Skip to content
2000
image of Elemene Injection Suppresses Pancreatic Cancer Progress through Regulating Cell Adhesion: A Research Based upon Network Pharmacology and Verification Test

Abstract

Background

This study investigates the potential effects of elemene injection on pancreatic cancer using network pharmacology and experimental validation.

Methods

GEO database were used to acquire genes which are differentially expressed between pancreatic cancer tissue and normal tissue. The vigorous energetic ingredients were identified in research and the object genes were obtained from BATMAN-TCM. The key targets and signaling pathways of elemene injection were identified using compound-target network analysis, protein-protein interaction network analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. experiments were carried out to confirm the accuracy of the network pharmacology predictions.

Results

Two hundred and eleven target genes that may be involved in Elemene's impact on pancreatic cancer were identified. Bioinformatics analysis was conducted to determine the two active mixtures and one key target. GO and KEGG enrichment analyses indicated that elemene injection exerts therapeutic effects on pancreatic cancer, regulating the cell adhesion by ECM-receptor interaction pathway. The experiments verified that elemene injection suppressed the growth and movement of pancreatic cancer cell lines Panc02 and MiaPaca-2 and the mechanism is related to regulating ECM-receptor interaction pathway-related genes. FN1 was identified as core targets by bioinformatics analysis. The FN1 was downregulated by elemene injection and was validated by QPCR and Western Blot.

Conclusion

The findings of the current study emphasized that elemene injection might control cell attachment, decrease metastasis, and suppresses pancreatic cancer progress. FN1 might be a therapeutic target for pancreatic cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673351591241114101143
2025-01-20
2025-06-23
Loading full text...

Full text loading...

References

  1. Cipora E. Partyka O. Pajewska M. Czerw A. Sygit K. Sygit M. Kaczmarski M. Mękal D. Krzych-Fałta E. Jurczak A. Karakiewicz-Krawczyk K. Wieder-Huszla S. Banaś T. Bandurska E. Ciećko W. Deptała A. Treatment costs and social burden of pancreatic cancer. Cancers 2023 15 6 1911 10.3390/cancers15061911 36980796
    [Google Scholar]
  2. Sharma N. Arora V. Strategies for drug targeting in pancreatic cancer. Pancreatology 2022 22 7 937 950 10.1016/j.pan.2022.08.001 36055937
    [Google Scholar]
  3. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  4. Park W. Chawla A. O’Reilly E.M. Pancreatic cancer. JAMA 2021 326 9 851 862 10.1001/jama.2021.13027 34547082
    [Google Scholar]
  5. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in traditional chinese medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 35610020
    [Google Scholar]
  6. Li L. Wang Z. Zhang Y. Wu Z. Traditional Chinese medicine in pancreatic cancer treatment: From bench to bedside. Chin. Med. 2022 17 90
    [Google Scholar]
  7. Geng Y. Liu P. Xie Y. Liu Y. Zhang X. Hou X. Zhang L. Xanthatin suppresses pancreatic cancer cell growth via the ROS/RBL1 signaling pathway: In vitro and in vivo insights. Phytomedicine 2023 119 155004 10.1016/j.phymed.2023.155004 37562091
    [Google Scholar]
  8. Ji J. Guo J. Chi Y. Su F. Cancer pain management with traditional chinese medicine: Current status and future perspectives. Am. J. Chin. Med. 2024 52 1 123 135 10.1142/S0192415X24500058 38281918
    [Google Scholar]
  9. Xia F. Sun S. Xia L. Xu X. Hu G. Wang H. Chen X. Traditional Chinese medicine suppressed cancer progression by targeting endoplasmic reticulum stress responses: A review. Medicine 2022 101 51 e32394 10.1097/MD.0000000000032394 36595834
    [Google Scholar]
  10. Shang L. Wang Y. Li J. Zhou F. Xiao K. Liu Y. Zhang M. Wang S. Yang S. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol. 2023 302 Pt A 115876 10.1016/j.jep.2022.115876 36343798
    [Google Scholar]
  11. Wu K.C. Chu P.C. Cheng Y.J. Li C.I. Tian J. Wu H.Y. Wu S.H. Lai Y.C. Kao H.H. Hsu A.L. Lin H.W. Lin C.H. Development of a traditional Chinese medicine-based agent for the treatment of cancer cachexia. J. Cachexia Sarcopenia Muscle 2022 13 4 2073 2087 10.1002/jcsm.13028 35718751
    [Google Scholar]
  12. Xi W. Zhao C. Wu Z. Ye T. Zhao R. Jiang X. Ling S. Brusatol’s anticancer activity and its molecular mechanism: A research update. J. Pharm. Pharmacol. 2024 76 7 753 762 10.1093/jpp/rgae017 38394388
    [Google Scholar]
  13. Xiang Y. Guo Z. Zhu P. Chen J. Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 2019 8 5 1958 1975 10.1002/cam4.2108 30945475
    [Google Scholar]
  14. He X. Wang N. Zhang Y. Huang X. Wang Y. The therapeutic potential of natural products for treating pancreatic cancer. Front. Pharmacol. 2022 13 1051952 10.3389/fphar.2022.1051952 36408249
    [Google Scholar]
  15. Liu J. Zhang Y. Qu J. Xu L. Hou K. Zhang J. Qu X. Liu Y. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer 2011 11 1 183 10.1186/1471‑2407‑11‑183 21595977
    [Google Scholar]
  16. Long J. Liu Z. Hui L. Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma. BMC Complement. Altern. Med. 2019 19 1 133 10.1186/s12906‑019‑2544‑2 31215421
    [Google Scholar]
  17. Zhai B. Zeng Y. Zeng Z. Zhang N. Li C. Zeng Y. You Y. Wang S. Chen X. Sui X. Xie T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomedicine 2018 13 6279 6296 10.2147/IJN.S174527 30349250
    [Google Scholar]
  18. Chen Y. Zhu Z. Chen J. Zheng Y. Limsila B. Lu M. Gao T. Yang Q. Fu C. Liao W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother. 2021 138 111350 10.1016/j.biopha.2021.111350 33721752
    [Google Scholar]
  19. Qian T. Wenxian T. Anbing H. β-elemene enhances cisplatin sensitivity of non-small cell lung cancer cells via the miR-17-5p/STAT3 axis. Chem. Biol. Drug Des. 2024 103 1 e14395 10.1111/cbdd.14395 37973414
    [Google Scholar]
  20. Zhao L.P. Wang H.J. Hu D. Hu J.H. Guan Z.R. Yu L.H. Jiang Y.P. Tang X.Q. Zhou Z.H. Xie T. Lou J.S. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J. Adv. Res. 2024 62 257 272 10.1016/j.jare.2023.08.018 37689240
    [Google Scholar]
  21. Song G.Q. Wu P. Dong X.M. Cheng L.H. Lu H.Q. Lin Y.Y. Tang W.Y. Xie T. Zhou J.L. Elemene induces cell apoptosis via inhibiting glutathione synthesis in lung adenocarcinoma. J. Ethnopharmacol. 2023 311 116409 10.1016/j.jep.2023.116409 37003401
    [Google Scholar]
  22. Xu C. Jiang Z.B. Shao L. Zhao Z.M. Fan X.X. Sui X. Yu L.L. Wang X.R. Zhang R.N. Wang W.J. Xie Y.J. Zhang Y.Z. Nie X.W. Xie C. Huang J.M. Wang J. Wang J. Leung E.L.H. Wu Q.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol. Res. 2023 191 106739 10.1016/j.phrs.2023.106739 36948327
    [Google Scholar]
  23. Bai R. Zhu J. Bai Z. Mao Q. Zhang Y. Hui Z. Luo X. Ye X.Y. Xie T. Second generation β-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma. J. Enzyme Inhib. Med. Chem. 2022 37 1 379 385 10.1080/14756366.2021.2016734 35012394
    [Google Scholar]
  24. Zhang X. Chen Y. Yao J. Zhang Y. Li M. Yu B. Wang K. β-elemene combined with temozolomide in treatment of brain glioma. Biochem. Biophys. Rep. 2021 28 101144 10.1016/j.bbrep.2021.101144 34622038
    [Google Scholar]
  25. Cai S. Xiong Q. Zhao L. Ji Y. Luo Z. Ma Z. β-elemene triggers ROS-dependent apoptosis in glioblastoma cells through suppressing STAT3 signaling pathway. Pathol. Oncol. Res. 2021 27 594299 10.3389/pore.2021.594299 34257541
    [Google Scholar]
  26. Xu H.B. Chen X.Z. Zhu S.Y. Xue F. Zhang Y.B. A study on molecular mechanism of Xihuang pill in the treatment of glioblastoma based on network pharmacology and validation in vitro and in vivo. J. Ethnopharmacol. 2024 323 117675 10.1016/j.jep.2023.117675 38159819
    [Google Scholar]
  27. Zhang Y. Wang Y. Xin E. Zhang Z. Ma D. Liu T. Gao F. Bian T. Sun Y. Wang M. Wang Z. Yan X. Li Y. Network pharmacology and experimental verification reveal the mechanism of Hedysari Radix and Curcumae Rhizoma with the optimal compatibility ratio against colitis-associated colorectal cancer. J. Ethnopharmacol. 2024 322 117555 10.1016/j.jep.2023.117555 38110130
    [Google Scholar]
  28. Yi B. Lv F. Zhang N. Lin J. Xu K. Li C. Li P. Zhao M. Exploring the pharmacological mechanisms of Biyan Qingdu Granula in the treatment after nasopharyngeal carcinoma radiotherapy based on UPLC/Q-TOF MS, network pharmacology and molecular docking. J. Pharm. Biomed. Anal. 2024 239 115830 10.1016/j.jpba.2023.115830 38096633
    [Google Scholar]
  29. Liu Y. Bai Y. Zhang J. Silva-Filho R. Zhu Q. Lei Z. Utilizing network pharmacology and experimental validation to explore the potential molecular mechanisms of raw Pinellia ternate in treating esophageal cancer. J. Gastrointest. Oncol. 2023 14 5 2006 2017 10.21037/jgo‑23‑684 37969842
    [Google Scholar]
  30. Zhi J. Yin L. Zhang Z. Lv Y. Wu F. Yang Y. Zhang E. Li H. Lu N. Zhou M. Hu Q. Network pharmacology-based analysis of Jin-Si-Wei on the treatment of Alzheimer’s disease. J. Ethnopharmacol. 2024 319 Pt 3 117291 10.1016/j.jep.2023.117291 37925002
    [Google Scholar]
  31. Naqvi W. Singh A. Garg P. Srivastava P. Network biology: A promising approach for drug target identification against neurodevelopmental disorders. Biocell 2023 47 8 1675 1687 10.32604/biocell.2023.029624
    [Google Scholar]
  32. Guan H. Li B. Zhang Z. Wu H. He X. Dong Y. Su J. Lv G. Chen S. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Bailing capsule on polycystic ovary syndrome. BMC Complement. Med. Ther. 2023 23 1 458 10.1186/s12906‑023‑04280‑6 38102584
    [Google Scholar]
  33. Xiao W. Xu Y. Baak J.P. Dai J. Jing L. Zhu H. Gan Y. Zheng S. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement. Med. Ther. 2023 23 1 345 10.1186/s12906‑023‑04148‑9 37770919
    [Google Scholar]
  34. Yu X. Qin W. Cai H. Ren C. Huang S. Lin X. Tang L. Shan Z. AL-Ameer W.H.A. Wang L. Yan H. Chen M. Analyzing the molecular mechanism of xuefuzhuyu decoction in the treatment of pulmonary hypertension with network pharmacology and bioinformatics and verifying molecular docking. Comput. Biol. Med. 2024 169 107863 10.1016/j.compbiomed.2023.107863 38199208
    [Google Scholar]
  35. Le-xin C. Ming-jun L. Chun-qi X. Jia-xin Z. Jing-ya Y. Li-xin N. Mei-qi W. En-xin Z. Xiao-jun Z. Yi Qi Chu Tan Formula (YQCTF) inhibited the progress of lung cancer via regulating tumor-associated neutrophil: An integrated study of network pharmacology, proteomics and pharmacodynamics. J. Ethnopharmacol. 2024 318 Pt B 116943 10.1016/j.jep.2023.116943 37532072
    [Google Scholar]
  36. Xia T. Xu W.J. Hu Y.N. Luo Z.Y. He W. Liu C.S. Tan X.M. Simiao Wan and its ingredients alleviate type 2 diabetes mellitus via IRS1/AKT2/FOXO1/GLUT2 signaling. Front. Nutr. 2023 9 1012961 10.3389/fnut.2022.1012961 36698459
    [Google Scholar]
  37. Chen D.J. Lai C.H. Exploring the mechanisms of magnolol in the treatment of periodontitis by integrating network pharmacology and molecular docking. Biocell 2023 47 6 1317 1327 10.32604/biocell.2023.028883
    [Google Scholar]
  38. Xin Y. Sang Y. Ji X. Tang M. Chen L. Hao Y. Lu J. Explore the constituents and mechanism of traditional Chinese medicine preparation Zhachong Shisan Pills based on HPLC-QTOF-MS and network pharmacology. Curr. Pharm. Anal. 2023 19 9 712 734 10.2174/0115734129259758230924070432
    [Google Scholar]
  39. Liu K.Q. Bai X. Chen J.L. Chen G.J. Ameen Jamal M. He Y.Q. Molecular network mechanism of Shexiang Huayu Xingnao granules in treating intracerebral hemorrhage. Ibrain 2024 10 2 172 185 10.1002/ibra.12131 38915950
    [Google Scholar]
  40. Liu C. Hu W. Feng X. Qu F. Network pharmacology analysis of a patented Chinese herbal medicine for alleviating anxiety disorder in vitro fertilization-embryo transfer. J. Tradit. Complement. Med. 2024 14 2 191 202 10.1016/j.jtcme.2023.10.003 38481549
    [Google Scholar]
  41. Song Z. Yu J. Wang M. Shen W. Wang C. Lu T. Shan G. Dong G. Wang Y. Zhao J. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease. Congenit. Heart Dis. 2023 18 6 693 701 10.32604/chd.2024.048081
    [Google Scholar]
  42. Takhsha F.S. Vangestel C. Tanc M. De Bruycker S. Berg M. Pintelon I. Stroobants S. De Meyer G.R.Y. Van Der Veken P. Martinet W. W. ATG4B inhibitor UAMC-2526 potentiates the chemotherapeutic effect of gemcitabine in a Panc02 mouse model of pancreatic ductal adenocarcinoma. Front. Oncol. 2021 11 750259 10.3389/fonc.2021.750259 34868951
    [Google Scholar]
  43. Cai H. Ren L. Wang Y. Zhang Y. Huang T. Yu J. Chen J. Sui X. Xie X. Beta-elemene reduces the malignancy of non-small cell lung cancer by enhancing C3orf21 expression. Front. Oncol. 2021 11 571476 10.3389/fonc.2021.571476 34026596
    [Google Scholar]
  44. Alizada M. Li J. Aslami H. Yang D. Korchuganova T. Xu Y.H. β-Elemene inhibits the proliferation and migration of human glioblastoma cell lines via suppressing ring finger protein 135. Balkan J. Med. Genet. 2020 23 1 43 49 10.2478/bjmg‑2020‑0002 32953408
    [Google Scholar]
  45. Wang C. Liu Z.Y. Huang W.G. Yang Z.J. Lan Q.Y. Fang A.P. Hou M.J. Luo X.L. Zhang Y.J. Chen S. Zhu H.L. Choline suppresses hepatocellular carcinoma progression by attenuating AMPK/mTOR-mediated autophagy via choline transporter SLC5A7 activation. Hepatobiliary Surg. Nutr. 2024 13 3 393 411 10.21037/hbsn‑22‑476 38911213
    [Google Scholar]
  46. Li C. Fu Y. He Y. Huang N. Yue J. Miao Y. Lv J. Xiao Y. Deng R. Zhang C. Huang M. Knockdown of LINC00511 enhances radiosensitivity of lung adenocarcinoma via regulating miR-497-5p/SMAD3. Cancer Biol. Ther. 2023 24 1 2165896 10.1080/15384047.2023.2165896 36861928
    [Google Scholar]
  47. Bozza A. Bernardi M. Catanzaro D. Chieregato K. Merlo A. Astori G. Enalaprilat and losartan decrease erythroid precursors frequency in cells from patients with polycythemia vera. Hematology 2023 28 1 2182056 10.1080/16078454.2023.2182056 36856520
    [Google Scholar]
  48. Zhou D. Wu X. Liu X. He S. Ni J. Chen B. Mu D. The pharmacological mechanism of β-elemene in the treatment of esophageal cancer revealed by network pharmacology and experimental verification. Sci. Rep. 2023 13 1 12160 10.1038/s41598‑023‑38755‑w 37500660
    [Google Scholar]
  49. Prashanth N Meghana P Jain S.K. Rajaput R.P.S. Satyanarayan S.N.D. Raja R.N.H. Kumaraswamy K.H.M. Sandeep Kumar Jain R Pooja S Rajaput Satyanarayan N D Raja Naika H Kumaraswamy H M Nicotine promotes epithelial to mesenchymal transition and gemcitabine resistance via hENT1/RRM1 signalling in pancreatic cancer and chemosensitizing effects of Embelin-a naturally occurring benzoquinone. Sci. Total Environ. 2024 914 169727 10.1016/j.scitotenv.2023.169727 38163613
    [Google Scholar]
  50. Zhang H. Li S. Bao J. Ge N. Hong F. Qian L. β-elemene inhibits non-small cell lung cancer cell migration and invasion by inactivating the FAK-Src pathway. Exp. Ther. Med. 2021 22 4 1095 10.3892/etm.2021.10529 34504549
    [Google Scholar]
  51. Lv X. Lin Y. Zhu X. Cai X. Isoalantolactone suppresses gallbladder cancer progression via inhibiting the ERK signalling pathway. Pharm. Biol. 2023 61 1 556 567 10.1080/13880209.2023.2191645 36994917
    [Google Scholar]
  52. Fang C. Wu W. Ni Z. Liu Y. Luo J. Zhou Y. Gong C. Hu D. Yao C. Chen X. Wang L. Zhu S. Ailanthone inhibits non-small cell lung cancer growth and metastasis through targeting UPF1/GAS5/ULK1 signaling pathway. Phytomedicine 2024 128 155333 10.1016/j.phymed.2023.155333 38518633
    [Google Scholar]
  53. Liu Y. Shen M. Wu Y. Luo K. Zhang J. Wang Z. Chen Z. Li J. Wu S. Lin N. Zhang C. Li Y. Triacanthine enhances the sensitivity of colorectal cancer cells to 5-fluorouracil by regulating RRM2. Phytomedicine 2024 126 155204 10.1016/j.phymed.2023.155204 38342015
    [Google Scholar]
  54. Xu H. Chen G. Niu Q. Song K. Feng Z. Han Z. Spindle and kinetochore-associated complex 3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022 134 5 599 614 10.1016/j.oooo.2022.06.010 36123287
    [Google Scholar]
  55. Sindhuja S. Amuthalakshmi S. Nalini C.N. A review on PCR and POC-PCR - A boon in the diagnosis of COVID-19. Curr. Pharm. Anal. 2022 18 113916
    [Google Scholar]
  56. Liu Y. Jiang Z.Y. Zhou Y.L. Qiu H.H. Wang G. Luo Y. Liu J.B. Liu X.W. Bu W.Q. Song J. Cui L. Jia X.B. Feng L. β-elemene regulates endoplasmic reticulum stress to induce the apoptosis of NSCLC cells through the PERK/IRE1α/ATF6 pathway. Biomed. Pharmacother. 2017 93 490 497
    [Google Scholar]
  57. Bao J. Lu W. Duan H. Ye Y. Li J. Liao W. Li Y. Sun Y. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower- grade gliomas. Front. Immunol. 2022 13 933973 10.3389/fimmu.2022.933973 36045691
    [Google Scholar]
  58. Franco C.J.P. Ferreira O.O. Antônio Barbosa de Moraes Â. Varela E.L.P. Nascimento L.D. Percário S. de Oliveira M.S. Andrade E.H.A. Chemical composition and antioxidant activity of essential oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., leaf of family Myrtaceae. Molecules 2021 26 11 3292 10.3390/molecules26113292 34072598
    [Google Scholar]
  59. Fu J. Gao Y. Xing X. Preliminary study on phytochemical constituents and biological activities of essential oil from Myriactis nepalensis less. Molecules 2022 27 14 4631 10.3390/molecules27144631 35889501
    [Google Scholar]
  60. Xu X. Zhang J. Wang T. Li J. Rong Y. Wang Y. Bai C. Yan Q. Ran X. Wang Y. Zhang T. Sun J. Jiang Q. Emerging non-antibody‒drug conjugates (non-ADCs) therapeutics of toxins for cancer treatment. Acta Pharm. Sin. B 2024 14 4 1542 1559 10.1016/j.apsb.2023.11.029 38572098
    [Google Scholar]
  61. Caughey B.A. Strickler J.H. Targeting KRAS-mutated gastrointestinal malignancies with small-molecule inhibitors: A new generation of breakthrough therapies. Drugs 2024 84 1 27 44 10.1007/s40265‑023‑01980‑8 38109010
    [Google Scholar]
  62. Hasselbeck S. Cheng X. Molecular marvels: Small molecules paving the way for enhanced gene therapy. Pharmaceuticals 2023 17 1 41 10.3390/ph17010041 38256875
    [Google Scholar]
  63. Xiao Q. Li X. Liu C. Jiang Y. He Y. Zhang W. Azevedo H.S. Wu W. Xia Y. He W. Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator. Acta Pharm. Sin. B 2023 13 8 3503 3517 10.1016/j.apsb.2022.07.012 37655330
    [Google Scholar]
  64. Zhu Z. Tang W. Qiu X. Xin X. Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur. J. Med. Chem. 2024 263 115967 10.1016/j.ejmech.2023.115967 38000211
    [Google Scholar]
  65. Cheng H.Y. Su G.L. Wu Y.X. Chen G. Yu Z.L. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J. Pharm. Anal. 2024 14 7 100920 10.1016/j.jpha.2023.12.010 39104866
    [Google Scholar]
  66. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  67. Cao L. Zhu Y. Wang W. Wang G. Zhang S. Cheng H. Emerging nano-based strategies against drug resistance in tumor chemotherapy. Front. Bioeng. Biotechnol. 2021 9 798882 10.3389/fbioe.2021.798882 34950650
    [Google Scholar]
  68. Li Q.Q. Wang G. Reed E. Huang L. Cuff C.F. Evaluation of cisplatin in combination with β-elemene as a regimen for prostate cancer chemotherapy. Basic Clin. Pharmacol. Toxicol. 2010 107 5 868 876 10.1111/j.1742‑7843.2010.00592.x 22545969
    [Google Scholar]
  69. Deng M. Liu B. Song H. Yu R. Zou D. Chen Y. Ma Y. Lv F. Xu L. Zhang Z. Lv Q. Yang X. Che X. Qu X. Liu Y. Zhang Y. Hu X. β-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway. Phytomedicine 2020 69 153184 10.1016/j.phymed.2020.153184 32199253
    [Google Scholar]
  70. Bai Z. Yao C. Zhu J. Xie Y. Ye X.Y. Bai R. Xie T. Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification. Molecules 2021 26 6 1499 10.3390/molecules26061499 33801899
    [Google Scholar]
  71. Jiang X. Hidru T.H. Zhang Z. Bai Y. Kong L. Li X. Evidence of elemene injection combined radiotherapy in lung cancer treatment among patients with brain metastases. Medicine 2017 96 21 e6963 10.1097/MD.0000000000006963 28538391
    [Google Scholar]
  72. Yang S. Zheng L. Sun Y. Li Z. Effect of network-based positive psychological nursing model combined with elemene injection on negative emotions, immune function, and quality of life in lung cancer patients undergoing chemotherapy in the era of big data. Front. Public Health 2022 10 897535 10.3389/fpubh.2022.897535 35602129
    [Google Scholar]
  73. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  74. Lv S. Wang Q. Zhang X. Ning F. Liu W. Cui M. Xu Y. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review. Phytomedicine 2024 123 155231 10.1016/j.phymed.2023.155231 38007992
    [Google Scholar]
  75. Wang B. Zhou W. Zhang H. Wang W. Zhang B. Li S. Exploring the effect of Weifuchun capsule on the toll- like receptor pathway mediated HES6 and immune regulation against chronic atrophic gastritis. J. Ethnopharmacol. 2023 303 115930 10.1016/j.jep.2022.115930 36403744
    [Google Scholar]
  76. Zhang Z. Zheng Y. Chen N. Xu C. Deng J. Feng X. Liu W. Ma C. Chen J. Cai T. Xu Y. Wang S. Cao Y. Ge G. Jia C. Cao Y. San Huang Xiao Yan recipe modulates the HMGB1-mediated abnormal inflammatory microenvironment and ameliorates diabetic foot by activating the AMPK/Nrf2 signalling pathway. Phytomedicine 2023 118 154931 10.1016/j.phymed.2023.154931 37364421
    [Google Scholar]
  77. Zhu J. Li B. Ji Y. Zhu L. Zhu Y. Zhao H. β-elemene inhibits the generation of peritoneum effusion in pancreatic cancer via suppression of the HIF1A-VEGFA pathway based on network pharmacology. Oncol. Rep. 2019 42 6 2561 2571 10.3892/or.2019.7360 31638231
    [Google Scholar]
  78. Yang P. Xu P. Cheng C. Jiao J. Wu Y. Dong S. Xie J. Zhu X. Integrating network pharmacology and experimental models to investigate the efficacy of QYHJ on pancreatic cancer. J. Ethnopharmacol. 2022 297 115516 10.1016/j.jep.2022.115516 35817247
    [Google Scholar]
  79. Pan Y. Wang W. Huang S. Ni W. Wei Z. Cao Y. Yu S. Jia Q. Wu Y. Chai C. Zheng Q. Zhang L. Wang A. Sun Z. Huang S. Wang S. Chen W. Lu Y. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J. Cell. Mol. Med. 2019 23 10 6846 6858 10.1111/jcmm.14568 31343107
    [Google Scholar]
  80. Gao T.H. Liao W. Lin L.T. Zhu Z.P. Lu M.G. Fu C.M. Xie T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. Phytomedicine 2022 102 154090 10.1016/j.phymed.2022.154090 35580439
    [Google Scholar]
  81. Chen P. Li X. Zhang R. Liu S. Xiang Y. Zhang M. Chen X. Pan T. Yan L. Feng J. Duan T. Wang D. Chen B. Jin T. Wang W. Chen L. Huang X. Zhang W. Sun Y. Li G. Kong L. Chen X. Li Y. Yang Z. Zhang Q. Zhuo L. Sui X. Xie T. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics 2020 10 11 5107 5119 10.7150/thno.44705 32308771
    [Google Scholar]
  82. Deng H. Chen G. Zhang J. β-Elemene regulates epithelial-mesenchymal transformation and inhibits invasion and metastasis of colorectal cancer cells. J. Complement. Integr. Med. 2023 20 2 425 430 10.1515/jcim‑2022‑0295 36480470
    [Google Scholar]
  83. Xiaomeng F. Lei L. Jinghong A. Juan J. Qi Y. Dandan Y. Treatment with β-elemene combined with paclitaxel inhibits growth, migration, and invasion and induces apoptosis of ovarian cancer cells by activation of STAT-NF-κB pathway. Braz. J. Med. Biol. Res. 2020 53 6 e8885 10.1590/1414‑431x20208885 32401925
    [Google Scholar]
  84. Sieniawska E. Michel P. Mroczek T. Granica S. Skalicka-Woźniak K. Nigella damascena L. essential oil and its main constituents, damascenine and β-elemene modulate inflammatory response of human neutrophils ex vivo. Food Chem. Toxicol. 2019 125 161 169 10.1016/j.fct.2018.12.057 30610933
    [Google Scholar]
  85. Liang Y. Li S. β-elemene suppresses migration of esophageal squamous cell carcinoma by modulating expression of MMP9 through the PI3K/Akt/NF-κB pathway. Comb. Chem. High Throughput Screen. 2023 26 13 2304 2320 10.2174/1386207326666230303120514 36872359
    [Google Scholar]
  86. Wang Z. Wang Z. Du C. Zhang Y. Tao B. Xian H. β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha. J. Nat. Med. 2021 75 3 655 663 10.1007/s11418‑021‑01516‑y 33861415
    [Google Scholar]
  87. Wang Z. Chen Y. Yang L. Yao D. Shen Y. Combinative effects of β-elemene and propranolol on the proliferation, migration, and angiogenesis of hemangioma. PeerJ 2023 11 e15643 10.7717/peerj.15643 37456875
    [Google Scholar]
  88. Luo H. Vong C.T. Chen H. Gao Y. Lyu P. Qiu L. Zhao M. Liu Q. Cheng Z. Zou J. Yao P. Gao C. Wei J. Ung C.O.L. Wang S. Zhong Z. Wang Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019 14 1 48 10.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  89. Cheng G. Li L. Li Q. Lian S. Chu H. Ding Y. Li C. Leng Y. β-elemene suppresses tumor metabolism and stem cell-like properties of non-small cell lung cancer cells by regulating PI3K/AKT/mTOR signaling. Am. J. Cancer Res. 2022 12 4 1535 1555 35530288
    [Google Scholar]
  90. Chen C. Chen Y. Hsi Y.T. Chang C.S. Huang L.F. Ho C.T. Way T.D. Kao J.Y. Chemical constituents and anticancer activity of Curcuma zedoaria roscoe essential oil against non-small cell lung carcinoma cells in vitro and in vivo. J. Agric. Food Chem. 2013 61 47 11418 11427 10.1021/jf4026184 24199734
    [Google Scholar]
  91. Wang G. Li X. Huang F. Zhao J. Ding H. Cunningham C. Coad J.E. Flynn D.C. Reed E. Li Q.Q. Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell. Mol. Life Sci. 2005 62 7-8 881 893 10.1007/s00018‑005‑5017‑3 15868411
    [Google Scholar]
  92. Wang Y. Xu H. Zhu B. Qiu Z. Lin Z. Systematic identification of the key candidate genes in breast cancer stroma. Cell. Mol. Biol. Lett. 2018 23 1 44 10.1186/s11658‑018‑0110‑4 30237810
    [Google Scholar]
  93. Machackova T. Vychytilova-Faltejskova P. Souckova K. Trachtova K. Brchnelova D. Svoboda M. Kiss I. Prochazka V. Kala Z. Slaby O. MiR-215-5p reduces liver metastasis in an experimental model of colorectal cancer through regulation of ECM-receptor interactions and focal adhesion. Cancers 2020 12 12 3518 10.3390/cancers12123518 33255928
    [Google Scholar]
  94. Zhao Q. Xie J. Xie J. Zhao R. Song C. Wang H. Rong J. Yan L. Song Y. Wang F. Xie Y. Weighted correlation network analysis identifies FN1, COL1A1 and SERPINE1 associated with the progression and prognosis of gastric cancer. Cancer Biomark. 2021 31 1 59 75 10.3233/CBM‑200594 33780362
    [Google Scholar]
  95. Büttner P. Ueberham L. Shoemaker M.B. Roden D.M. Dinov B. Hindricks G. Bollmann A. Husser D. Identification of central regulators of calcium signaling and ECM–receptor interaction genetically associated with the progression and recurrence of atrial fibrillation. Front. Genet. 2018 9 162 10.3389/fgene.2018.00162 29868113
    [Google Scholar]
  96. Xiao J. Yang W. Xu B. Zhu H. Zou J. Su C. Rong J. Wang T. Chen Z. Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration. BMC Cancer 2018 18 1 976 10.1186/s12885‑018‑4850‑3 30314454
    [Google Scholar]
  97. Chen T. Song P. He M. Rui S. Duan X. Ma Y. Armstrong D.G. Deng W. Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway. Burns Trauma 2023 11 tkad003 10.1093/burnst/tkad003 37251708
    [Google Scholar]
  98. Cai X. Liu C. Zhang T.N. Zhu Y.W. Dong X. Xue P. Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion. J. Cell. Biochem. 2018 119 6 4717 4728 10.1002/jcb.26651 29274284
    [Google Scholar]
  99. Huaman J. Ogunwobi O.O. Circulating tumor cell migration requires fibronectin acting through integrin B1 or SLUG. Cells 2020 9 7 1594 10.3390/cells9071594 32630254
    [Google Scholar]
  100. Hipke K. Pitter B. Hruscha A. van Bebber F. Modic M. Bansal V. Lewandowski S.A. Orozco D. Edbauer D. Bonn S. Haass C. Pohl U. Montanez E. Schmid B. Loss of TDP-43 causes ectopic endothelial sprouting and migration defects through increased fibronectin, vcam 1 and integrin α4/β1. Front. Cell Dev. Biol. 2023 11 1169962 10.3389/fcell.2023.1169962 37384248
    [Google Scholar]
  101. Multhaupt H.A.B. Leitinger B. Gullberg D. Couchman J.R. Extracellular matrix component signaling in cancer. Adv. Drug Deliv. Rev. 2016 97 28 40 10.1016/j.addr.2015.10.013 26519775
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673351591241114101143
Loading
/content/journals/cmc/10.2174/0109298673351591241114101143
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test