Skip to content
2000
image of Commentary on the Obtention of Semi-Synthetic Derivatives from Natural Products for Medicinal Applications: Advances, Challenges, and Perspectives

Abstract

Plants have historically been a primary source of medicines due to their diverse molecular and structural composition. Plant metabolism, comprising primary and secondary processes, produces primary metabolites crucial for growth and secondary metabolites, or natural products (NPs), with specific biological functions. These small molecules are instrumental in pharmacology for their ability to penetrate biological barriers and interact with intracellular targets. The structural complexity and limited availability of NPs have led to research focusing on enhancing their diversity through semi-synthesis. In this commentary, examples of various semisynthetic derivatives of NPs obtained through different synthetic strategies, such as organic semi-synthesis or combinatorial chemistry, are cited. Additionally, the importance of developing hybrid molecules based on the combination of two or more distinct pharmacophores is emphasized. This strategy has been widely implemented to obtain new multitarget drugs applicable to the treatment of multifactorial neurodegenerative diseases, where stimulating the cholinergic system by modulating different therapeutic targets is crucial. However, challenges, such as structural complexity, raw material availability, and the need for precise synthetic methods, persist. Innovations in synthetic routes, sustainable harvesting, and biotechnological advances are critical to overcoming these barriers. The integration of omics technologies, green chemistry principles, and global collaboration is essential to maximize the potential of NPs in drug development, ensuring sustainable and efficient production of new therapeutics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336208241014102943
2024-10-29
2024-11-26
Loading full text...

Full text loading...

References

  1. Krause J. Tobi G. Kulka M. Discovery, Development, and Regulation of Natural Products. Using Old Solutions to New Problems - Natural Drug Discovery in the 21st Century. London, UK IntechOpen 2013 Vol. 1 3 35 10.5772/56424
    [Google Scholar]
  2. Bernardini S. Tiezzi A. Laghezza Masci V. Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat. Prod. Res. 2018 32 16 1926 1950 10.1080/14786419.2017.1356838 28748726
    [Google Scholar]
  3. Thakur M. Bhattacharya S. Khosla P.K. Puri S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants 2019 12 1 12 10.1016/j.jarmap.2018.11.004
    [Google Scholar]
  4. Yang L. Wen K.S. Ruan X. Zhao Y.X. Wei F. Wang Q. Response of plant secondary metabolites to environmental factors. Molecules 2018 23 4 762 10.3390/molecules23040762 29584636
    [Google Scholar]
  5. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  6. Benet L.Z. Hosey C.M. Ursu O. Oprea T.I. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016 101 89 98 10.1016/j.addr.2016.05.007 27182629
    [Google Scholar]
  7. Centelles J. J. Imperial S. Paclitaxel: Descubrimiento, propiedades y uso clínico. Ámbito farmacéutico. 2010 29 4 68 75
    [Google Scholar]
  8. Dias D.A. Urban S. Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012 2 2 303 336 10.3390/metabo2020303 24957513
    [Google Scholar]
  9. Sun Q. Wang J. Li Y. Zhuang J. Zhang Q. Sun X. Sun D. Synthesis and evaluation of cytotoxic activities of artemisinin derivatives. Chem. Biol. Drug Des. 2017 90 5 1019 1028 10.1111/cbdd.13016 28489280
    [Google Scholar]
  10. Reddy M.P. Chowdary N.V. Novel process for the preparation of sorafenib. Patent WO2009054004A2,
  11. Chava S. Gorantla S.R.A. Indukuri V.S.K. Moturu V.R.K. Jamjanam S.R. Shamakura A.K.R. Gunaparthi S.K. Nekkanti V.V.S. Novel processes for the preparation of vemurafenib. Patent WO2015075749A1,
  12. Mei Y. Ye Q. Yang B. Xiao L. Ge H. The novel synthesis of Ataluren. Patent CN106279057A, 2017
  13. Ekinci D. Şentürk M. Küfrevioğlu Ö.İ. Salicylic acid derivatives: Synthesis, features and usage as therapeutic tools. Expert Opin. Ther. Pat. 2011 21 12 1831 1841 10.1517/13543776.2011.636354 22098318
    [Google Scholar]
  14. Arpicco S. Stella B. Schiavon O. Milla P. Zonari D. Cattel L. Preparation and characterization of novel poly(ethylene glycol) paclitaxel derivatives. Int. J. Pharm. 2013 454 2 653 659 10.1016/j.ijpharm.2013.05.027 23701999
    [Google Scholar]
  15. Díaz-Quiroz D.C. Cardona-Félix C.S. Viveros-Ceballos J.L. Reyes-González M.A. Bolívar F. Ordoñez M. Escalante A. Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J. Enzyme Inhib. Med. Chem. 2018 33 1 397 404 10.1080/14756366.2017.1422125 29363372
    [Google Scholar]
  16. Bache M. Bernhardt S. Passin S. Wichmann H. Hein A. Zschornak M.P. Kappler M. Taubert H. Paschke R. Vordermark D. Betulinic acid derivatives NVX-207 and B10 for treatment of glioblastoma--an in vitro study of cytotoxicity and radiosensitization. Int. J. Mol. Sci. 2014 15 11 19777 19790 10.3390/ijms151119777 25361208
    [Google Scholar]
  17. Decker M. Design of hybrid molecules for drug development. Design of Hybrid Molecules for Drug Development Elsevier Science 2017 1st ed
    [Google Scholar]
  18. Williams D.H. Stone M.J. Hauck P.R. Rahman S.K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod. 1989 52 6 1189 1208 10.1021/np50066a001 2693613
    [Google Scholar]
  19. Mesa Vanegas A.M. Una visión histórica en el desarrollo de fármacos a partir de productos naturales. Rev. Mex. Cienc. Farm. 2017 48 3 16 27
    [Google Scholar]
  20. Munafó J.P. Biscussi B. Obiol D. Costabel M. Bouzat C. Murray A.P. Antollini S. New multitarget molecules derived from caffeine as potentiators of the cholinergic system. ACS Chem. Neurosci. 2024 15 5 994 1009 10.1021/acschemneuro.3c00710 38407056
    [Google Scholar]
  21. Mishra P. Kumar A. Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg. Med. Chem. 2019 27 6 895 930 10.1016/j.bmc.2019.01.025 30744931
    [Google Scholar]
  22. Stanciu G.D. Luca A. Rusu R.N. Bild V. Beschea Chiriac S.I. Solcan C. Bild W. Ababei D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 2019 10 1 40 10.3390/biom10010040 31888102
    [Google Scholar]
  23. Santi M. Sancineto L. Nascimento V. Braun Azeredo J. Orozco E.V.M. Andrade L.H. Gröger H. Santi C. Flow biocatalysis: A challenging alternative for the synthesis of APIs and natural compounds. Int. J. Mol. Sci. 2021 22 3 990 10.3390/ijms22030990 33498198
    [Google Scholar]
  24. Rienzo M. Jackson S.J. Chao L.K. Leaf T. Schmidt T.J. Navidi A.H. Nadler D.C. Ohler M. Leavell M.D. High-throughput screening for high-efficiency small-molecule biosynthesis. Metab. Eng. 2021 63 102 125 10.1016/j.ymben.2020.09.004 33017684
    [Google Scholar]
  25. Tian R. Li Y. Xu J. Hou C. Luo Q. Liu J. Recent development in the design of artificial enzymes through molecular imprinting technology. J. Mater. Chem. B Mater. Biol. Med. 2022 10 35 6590 6606 10.1039/D2TB00276K 35748432
    [Google Scholar]
  26. Dai X. Shen L. Advances and trends in omics technology development. Front. Med. (Lausanne) 2022 9 911861 10.3389/fmed.2022.911861 35860739
    [Google Scholar]
  27. Paananen J. Fortino V. An omics perspective on drug target discovery platforms. Brief. Bioinform. 2020 21 6 1937 1953 10.1093/bib/bbz122 31774113
    [Google Scholar]
  28. Musso F. Gutierrez V. Faraoni M.B. Volpe M.A. Allylic Oxidation of α-pinene over supported SeO2-based catalysts. Lat. Am. Appl. Res. 2023 53 4 287 293 10.52292/j.laar.2023.1061
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336208241014102943
Loading
/content/journals/cmc/10.2174/0109298673336208241014102943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test