Skip to content
2000
image of Inhibition of Shiga Toxin 2 for E. coli O157 Control: An In-Silico Study on Natural and Synthetic Compounds

Abstract

Introduction/Objectives

strains are known to cause various gastrointestinal disorders, with Shiga toxin 2, a potent cytotoxin, being a key virulence factor contributing to disease severity. Targeting Shiga toxin 2 presents a promising approach for therapeutic intervention in controlling O157 infections. This study aims to explore natural and synthetic inhibitors as potential therapeutic agents against Shiga toxin 2 through in-silico molecular docking and drug-likeness predictions.

Methods

An in-silico molecular docking study was conducted using AutoDock Vina and Chimera to assess the binding affinity of various natural and synthetic inhibitors against Shiga toxin 2. The selected inhibitors were evaluated for their drug-likeness based on adsorption, distribution, metabolism, and excretion (ADME) properties, applying Lipinski's rule of five and the Boiled-Egg technique to predict their suitability as potential drugs in biological systems.

Results

During the screening process, luteolin, a natural flavonoid, exhibited the highest binding affinity to Shiga toxin 2, with a notable negative binding energy of -8.7 kcal/mol, indicating strong interaction potential.

Conclusion

The findings suggest that luteolin holds promise as a lead molecule for further development as a therapeutic agent against infections, warranting additional studies to validate its efficacy and safety.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673363373250118144235
2025-02-04
2025-04-01
Loading full text...

Full text loading...

References

  1. Makvana S. Krilov L.R. Escherichia coli Infections. Pediatr. Rev. 2015 36 4 167 171 10.1542/pir.36.4.167
    [Google Scholar]
  2. Blount Z.D. The unexhausted potential of E. coli. eLife 2015 4 e05826 10.7554/eLife.05826 25807083
    [Google Scholar]
  3. Gomes T.A.T. Elias W.P. Scaletsky I.C.A. Guth B.E.C. Rodrigues J.F. Piazza R.M.F. Ferreira L.C.S. Martinez M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016 47 Suppl 1 Suppl. 1 3 30 10.1016/j.bjm.2016.10.015 27866935
    [Google Scholar]
  4. Thomas D.E. Elliott E.J. Interventions for preventing diarrhea-associated hemolytic uremic syndrome: systematic review. BMC Public Health 2013 13 1 799 10.1186/1471‑2458‑13‑799 24007265
    [Google Scholar]
  5. Ameer M.A.W. Salen P. Multiple-drug resistant shiga toxin-producing E. coli in raw milk of dairy bovine. Trop. Med. Infect. Dis. 2022 9 3 64 10.3390/tropicalmed9030064
    [Google Scholar]
  6. Byrne L. Adams N. Jenkins C. Association between shiga toxin–producing escherichia coli o157:h7 stx gene subtype and disease severity, england, 2009–2019. Emerg. Infect. Dis. 2020 26 10 2394 2400 10.3201/eid2610.200319
    [Google Scholar]
  7. Naseer U. Løbersli I. Hindrum M. Bruvik T. Brandal L.T. Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992–2013. Eur. J. Clin. Microbiol. Infect. Dis. 2017 36 9 1613 1620 10.1007/s10096‑017‑2974‑z
    [Google Scholar]
  8. Smith K.E. Wilker P.R. Reiter P.L. Hedican E.B. Bender J.B. Hedberg C.W. Antibiotic Treatment of Escherichia coli O157 Infection and the Risk of Hemolytic Uremic Syndrome, Minnesota. Pediatr. Infect. Dis. J. 2012 31 1 37 41 10.1097/INF.0b013e31823096a8
    [Google Scholar]
  9. Menne J. Nitschke M. Stingele R. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ 2012 345 e4565 10.1136/bmj.e4565 22815429
    [Google Scholar]
  10. Geerdes-Fenge H.F. Löbermann M. Nürnberg M. Fritzsche C. Koball S. Henschel J. Höhn R. Schober H.C. Mitzner S. Podbielski A. Reisinger E.C. Ciprofloxacin reduces the risk of hemolytic uremic syndrome in patients with Escherichia coli O104:H4-associated diarrhea. Infection 2013 41 3 669 673 10.1007/s15010‑012‑0387‑6 23292662
    [Google Scholar]
  11. Tajiri H. Nishi J. Ushijima K. Shimizu T. Ishige T. Shimizu M. Tanaka H. Brooks S. A role for fosfomycin treatment in children for prevention of haemolytic-uraemic syndrome accompanying Shiga toxin-producing Escherichia coli infection. Int. J. Antimicrob. Agents. 2015 46 5 586 589 10.1016/j.ijantimicag.2015.08.006 26391378
    [Google Scholar]
  12. Ramstad S.N. Taxt A.M Naseer U. Wasteson Y. Bjørnholt J. Brandal L.T Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing Escherichia coli. Microb. Pathog. 2021 152 104636 10.1016/j.micpath.2020.104636 33242644
    [Google Scholar]
  13. Ramstad S.N. Brandal L.T. Taxt A.M. Wasteson Y. Bjørnholt J.V. Naseer U. Prevalence of genotypic antimicrobial resistance in clinical Shiga toxin-producing Escherichia coli in Norway, 2018 to 2020. J. Med. Microbiol. 2021 70 12 70 10.1099/jmm.0.001454 34870582
    [Google Scholar]
  14. Mir R.A. Kudva I.T. Antibiotic‐resistant Shiga toxin‐producing Escherichia coli : An overview of prevalence and intervention strategies. Zoonoses Public Health 2019 66 1 1 13 10.1111/zph.12533 30375197
    [Google Scholar]
  15. Hiroi M. Takahashi N. Harada T. Kawamori F. Iida N. Kanda T. Sugiyama K. Ohashi N. Hara-Kudo Y. Masuda T. Serotype, Shiga toxin (Stx) type, and antimicrobial resistance of Stx-producing Escherichia coli isolated from humans in Shizuoka Prefecture, Japan (2003-2007). Jpn. J. Infect. Dis. 2012 65 3 198 202 10.7883/yoken.65.198 22627299
    [Google Scholar]
  16. Kouranov A. Xie L. de la Cruz J. Chen L. Westbrook J. Bourne P.E. Berman H.M. The RCSB PDB information portal for structural genomics. Nucleic Acids Res. 2006 34 90001 D302 D305 10.1093/nar/gkj120 16381872
    [Google Scholar]
  17. Stanley C. von Hill P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 1989 182 2 319 326 10.1016/0003‑2697(89)90602‑7 2610349
    [Google Scholar]
  18. Guruprasad K. Reddy B.V. Pandit M.W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel. 1990 4 2 155 161 10.1093/protein/4.2.155 2075190
    [Google Scholar]
  19. Biro J.C. Amino acid size, charge, hydropathy indices and matrices for protein structure analysis. Theor. Biol. Med. Model. 2006 3 1 15 10.1186/1742‑4682‑3‑15 16551371
    [Google Scholar]
  20. McGuffin L.J. Bryson K. Jones D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000 16 4 404 405 10.1093/bioinformatics/16.4.404 10869041
    [Google Scholar]
  21. Artimo P. Jonnalagedda M. Arnold K. Baratin D. Csardi G. de Castro E. Duvaud S. Flegel V. Fortier A. Gasteiger E. Grosdidier A. Hernandez C. Ioannidis V. Kuznetsov D. Liechti R. Moretti S. Mostaguir K. Redaschi N. Rossier G. Xenarios I. Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012 40 Web Server issue W597-603 22661580
    [Google Scholar]
  22. Bailey T.L. Johnson J. Grant C.E. Noble W.S. The MEME suite. Nucleic Acids Res. 2015 43 W1 W39 W49 10.1093/nar/gkv416 25953851
    [Google Scholar]
  23. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  24. Yuan S Chan HCS Filipek S Vogel H PyMOL and inkscape bridge the data and the data visualization. Structure. 2016 24 12 2041 2042 10.1016/j.str.2016.11.012 27926832
    [Google Scholar]
  25. Gaillard T. Evaluation of autodock and autodock vina on the casf-2013 benchmark. J. Chem. Inf. Model. 2018 58 8 1697 1706 10.1021/acs.jcim.8b00312 29989806
    [Google Scholar]
  26. Jia C.Y. Li J.Y. Hao G.F. Yang G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today 2020 25 1 248 258 10.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  27. Daina A. Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  28. Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  29. Amrutha B. Sundar K. Shetty P.H. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb. Pathog. 2017 111 156 162 10.1016/j.micpath.2017.08.042 28867627
    [Google Scholar]
  30. Nemes D. Kovács R. Nagy F. Comparative biocompatibility and antimicrobial studies of sorbic acid derivates. Eur. J. Pharm. Sci. 2020 143 105162 10.1016/j.ejps.2019.105162 31756446
    [Google Scholar]
  31. Chen H. Zhong Q. Antibacterial activity of acidified sodium benzoate against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in tryptic soy broth and on cherry tomatoes. Int. J. Food Microbiol. 2018 274 38 44 10.1016/j.ijfoodmicro.2018.03.017
    [Google Scholar]
  32. Chun-Xue Yang H-T.W. Li X-X. Wu H-Y. Niu T-X. Wang X-N. Comparison of the inhibitory potential of benzyl isothiocyanate and phenethyl isothiocyanate on Shiga toxin-producing and enterotoxigenic Escherichia coli. Lebensm. Wiss. Technol. 2020 118 108806 10.1016/j.lwt.2019.108806
    [Google Scholar]
  33. Barreca D. Bellocco E. Laganà G. Ginestra G. Bisignano C. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem. 2014 160 292 297 10.1016/j.foodchem.2014.03.118 24799241
    [Google Scholar]
  34. Bai Y.B. Shi M.Y. Wang W.W. Wu L.Y. Bai Y.T Li B. Zhou X.Z. Zhang J.Y. Novel quorum sensing inhibitor Echinatin as an antibacterial synergist against Escherichia coli. Front. Microbiol. 2022 13 1003692 10.3389/fmicb.2022.1003692 36386683
    [Google Scholar]
  35. Chien S.Y. Sheen S. Sommers C.H. Sheen L.Y. Modeling the inactivation of Escherichia coli O157:H7 and Uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control 2017 7 920 10.3389/fmicb.2016.00920 27379050
    [Google Scholar]
  36. Sugita-Konishi Y. Hara-Kudo Y. Amano F. Okubo T. Aoi N. Iwaki M. Kumagai S. Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7. Biochim. Biophys. Acta, Gen. Subj. 1999 1472 1-2 42 50 10.1016/S0304‑4165(99)00102‑6 10572924
    [Google Scholar]
  37. Qian W. Fu Y. Liu M. Zhang J. Wang W. Li J. Zeng Q. Wang T. Li Y. Mechanisms of action of luteolin against single- and dual-species of escherichia coli and enterobacter cloacae and its antibiofilm activities. Appl. Biochem. Biotechnol. 2021 193 5 1397 1414 10.1007/s12010‑020‑03330‑w 33009585
    [Google Scholar]
  38. Vinh P.T. Shinohara Y. Yamada A. Duc H.M. Nakayama M. Ozawa T. Sato J. Masuda Y. Honjoh K.I. Miyamoto T. Baicalein inhibits stx1 and 2 of EHE: effects of baicalein on the cytotoxicity, production, and secretion of shiga toxins of enterohaemorrhagic escherichia coli. Toxins (Basel) 2019 11 9 505 10.3390/toxins11090505 31470657
    [Google Scholar]
  39. He T.F. Wang L.H. Niu D. Wen Q. Zeng X.A. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch. Microbiol. 2019 201 4 451 458 10.1007/s00203‑018‑1572‑5 30293114
    [Google Scholar]
  40. Lipinski C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  41. Lipinski C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016 101 34 41 10.1016/j.addr.2016.04.029 27154268
    [Google Scholar]
  42. Attique S.A. Hassan M. Usman M. Atif R.M. Mahboob S. Al-Ghanim K.A. Bilal M. Nawaz M.Z. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int. J. Environ. Res. Public Health 2019 16 6 923 10.3390/ijerph16060923 30875817
    [Google Scholar]
  43. Zhang M.Q. Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol. 2007 18 6 478 488 10.1016/j.copbio.2007.10.005 18035532
    [Google Scholar]
  44. Chedik L. Mias-Lucquin D. Bruyere A. Fardel O. In silico prediction for intestinal absorption and brain penetration of chemical pesticides in humans. Int. J. Environ. Res. Publ. Heal. 2017 14 7 708 10.3390/ijerph14070708 28665355
    [Google Scholar]
  45. Ahad I.I. Hossain M.M. Uddin M.A. Bari M.L. Hossain M.S. Therapeutic effect of antibiotics against escherichia coli o157:h7 in silk moth larvae animal model. Curr. Microbiol. 2020 77 9 2172 2180 10.1007/s00284‑020‑02023‑1
    [Google Scholar]
  46. Mauro S.A. Koudelka G.B. Shiga toxin: expression, distribution, and its role in the environment. Toxins (Basel) 2011 3 6 608 625 10.3390/toxins3060608 22069728
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673363373250118144235
Loading
/content/journals/cmc/10.2174/0109298673363373250118144235
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test