes and biological processes are still mostly unknown.
MethodsThe IPF GWAS summary data included 4,125 cases, 20,464 controls from five cohorts. The weight file and related files for transcriptome association studies (TWAS) of plasma protein, multi-tissues, cross-tissue, and single-cell were obtained from Zhang’s study, Mancuso lab, GTExV8 database, and Thompson’s study, respectively. We conducted TWAS employing functional Summary-based Imputation (FUSION) from four levels, which were plasma protein, multiple tissues, cross-tissue, and single cell. Conditional and joint (COJO) analysis and multi-marker analysis of genomic annotation (MAGMA) analysis were used to validate the above results. Summary-data-based Mendelian randomization (SMR) and Bayesian co-localization analysis were utilized to explain the causal association between selected genes and the risk of IPF.
ResultsA total of 12, 361, 1187, and 72 genes were calculated from the four dimensions of TWAS. TOLLIP, GCHFR, ZNF318 TALDO1, CD151, and AP4M1 were selected by intersecting the results of the four sets of genes. GCHFR, TALDO1, CD151, and AP4M1 were verified by COJO analysis and MAGMA analysis. SMR and colocalization analyses identified GCHFR as the most significant gene for IPF.
DiscussionWe have applied the TWAS approach to identify novel therapeutic targets for IPF in multiple dimensions. Further biological testing will be required in future studies to validate our findings.
ConclusionIn summary, we carried out an extensive TWAS that integrated four dimensions: plasma protein, multiple tissues, cross-tissue, and single cell. GCHFR was identified as the most significant gene for IPF in this study.
-
-
-
“Next-in-class” GLP-1R Danuglipron- and Lotiglipron-like Agonists: A Patent Review (2020-2024)
Available online: 26 August 2025More LessBackgroundGLP-1 receptor peptide agonists have revolutionized type 2 diabetes mellitus and obesity treatment, primarily through injection-based therapies. Small-molecule GLP-1 receptor agonists allow oral administration, but none are clinically established. Pfizer's danuglipron and lotiglipron, presented in 2018-2019, were “first-in-class” drug candidates, becoming prototypes for “next-in-class” drug development.
ObjectiveThis review summarizes “next-in-class” GLP-1 receptor agonists developed, identifying different relationships between the molecular structure and functional activity of agonists.
MethodsPatents containing danuglipron- and lotiglipron-like agonists from January 2021 to July 2024 were browsed in databases, such as Espacenet and Google Patents, using specified keywords. Over 5,000 compounds from 67 patent publications were analyzed.
ResultsOur analysis identified some key general SAR trends. The presence of a carboxyl group leads to highly active agonists, but replacing it with bioisosteric analogs may improve the ADME profile of the target compounds. The introduction of specific privileged fragments, as well as the replacement of 1H-benzo[d]imidazole nucleus or (S)-oxetan-2-ylmethyl substituent in the prototype structure with bioisosteric heterocycles, may be viable approaches. The replacement of 1,4-disubstituted piperidine linker with its (S)-2-methyl-substituted homologue or O, N-disubstituted piperidin-4-ol may also result in highly potent agonists. Additionally, the classic 2,4-EWG-disubstituted benzyl alcohol residue allows significant variability.
ConclusionDespite the limited clinical success of danuglipron and lotiglipron, as well as the inherent problems associated with the complex nature of GLP-1R signaling, the current state of research and the abundance of novel, promising chemotypes of highly potent compounds suggest that approved GLP-1R agonists may emerge in the coming years.
-
-
-
Beneficial Role of Zinc in Metabolic Syndrome: Understanding the Underlying Pathophysiological Mechanisms
Available online: 26 August 2025More LessMetabolic syndrome (MetS) is a complex disorder that comprises metabolic abnormalities such as central obesity, insulin resistance, dyslipidemia, and hypertension. Eventually, MetS leads to type 2 diabetes (T2DM) and increases the risk of other cardiovascular diseases. Patients with MetS are approximately five times more prone to develop T2DM. The increase in global prevalence of MetS is a major cause of concern. The microelement zinc is an essential trace element that plays a pivotal role in numerous biological processes occurring in the body. We carried out a thorough search of published studies in Scopus, PubMed, and Google Scholar databases. Zinc plays an important role in the functioning of the immune system, wound healing, protein synthesis, metabolism, inflammation, and different oxidative stress pathways. It is also vital for insulin homeostasis and signaling. The potential role of zinc in managing insulin resistance may be a key component in the treatment of MetS. Zinc acts via various signaling pathways, such as AMPK and mTOR, and influences lipid and glucose metabolism. The regulation of zinc metabolism at the cellular level is important for various biological processes, and disruption in zinc homeostasis results in the development of many diseases. The present review aims to discuss the role of zinc in MetS. It is concluded that zinc level modulation may be a key point in the prevention and treatment of MetS.
-
-
-
Expression of TCEAL2 is a Novel Prognostic Biomarker and Potential Therapeutic Target in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
Authors: Jinyuan Li, Zhen Ye, Yuhong Gan, Dongbing Li and Yibiao ChenAvailable online: 26 August 2025More LessBackgroundCervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are major gynecological malignancies, causing significant cancer-related deaths in women. Current treatments yield poor outcomes, with a 5-year survival rate of only 17%. Identifying new biomarkers and therapeutic targets is crucial for improving prognosis and guiding personalized treatments.
MethodsWe analyzed TCEAL2 expression using data from The Cancer Genome Atlas (TCGA) across various cancers, including CESC. We explored its correlation with clinical features, prognosis, immune infiltration, MSI, mRNAsi, and drug sensitivity. TCEAL2 expression was validated in GSE9750 datasets and CESC cell lines using qRT-PCR.
ResultsTCEAL2 expression was significantly dysregulated in CESC. Elevated TCEAL2 levels correlated with poor clinical outcomes, including advanced pathological M stage (p = 0.009), initial treatment failure (p = 0.0098), and reduced overall survival (OS) (p = 0.013). TCEAL2 was an independent predictor of unfavorable OS (p = 0.032). It was associated with key pathways such as calcium signaling, oxidative phosphorylation, and Wnt signaling. TCEAL2 also correlated with immune cell infiltration, MSI, and mRNAsi. Notably, TCEAL2 levels inversely correlated with sensitivity to several drugs, including CAY10603 and SB-223133.
DiscussionThe results suggest that TCEAL2 plays a significant role in CESC progression and its tumor microenvironment. Its correlation with immune infiltration and drug sensitivity highlights its potential as a prognostic biomarker and therapeutic target. Future studies should focus on elucidating the molecular mechanisms and validating their clinical utility.
ConclusionTCEAL2 is a potential prognostic biomarker and therapeutic target in CESC. Further research is needed to explore its role and clinical applications.
-
-
-
Expression, Prognostic Value, and Biological Function of CENPM in Colon Adenocarcinoma
Authors: Zhiming Cai, Zhenrong Yang, Qian Yu, Tao Lin, Xincheng Su, Lv Lin and Yongjian ZhouAvailable online: 26 August 2025More LessIntroductionCentromere protein M (CENPM), a member of the CENP family, is correlated with several malignancies, but its role in colon adenocarcinoma (COAD) is unclear. This study aims to explore the expression, prognostic significance, and biological role of CENPM in COAD.
MethodsThe association of CENPM with the occurrence and progression of COAD was thoroughly analyzed via several bioinformatics databases. Furthermore, the correlation between CENPM expression and clinicopathological features and prognostic value was validated via immunohistochemistry (IHC) of tissue microarrays (TMAs) from 80 patients.
ResultsCENPM mRNA expression was significantly elevated in COAD samples compared with healthy tissues. As COAD progressed, CENPM expression decreased, and patients with lower CENPM transcript levels had a worse prognosis. IHC results further confirmed the overexpression of CENPM in COAD patients, identifying this gene as an independent prognostic factor. Additionally, high CENPM expression was linked to methylation in COAD patients, and the primary function of CENPM and its neighboring genes was determined to be cell cycle regulation. Immunological analysis demonstrated that CENPM expression was positively correlated with activated CD8+ T cells, CD4+ T cells, and dendritic cells (DCs) but negatively correlated with regulatory T cells (Tregs). CENPM expression was positively correlated with that of the immune checkpoint genes LAG3, CD244, LGALS9, PDCD1 (PD1), and PVRL2 but negatively correlated with the expression of BTLA, CSF1R, KDR, IL10RB, PDCD1LG2, and TGFBR1.
DiscussionThese findings collectively highlight a multifaceted role of CENPM in COAD, linking its overexpression to improved patient outcomes through mechanisms involving cell cycle control and immunomodulation. Its significant correlation with key immune infiltrates and checkpoint markers implies potential utility as a novel predictor for immunotherapy responsiveness.
ConclusionCENPM is an independent prognostic factor for COAD, with its overexpression associated with improved survival. It regulates the cell cycle and tumor microenvironment, making it a promising potential predictive biomarker for immune therapy response.
-
-
-
Decoding PRTFDC1's Role in Lung Adenocarcinoma: From Gene Expression to Clinical Implications
Authors: Jian Yao, Qiang Zhang, Chunhe Zhong, Haiyang Zhang, Xinchi Lei and Dongbing LiAvailable online: 22 August 2025More LessIntroductionThis study aims to elucidate the role of Phosphoribosyl Transferase Domain Containing 1 (PRTFDC1) in Lung Adenocarcinoma (LUAD) through bioinformatics analysis and experimental validation, exploring its potential as a biomarker for prognosis and treatment response.
MethodsWe analyzed PRTFDC1 gene expression patterns in 539 LUAD and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA). Using bioinformatics tools, we examined the correlation between PRTFDC1 expression and clinical characteristics, immune infiltration, Tumor Mutation Burden (TMB), and drug responsiveness. Experimental validation was conducted in LUAD cell lines (A549 and HCC-78) through the overexpression of PRTFDC1, followed by cell proliferation and cell cycle assays.
ResultsPRTFDC1 expression was significantly elevated in LUAD compared to normal tissues, correlating with poorer Progression-Free Survival (PFS) and Disease-Specific Survival (DSS). PRTFDC1 was associated with immune cell infiltration, TMB, and mRNA stemness index (mRNAsi). Overexpression of PRTFDC1 in LUAD cell lines promoted cell proliferation and cell cycle progression, mediated by Threonine Tyrosine Kinase (TTK).
DiscussionThe findings suggest that PRTFDC1 may serve as an independent prognostic marker for LUAD, influencing tumor progression and immune response. The correlation with TTK indicates a potential mechanism for PRTFDC1's impact on cell proliferation. However, further research is needed to validate these findings in larger cohorts and explore the underlying molecular mechanisms.
ConclusionPRTFDC1 is a promising biomarker for LUAD prognosis and treatment response, with potential implications for targeted therapies and personalized medicine.
-
-
-
Selenium Enhances Osteogenic Differentiation and Mineralization in Human Osteoblasts: Implications for Bone Health and Metabolism
Authors: Erhan Sahin, Mahmoud Arafat and Ayse Tansu KoparalAvailable online: 21 August 2025More LessIntroductionSodium Selenite (NaSe) is a molecule with various biological activities. Bone fractures and osteoporotic diseases are increasingly common health issues, prompting the search for alternative treatments. Therefore, the purpose of this study was to examine the antioxidant and osteogenic properties of NaSe.
MethodsThe experiments were conducted using the hFOB1.19 osteoblast cell line. The MTT assay was used to assess the effects of NaSe on cell viability, while cytotoxicity was evaluated with Lactate Dehydrogenase (LDH) assays. Osteogenic differentiation was assessed by alizarin red staining, and Alkaline Phosphatase (ALP) activity and intracellular Reactive Oxygen Species (ROS) levels were also analyzed.
ResultsThe results showed that NaSe significantly enhanced cell viability in a dose-dependent manner at low doses (0.01-1μM), with the most effective dose being 1μM (p<0.05). LDH activity remained similar to the control within the 0.01-1μM range but increased significantly at higher concentrations (5-50 μM) in both 24- and 48-hour experiments (p<0.05). NaSe reduced intracellular ROS levels significantly between 0.01-1 μM, with 1 μM being the most effective concentration (p<0.05). The highest ALP activity was observed at 0.1 μM NaSe (p < 0.05), and calcium deposition increased in a concentration-dependent manner (p<0.05). The most effective dose for enhancing mineralization was 0.1 μM (p<0.05).
ConclusionThis study demonstrates that NaSe has antioxidant and osteogenic effects at low doses in hFOB cells. These positive effects suggest that NaSe could be a promising candidate for in-vitro, in-vivo, and clinical trials, providing hope for new treatments for bone diseases.
-
-
-
Patents on Xylazine, a Drug Adulterant of Clinical Concern
Available online: 21 August 2025More Less
-
-
-
MiRNA Regulations in Cardiotoxicity Induced by Oncologic Therapies and Possible Immune Response
Available online: 19 August 2025More LessAnti-cancer therapy offers significant risks for cardiovascular diseases, including hypertension, thromboembolic ischaemia, arrhythmias, dyslipidaemia, hyperglycemia, obesity, and high cholesterol. Cardiotoxicity is a leading cause of elevated mortality rates among cancer patients, and anti-cancer drugs often contribute to this issue. Emerging research highlights the role of microRNA (miRNAs) in regulating drug-induced cardiotoxicity by influencing genetic, epigenetic, transcriptional, and translational processes. MiRNAs have potential as biomarkers for early detection and treatment. Moreover, novel diagnostic and therapeutic approaches targeting miRNAs could improve the clinical management of cardiotoxicity in cancer patients. This study is based on regulatory mechanisms behind cardiotoxicity, including oxidative stress, vascular homeostasis, mitochondrial damage, apoptosis, and inflammation, and explores strategies for managing these complications in cancer therapy.
-
-
-
Medical Artificial Intelligence: Opportunities and Challenges In Infectious Disease Management
Available online: 19 August 2025More LessGlobally, millions of individuals suffer from infectious diseases, which are major public health concerns caused by bacteria, fungi, viruses, or parasites. These diseases can be transmitted directly or indirectly from person to person, potentially leading to a pandemic or epidemic. Several advancements have been made in molecular genetics for infectious disease management, which include pharmaceutical chemistry, medicine, and infection tracking; however, these advancements still lack control over human infections. Multidisciplinary cooperation is needed to address and control human infections. Advancements in scientific tools have empowered scientists to enhance epidemic prediction, gain insights into pathogen specificity, and pinpoint potential targets for drug development. Artificial intelligence (AI)-based methodologies demonstrate significant potential for integrating large-scale quantitative and omics data, enabling effective handling of biological complexity. Machine Learning (ML) plays a crucial role in AI by leveraging data to train predictive models. AI can enhance diagnostic accuracy through objective pattern recognition, standardize infection diagnoses with implications for Infection Prevention and Control (IPC), and aid in generalizing IPC knowledge. Additionally, AI-powered hand hygiene applications have the potential to drive behavioral change, although further evaluation in diverse clinical contexts is necessary. This review article highlights AI's potential in improving the healthcare system in different aspects of infectious diseases management, such as monitoring disease growth, using a real-time chatbot for patient assistance, using image processing for diagnosis, and developing new treatment algorithms. The study also discusses future directions for novel vaccine and drug development, as well as other aspects, such as the need for physicians and healthcare professionals to receive AI system training for their correct use and the ability of doctors to identify and resolve any problems that may arise with AI.
-
-
-
Uridines Modified with Sulfur or Selenium in U-G Wobble Pairs Matter for tRNA Function
Authors: Katarzyna Kulik and Barbara NawrotAvailable online: 18 August 2025More LessTransfer RNAs (tRNAs) are ubiquitous in cells and are essential for the translation of genetic information from messenger RNA (mRNA) into proteins in all three domains of life. They act as adaptors that decode mRNA codons via their anticodons and deliver the corresponding amino acids to the growing polypeptide chain. Currently, over 100 modified nucleosides have been found in tRNA that are crucial for the integrity and functionality of this molecule. Almost half of them are located at position 34 of the anticodon, which is commonly referred to as the “wobble” position. In this review, we highlight the sulfur- and selenium-modified uridines at this position and discuss their physicochemical properties and regulatory functions in gene expression. We examine how the tRNA anticodons accomplish the decoding of synonymous codons, particularly 5'-NNA-3' and 5'-NNG-3', and provide efficient uridine-adenosine and uridine - guanosine base pairing. We also analyze the effects of C5 substituents on the tautomeric behavior and ionization properties of 2-thiouridines and 2-selenouridines. Theoretical calculations on the stability of 5-substituted uracil - guanine base pairs and their structural representation in crystal complexes of tRNA-mRNA-ribosomes emphasize the importance of these modifications in fine-tuning translation fidelity and efficiency.
-
-
-
Diverse Development Approaches for Xanthine Oxidase Inhibitors: Synthetic Chemistry, Natural Product Chemistry, and Drug Repositioning
Authors: Zhihua Xing, Wen Jiang, Yue Xu, Mingyu Gao, Guanghuan Shen, Yingjie Liu, Na Ling and Linlin CuiAvailable online: 15 August 2025More LessXanthine oxidase (XOD) plays a crucial role in the biosynthesis of uric acid, and inhibiting its activity can effectively reduce the production of uric acid at its source. Currently, clinically used xanthine oxidase inhibitors (XODIs), such as allopurinol and febuxostat, are effective but associated with notable side effects. Allopurinol may induce hypersensitivity reactions, while febuxostat has been reported to potentially increase the risk of severe cardiovascular events. Therefore, the development of Xanthine oxidase inhibitors(XODIs) that lower serum uric acid levels through the inhibition of uric acid production has been a key focus in the research and development of anti-gout medications. This review is based on research literature from 2014 to 2025, sourced from multiple authoritative databases both domestically and internationally, including international databases such as Google Scholar, PubMed, Web of Science, Baidu Scholar, CNKI, Wanfang database. This review systematically summarizes 109 XODIs with urate-lowering or anti-gout pharmacological activities, categorized into chemical synthetic compounds, natural products and their derivatives, and repurposed drugs. The aim is to provide meaningful insights for the development of new therapeutic agents for gout and hyperuricemia. Notably, amides and carboxylic acids among chemically synthesized compounds exhibit promising prospects, while natural products with multiple mechanisms of uric acid reduction hold significant potential for the treatment of hyperuricemia.
-
-
-
Romosozumab's Effect on Bone Mineral Density in Patients with Osteoporosis: A Systematic Review and Meta-Analysis
Available online: 14 August 2025More LessIntroductionOne of the most effective osteoanabolic drugs for treating osteoporosis is romosozumab, which was developed as a consequence of growing knowledge of the Wnt signaling system. This review explored how romosozumab affects the bone mineral density (BMD) in osteoporotic patients.
MethodsUp until January 2024, PubMed, Web of Science, and Scopus were reviewed for any randomized controlled trials (RCTs) evaluating the impact of osteoporotic treatment with romosozumab on BMD changes and bone metabolism markers in primary osteoporosis patients. Pooled Hedges’ g indices, which were consistently used across all included studies to measure standardized mean differences, were computed along with their corresponding 95% confidence intervals using either a random-effects or fixed-effects model.
ResultsOut of the 1855 papers, 24 RCTs met the inclusion criteria. Patients with osteoporosis who received romosozumab for a period of time demonstrated an augmentation in their lumbar spine BMD. The study findings indicated that the total hip and femoral neck BMD demonstrated significant enhancement in 22 (out of 23) and 19 (out of 21) studies, respectively.
ConclusionIn patients with osteoporosis, romosozumab could markedly increase the total hip, lumbar spine, and femoral neck BMD. This finding could be verified by measuring bone turnover indicators such as PINP, TRACP-5b, and CTX.
-
-
-
Single-Cell Maps Reveal Novel Mechanisms of Ferroptosis and Biomarkers in Diabetic Nephropathy
Authors: Yueyi Zhou, Weilin Chen, Dan Li, Li Chen and Bin YiAvailable online: 12 August 2025More LessObjectiveDiabetic nephropathy (DN) is the main cause of renal failure due to its complexity and difficulty in prevention. The purpose of our study is to screen potential biomarkers of DN at the single-cell level and reveal its new molecular pathogenesis by single-cell RNA sequencing (scRNA-seq).
MethodsIn this study, scRNA-seq was performed on kidney tissue of control and DN mice. Through multiple analyses of the data, biomarkers in DN that contribute to early diagnosis were screened, and the complex pathogenesis associated with ferroptosis was revealed and verified by experiments at the animal and cellular levels.
ResultsThrough customized analysis of scRNA-seq results, we found for the first time increased intercellular communication between mesangial epithelial cells and transitional epithelial cells in the pathological state of DN. In addition, two sets of differential protein interaction analysis networks showed that Eno1, Hspa8, FLT1, Hspa1a, and Gsta2 could be used as predictive biomarkers of DN. Finally, the promoting effects of ferroptosis, heat shock protein and their interactions in the development of DN are discussed. In particular, the regulation of GPX4 by members of the heat shock family, Dnaja1 and Hspa1a, promotes lipid peroxidation (the classic phenotype of ferroptosis).
DiscussionWe identified disruption of iron homeostasis and activation of the ferroptosis pathway, alongside differential expression of oxidative stress-related genes, including PGAM2. Heat shock proteins (e.g., Hspa1a, Dnaja1) were found to interact with ferroptosis markers (e.g., GPX4), suggesting a chaperone-mediated protective mechanism under diabetic stress. Analogous to the Flory–Huggins solution theory, HSPs may enhance misfolded protein compatibility in the cytosol, reducing aggregation. This study provides insight into HSP-regulated ferroptosis in DN, though further validation is required for clinical translation.
ConclusionIn conclusion, we comprehensively analyzed the relevant biomarkers and pathogenesis of DN at single-cell resolution, providing new strategies for therapeutic targets of the disease.
-
-
-
Investigating the Causal Role of Neurotrophic Factors in Low Back Pain and Sciatica: A Mendelian Randomization Study
Authors: Feixiang Lin and Wei HeAvailable online: 12 August 2025More LessBackgroundLow back pain (LBP) and sciatica are among the most prevalent musculoskeletal disorders, leading to significant disability and an economic burden. Neurotrophic factors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), play critical roles in pain modulation and neuronal function. While NGF-targeting monoclonal antibodies have shown potential in treating chronic pain, their efficacy and safety remain under debate. This study employs Mendelian Randomization (MR) to assess the causal relationships between NGF, BDNF, GDNF, and the risk of LBP and sciatica.
MethodsWe conducted a two-sample MR analysis using genetic instruments for NGF, BDNF, and GDNF. LBP and sciatica data were obtained from FinnGen. The inverse variance weighted (IVW) method was applied as the primary causal estimation, with the weighted median (WM) and MR-Egger regression used for sensitivity analyses. Reverse MR was performed to evaluate bidirectional causality. Furthermore, we used expression quantitative trait loci (eQTLs) within 50 kb of each gene locus as genetic instruments for NGF regulation, ensuring that the genetic variants used directly influence neurotrophic factor expression.
ResultsMR analysis revealed a significant causal association between NGF and an increased risk of LBP (OR = 1.121, 95% CI 1.021-1.230, p = 0.016) and sciatica (OR = 1.158, 95% CI 1.034-1.296, p = 0.010), while BDNF and GDNF showed no significant associations with pain outcomes. Sensitivity analyses confirmed the robustness of the NGF findings, with no evidence of horizontal pleiotropy or heterogeneity. Reverse MR analysis showed no significant causal effect of LBP or sciatica on NGF levels (p > 0.05), ruling out reverse causality. Additionally, we investigated the NGF-eQTL, which captures genetically regulated NGF expression, and found a significant association between the NGF-eQTL and LBP (OR = 1.040, 95% CI 1.010-1.070, p = 0.007). Unlike external NGF measurements, the NGF-eQTL minimizes environmental confounding and reverse causation, providing stronger genetic evidence supporting NGF as a therapeutic target for LBP.
DiscussionOur findings provide strong genetic evidence that nerve growth factor (NGF) plays a causal role in the development of low back pain and sciatica, supporting NGF inhibition as a promising therapeutic strategy. These results align with clinical observations where anti-NGF monoclonal antibodies demonstrated pain-relieving effects, though safety concerns remain. In contrast, no causal associations were observed for BDNF or GDNF, underscoring the specificity of NGF in peripheral pain sensitization. The study demonstrates the value of Mendelian Randomization in minimizing confounding and reverse causation, thereby strengthening causal inference. Future work should focus on pharmacogenomic predictors to identify patients most likely to benefit from NGF-targeted interventions while minimizing adverse effects.
ConclusionThis study provides genetic evidence that NGF plays a causal role in LBP and sciatica, reinforcing its potential as a therapeutic target. However, BDNF and GDNF were not significantly associated with pain outcomes, suggesting distinct mechanisms of pain modulation. While clinical trials of anti-NGF monoclonal antibodies have demonstrated efficacy in pain reduction, concerns about adverse effects, such as joint degeneration, habe limited their widespread clinical use. Future research should explore genetic predictors of anti-NGF therapy response to optimize treatment strategies for LBP and related musculoskeletal pain disorders.
-