Skip to content
2000
image of Fustin, a Potent Phytochemical, Attenuates Scopolamine-induced Memory Impairment and Neurodegeneration by Modulating Neuroinflammation and Neurotransmitters

Abstract

Introduction

Fustin, a photogenic flavanol found in the plant , has been involved in multiple disease ailments and has a beneficial pharmacological effect and a history of use in traditional medicine. The present research aimed to study the impact of fustin on scopolamine (SCOP)-induced memory impairment and neurodegeneration by modulating neuroinflammation and neurotransmitters in rats.

Methods

A total of 30 healthy Wistar rats were allocated into five groups (n=6). Group I- served as control and received saline solution (1mL/kg i.p.), group -II- fustin (100 mg/kg, orally), group -III -SCOP (1 mg/kg, i.p.), and group -IV and V were given fustin (50 and 100 mg/kg/p.o.) with SCOP (1 mg/kg, i.p.) for 14-days. After 14 days, 2 hours after SCOP injection, the Y-maze and Morris water maze (MWM) tests were performed. After behavioral tests rats were subsequently euthanized, and brain supernatants were used to estimate choline-acetyltransferase (ChAT), acetylcholinesterase (AChE), antioxidant [superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)], and total protein, oxidative stress markers [nitrate and malondialdehyde (MDA)], pro-inflammatory markers [tumor necrosis factor (TNF-α), and Interleukins-1β (IL-1β) and IL-6]. Also, neurotransmitters such as serotonin (5-HT), dopamine (DA), ϒ-amino butyric acid (GABA), acetylcholine (Ach), and noradrenaline (NA) contents were performed.

Results

Fustin exhibited substantial behavioral improvement in the Y-maze measures spontaneous alterations percentage (SA%) and decreased latency time following the acquisition and prolonged time spent in the probe trial in the MWM test. Moreover, fustin inhibits enhanced neuroinflammatory cytokines and oxidative stress markers and improves the neurotransmitters.

Conclusion

The findings of this study suggest that fustin inhibits SCOP impact on cognitive abilities in rats. The present investigation demonstrates that fustin, a potent phytochemical, effectively mitigated the behavioral and physiological changes induced by SCOP in rats. This was primarily achieved by modulating the levels of inflammatory response and neurotransmitters.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330002241015085330
2024-10-29
2025-04-04
Loading full text...

Full text loading...

References

  1. Choe D.J. Ahn H.Y. Kim Y.W. Kim T.H. Kim M. Cho Y.S. Improvement effect of Stachys sieboldii MIQ. According to mixing ratio of calcium on memory impairment in scopolamine-induced dementia rats. J. Life Sci. 2016 26 7 812 818 10.5352/JLS.2016.26.7.812
    [Google Scholar]
  2. Muhammad T. Ali T. Ikram M. Khan A. Alam S.I. Kim M.O. Melatonin rescue oxidative stress-mediated neuroinflammation/ neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J. Neuroimmune Pharmacol. 2019 14 2 278 294 10.1007/s11481‑018‑9824‑3 30478761
    [Google Scholar]
  3. Choi J.H. Lee E.B. Jang H.H. Cha Y.S. Park Y.S. Lee S.H. Allium hookeri Extracts improve scopolamine-induced cognitive impairment via activation of the cholinergic system and anti-neuroinflammation in mice. Nutrients 2021 13 8 2890 10.3390/nu13082890 34445062
    [Google Scholar]
  4. Lazarov O. Mattson M.P. Peterson D.A. Pimplikar S.W. van Praag H. When neurogenesis encounters aging and disease. Trends Neurosci. 2010 33 12 569 579 10.1016/j.tins.2010.09.003 20961627
    [Google Scholar]
  5. Prakash A. Kalra J. Mani V. Ramasamy K. Majeed A.B.A. Pharmacological approaches for Alzheimer’s disease: Neurotransmitter as drug targets. Expert Rev. Neurother. 2015 15 1 53 71 10.1586/14737175.2015.988709 25495260
    [Google Scholar]
  6. Perrin R.J. Fagan A.M. Holtzman D.M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009 461 7266 916 922 10.1038/nature08538 19829371
    [Google Scholar]
  7. Graham W.V. Bonito-Oliva A. Sakmar T.P. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med. 2017 68 1 413 430 10.1146/annurev‑med‑042915‑103753 28099083
    [Google Scholar]
  8. Kim Y. Kim J. He M. Lee A. Cho E. Apigenin ameliorates scopolamine-induced cognitive dysfunction and neuronal damage in mice. Molecules 2021 26 17 5192 10.3390/molecules26175192 34500626
    [Google Scholar]
  9. Citron M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov. 2010 9 5 387 398 10.1038/nrd2896 20431570
    [Google Scholar]
  10. Lepeta K. Lourenco M.V. Schweitzer B.C. Martino Adami P.V. Banerjee P. Catuara-Solarz S. de La Fuente Revenga M. Guillem A.M. Haidar M. Ijomone O.M. Nadorp B. Qi L. Perera N.D. Refsgaard L.K. Reid K.M. Sabbar M. Sahoo A. Schaefer N. Sheean R.K. Suska A. Verma R. Vicidomini C. Wright D. Zhang X.D. Seidenbecher C. Synaptopathies: Synaptic dysfunction in neurological disorders – A review from students to students. J. Neurochem. 2016 138 6 785 805 10.1111/jnc.13713 27333343
    [Google Scholar]
  11. Gąssowska-Dobrowolska M. Chlubek M. Kolasa A. Tomasiak P. Korbecki J. Skowrońska K. Tarnowski M. Masztalewicz M. Baranowska-Bosiacka I. Microglia and astroglia — The potential role in neuroinflammation induced by pre- and neonatal exposure to lead (Pb). Int. J. Mol. Sci. 2023 24 12 9903 10.3390/ijms24129903 37373050
    [Google Scholar]
  12. Sweeney M.D. Kisler K. Montagne A. Toga A.W. Zlokovic B.V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 2018 21 10 1318 1331 10.1038/s41593‑018‑0234‑x 30250261
    [Google Scholar]
  13. Aran K.R. Singh S. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease – A step towards mitochondria based therapeutic strategies. Aging and Health Research 2023 3 4 100169 10.1016/j.ahr.2023.100169
    [Google Scholar]
  14. Bajo R. Pusil S. López M.E. Canuet L. Pereda E. Osipova D. Maestú F. Pekkonen E. Scopolamine effects on functional brain connectivity: A pharmacological model of Alzheimer’s disease. Sci. Rep. 2015 5 1 9748 10.1038/srep09748 26130273
    [Google Scholar]
  15. Nahata A. Patil U.K. Dixit V.K. Effect of Evolvulus alsinoides Linn. on learning behavior and memory enhancement activity in rodents. Phytother. Res. 2010 24 4 486 493 10.1002/ptr.2932 19610035
    [Google Scholar]
  16. Sethiya N.K. Nahata A. Dixit V.K. Mishra S.H. Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi). Eur. J. Integr. Med. 2012 4 1 e113 e121 10.1016/j.eujim.2011.11.003
    [Google Scholar]
  17. Ebert U. Kirch W. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Invest. 1998 28 11 944 949 10.1046/j.1365‑2362.1998.00393.x 9824440
    [Google Scholar]
  18. Chen B.H. Park J.H. Lee T.K. Song M. Kim H. Lee J.C. Kim Y.M. Lee C.H. Hwang I.K. Kang I.J. Yan B.C. Won M.H. Ahn J.H. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem. Biol. Interact. 2018 285 8 13 10.1016/j.cbi.2018.02.023 29476728
    [Google Scholar]
  19. Fan Y. Hu J. Li J. Yang Z. Xin X. Wang J. Ding J. Geng M. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett. 2005 374 3 222 226 10.1016/j.neulet.2004.10.063 15663967
    [Google Scholar]
  20. Shabani S. Mirshekar M.A. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed. Pharmacother. 2018 108 1376 1383 10.1016/j.biopha.2018.09.127 30372840
    [Google Scholar]
  21. Parfenova H. Basuroy S. Bhattacharya S. Tcheranova D. Qu Y. Regan R.F. Leffler C.W. Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: Contributions of HO-1 and HO-2 to cytoprotection. Am. J. Physiol. Cell Physiol. 2006 290 5 C1399 C1410 10.1152/ajpcell.00386.2005 16371440
    [Google Scholar]
  22. Fischer R. Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid. Med. Cell. Longev. 2015 2015 1 18 10.1155/2015/610813 25834699
    [Google Scholar]
  23. Choi W. Jung H. Kim K. Lee S. Yoon S. Park J. Kim S. Cheon S. Eo W. Lee S. Rhus verniciflua stokes against advanced cancer: A perspective from the Korean Integrative Cancer Center. J. Biomed. Biotechnol. 2012 2012 1 7 10.1155/2012/874276 22174564
    [Google Scholar]
  24. Kim J.H. Shin Y.C. Ko S.G. Integrating traditional medicine into modern inflammatory diseases care: Multitargeting by Rhus verniciflua Stokes. Mediators Inflamm. 2014 2014 1 17 10.1155/2014/154561 25024508
    [Google Scholar]
  25. Liu C.S. Nam T.G. Han M.W. Ahn S. Choi H.S. Kim T.Y. Chun O.K. Koo S.I. Kim D.O. Protective effect of detoxified Rhus verniciflua stokes on human keratinocytes and dermal fibroblasts against oxidative stress and identification of the bioactive phenolics. Biosci. Biotechnol. Biochem. 2013 77 8 1682 1688 10.1271/bbb.130236 23924730
    [Google Scholar]
  26. Afzal M. Al-Abbasi F.A. Kazmi I. Imam S.S. Alshehri S. Ghoneim M.M. Almalki W.H. Nadeem M.S. Sayyed N. Fustin inhibits oxidative free radicals and inflammatory cytokines in cerebral cortex and hippocampus and protects cognitive impairment in streptozotocin-induced diabetic rats. ACS Chem. Neurosci. 2021 12 24 4587 4597 10.1021/acschemneuro.1c00712 34860003
    [Google Scholar]
  27. Alshehri S. AlGhamdi S.A. Alghamdi A.M. Imam S.S. Mahdi W.A. Almaniea M.A. Hajjar B.M. Al-Abbasi F.A. Sayyed N. Kazmi I. Protective effect of fustin against adjuvant-induced arthritis through the restoration of proinflammatory response and oxidative stress. PeerJ 2023 11 e15532 10.7717/peerj.15532 37520245
    [Google Scholar]
  28. Gilani S.J. Bin-Jumah M.N. Al-Abbasi F.A. Nadeem M.S. Afzal M. Sayyed N. Kazmi I. Fustin ameliorates elevated levels of leptin, adiponectin, serum TNF-α, and intracellular oxidative free radicals in high-fat diet and streptozotocin-induced diabetic rats. ACS Omega 2021 6 40 26098 26107 10.1021/acsomega.1c03068 34660970
    [Google Scholar]
  29. Gilani S.J. Bin-Jumah M.N. Al-Abbasi F.A. Nadeem M.S. Imam S.S. Alshehri S. Ahmed M.M. Ghoneim M.M. Afzal M. Alzarea S.I. Sayyed N. Kazmi I. Protective effect of fustin against ethanol-activated gastric ulcer via downregulation of biochemical parameters in rats. ACS Omega 2022 7 27 23245 23254 10.1021/acsomega.2c01341 35847266
    [Google Scholar]
  30. Jin C.H. Shin E.J. Park J.B. Jang C.G. Li Z. Kim M.S. Koo K.H. Yoon H.J. Park S.J. Choi W.C. Yamada K. Nabeshima T. Kim H.C. Fustin flavonoid attenuates β-amyloid (1–42)-induced learning impairment. J. Neurosci. Res. 2009 87 16 3658 3670 10.1002/jnr.22159 19533734
    [Google Scholar]
  31. Bin-Jumah M.N. Gilani S.J. Alabbasi A.F. Al-Abbasi F.A. AlGhamdi S.A. Alshehri O.Y. Alghamdi A.M. Sayyed N. Kazmi I. Protective effect of fustin against huntington’s disease in 3-nitropropionic treated rats via downregulation of oxidative stress and alteration in neurotransmitters and brain-derived neurotrophic factor activity. Biomedicines 2022 10 12 3021 10.3390/biomedicines10123021 36551777
    [Google Scholar]
  32. Bawadood A.S. Al-Abbasi F.A. Alghamdi A.M. Alqurashi M.M. Sheikh R.A. Alzarea S.I. Sayyed N. Kazmi I. Fustin alleviates lipopolysaccharide-induced anxiety-depression-like performances by modulation of oxidative stress/neuroinflammatory markers/ NF-κB/caspase-3/BDNF expression in rodents. Eur. Rev. Med. Pharmacol. Sci. 2024 28 1 419 432 10.26355/eurrev_202401_34931 38235894
    [Google Scholar]
  33. Park B.C. Lee Y.S. Park H.J. Kwak M.K. Yoo B.K. Kim J.Y. Kim J.A. Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death. Exp. Mol. Med. 2007 39 3 316 326 10.1038/emm.2007.35 17603285
    [Google Scholar]
  34. AlGhamdi S.A. Al-Abbasi F.A. Alghamdi A.M. Omer A.B. Afzal O. Altamimi A.S.A. Alamri A. Alzarea S.I. Almalki W.H. Kazmi I. Barbigerone prevents scopolamine-induced memory impairment in rats by inhibiting oxidative stress and acetylcholinesterase levels. R. Soc. Open Sci. 2023 10 4 230013 10.1098/rsos.230013 37063992
    [Google Scholar]
  35. Kazmi I. Al-Abbasi F.A. Afzal M. Shahid Nadeem M. Altayb H.N. Sterubin protects against chemically-induced Alzheimer’s disease by reducing biomarkers of inflammation- IL-6/ IL-β/ TNF-α and oxidative stress- SOD/MDA in rats. Saudi J. Biol. Sci. 2023 30 2 103560 10.1016/j.sjbs.2023.103560 36712184
    [Google Scholar]
  36. Jamal Gilani S. Nasser Bin-Jumah M. Al-Abbasi F.A. Shahid Nadeem M. Afzal M. Sayyed N. Kazmi I. Fustin ameliorates hyperglycemia in streptozotocin induced type-2 diabetes via modulating glutathione/Superoxide dismutase/Catalase expressions, suppress lipid peroxidation and regulates histopathological changes. Saudi J. Biol. Sci. 2021 28 12 6963 6971 10.1016/j.sjbs.2021.07.070 34866996
    [Google Scholar]
  37. Mohapatra D. Kanungo S. Pradhan S.P. Jena S. Prusty S.K. Sahu P.K. Captopril is more effective than Perindopril against aluminium chloride induced amyloidogenesis and AD like pathology. Heliyon 2022 8 2 e08935 10.1016/j.heliyon.2022.e08935 35243060
    [Google Scholar]
  38. Aksoz E. Gocmez S.S. Sahin T.D. Aksit D. Aksit H. Utkan T. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacol. Rep. 2019 71 5 818 825 10.1016/j.pharep.2019.04.015 31382167
    [Google Scholar]
  39. Djeuzong E. Kandeda A.K. Djiogue S. Stéphanie L. Nguedia D. Ngueguim F. Djientcheu J.P. Kouamouo J. Dimo T. Antiamnesic and neuroprotective effects of an aqueous extract of Ziziphus jujuba Mill. (Rhamnaceae) on scopolamine-induced cognitive impairments in rats. Evid. Based Complement. Alternat. Med. 2021 2021 1 15 10.1155/2021/5577163 34422074
    [Google Scholar]
  40. Ellman G.L. Courtney K.D. Andres V. Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  41. Nagakannan P. Shivasharan B.D. Thippeswamy B.S. Veerapur V.P. Restoration of brain antioxidant status by hydroalcoholic extract of Mimusops elengi flowers in rats treated with monosodium glutamate. J. Environ. Pathol. Toxicol. Oncol. 2012 31 3 213 221 10.1615/JEnvironPatholToxicolOncol.v31.i3.30 23339696
    [Google Scholar]
  42. Misra H.P. Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972 247 10 3170 3175 10.1016/S0021‑9258(19)45228‑9 4623845
    [Google Scholar]
  43. Afzal M. Alzarea S. Qua A.M. Kazmi I. Zafar A. Imam F. Al-Harb N.O. Alhar K.S. Alruwaili N.K. Boswellic acid attenuates scopolamine-induced neurotoxicity and dementia in rats: Possible mechanism of action. Int. J. Pharmacol. 2021 17 499 505 10.3923/ijp.2021.499.505
    [Google Scholar]
  44. Janeczek M. Gefen T. Samimi M. Kim G. Weintraub S. Bigio E. Rogalski E. Mesulam M.M. Geula C. Variations in acetylcholinesterase activity within human cortical pyramidal neurons across age and cognitive trajectories. Cereb. Cortex 2018 28 4 1329 1337 10.1093/cercor/bhx047 28334147
    [Google Scholar]
  45. Tsikas D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007 851 1-2 51 70 10.1016/j.jchromb.2006.07.054 16950667
    [Google Scholar]
  46. Kandeda A.K. Taiwe G.S. Moto F.C.O. Ngoupaye G.T. Nkantchoua G.C.N. Njapdounke J.S.K. Omam J.P.O. Pale S. Kouemou N. Ngo Bum E. Antiepileptogenic and neuroprotective effects of Pergularia daemia on pilocarpine model of epilepsy. Front. Pharmacol. 2017 8 440 10.3389/fphar.2017.00440 28713279
    [Google Scholar]
  47. Smith P.K. Krohn R.I. Hermanson G.T. Mallia A.K. Gartner F.H. Provenzano M.D. Fujimoto E.K. Goeke N.M. Olson B.J. Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985 150 1 76 85 10.1016/0003‑2697(85)90442‑7 3843705
    [Google Scholar]
  48. Tang K.S. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers. Life Sci. 2019 233 116695 10.1016/j.lfs.2019.116695 31351082
    [Google Scholar]
  49. Aydin E. Hritcu L. Dogan G. Hayta S. Bagci E. The effects of inhaled Pimpinella peregrina essential oil on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Mol. Neurobiol. 2016 53 9 6557 6567 10.1007/s12035‑016‑9693‑9 26768430
    [Google Scholar]
  50. Chavan R.S. Supalkar K.V. Sadar S.S. Vyawahare N.S. Animal models of Alzheimer’s disease: An origin of innovative treatments and insight to the disease’s etiology. Brain Res. 2023 1814 148449 10.1016/j.brainres.2023.148449 37302570
    [Google Scholar]
  51. Goverdhan P. Sravanthi A. Mamatha T. Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int. J. Alzheimers Dis. 2012 2012 1 8 10.1155/2012/974013 22536538
    [Google Scholar]
  52. Park H.S. Hwang E.S. Choi G.Y. Kim H.B. Park K.S. Sul J.Y. Hwang Y. Choi G.W. Kim B.I. Park H. Maeng S. Park J.H. Sulforaphane enhances long-term potentiation and ameliorate scopolamine-induced memory impairment. Physiol. Behav. 2021 238 113467 10.1016/j.physbeh.2021.113467 34033847
    [Google Scholar]
  53. Kraeuter A.K. Guest P.C. Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol. Biol. 2019 1916 105 111 10.1007/978‑1‑4939‑8994‑2_10 30535688
    [Google Scholar]
  54. Omer A.B. Afzal O. Altamimi A.S.A. Patil S. AlGhamdi S.A. Alghamdi A.M. Alzarea S.I. Almalki W.H. Kazmi I. Neuroprotective effect of barbaloin on streptozotocin-induced cognitive dysfunction in rats via inhibiting cholinergic and neuroinflammatory cytokines pathway─TNF-α/IL-1β/IL-6/NF-κB. ACS Omega 2023 8 8 8110 8118 10.1021/acsomega.2c08277 36872976
    [Google Scholar]
  55. Hritcu L. Cioanca O. Hancianu M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine 2012 19 6 529 534 10.1016/j.phymed.2012.02.002 22402245
    [Google Scholar]
  56. Maurer S.V. Williams C.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front. Immunol. 2017 8 1489 10.3389/fimmu.2017.01489 29167670
    [Google Scholar]
  57. Tao G. Min-Hua C. Feng-Chan X. Yan C. Ting S. Wei-Qin L. Wen-Kui Y. Changes of plasma acetylcholine and inflammatory markers in critically ill patients during early enteral nutrition: A prospective observational study. J. Crit. Care 2019 52 219 226 10.1016/j.jcrc.2019.05.008 31108325
    [Google Scholar]
  58. Barnham K.J. Masters C.L. Bush A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004 3 3 205 214 10.1038/nrd1330 15031734
    [Google Scholar]
  59. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  60. Cobb C.A. Cole M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis. 2015 84 4 21 10.1016/j.nbd.2015.04.020 26024962
    [Google Scholar]
  61. Sadraie S. Kiasalari Z. Razavian M. Azimi S. Sedighnejad L. Afshin-Majd S. Baluchnejadmojarad T. Roghani M. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: Insights into underlying molecular mechanisms. Metab. Brain Dis. 2019 34 1 245 255 10.1007/s11011‑018‑0349‑5 30456649
    [Google Scholar]
  62. Brandes M.S. Gray N.E. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 2020 12 10.1177/1759091419899782 31964153
    [Google Scholar]
  63. Buendia I. Michalska P. Navarro E. Gameiro I. Egea J. León R. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 2016 157 84 104 10.1016/j.pharmthera.2015.11.003 26617217
    [Google Scholar]
  64. Ishola I. Awoyemi A. Afolayan G. Involvement of antioxidant system in the amelioration of scopolamine-induced memory impairment by grains of paradise (Aframomum melegueta K. Schum.) extract. Drug Res. (Stuttg.) 2016 66 9 455 463 10.1055/s‑0042‑109391 27403576
    [Google Scholar]
  65. Ishola I.O. Jacinta A.A. Adeyemi O.O. Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: Role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab. Brain Dis. 2019 34 4 979 989 10.1007/s11011‑019‑00409‑0 30949953
    [Google Scholar]
  66. Ajayi A.M. Ben-Azu B. Godson J.C. Umukoro S. Effect of spondias mombin fruit extract on scopolamine-induced memory impairment and oxidative stress in mice brain. J. Herbs Spices Med. Plants 2021 27 1 24 36 10.1080/10496475.2020.1777613
    [Google Scholar]
  67. Khurana K. Kumar M. Bansal N. Lacidipine prevents scopolamine-induced memory impairment by reducing brain oxido-nitrosative stress in mice. Neurotox. Res. 2021 39 4 1087 1102 10.1007/s12640‑021‑00346‑w 33721210
    [Google Scholar]
  68. Asiimwe N. Yeo S.G. Kim M.S. Jung J. Jeong N.Y. Nitric oxide: Exploring the contextual link with Alzheimer’s disease. Oxid. Med. Cell. Longev. 2016 2016 1 7205747 10.1155/2016/7205747 28096943
    [Google Scholar]
  69. Umukoro S. Okoh L. Igweze S.C. Ajayi A.M. Ben-Azu B. Protective effect of Cyperus esculentus (tiger nut) extract against scopolamine-induced memory loss and oxidative stress in mouse brain. Drug Metab. Pers. Ther. 2020 35 3 20200112 32776896
    [Google Scholar]
  70. Tuppo E.E. Arias H.R. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2005 37 2 289 305 10.1016/j.biocel.2004.07.009 15474976
    [Google Scholar]
  71. Viau S. Pasquis B. Maire M.A. Fourgeux C. Grégoire S. Acar N. Bretillon L. Creuzot-Garcher C.P. Joffre C. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye. Graefes Arch. Clin. Exp. Ophthalmol. 2011 249 4 547 557 10.1007/s00417‑010‑1576‑6 21161262
    [Google Scholar]
  72. McGeer P.L. Rogers J. McGeer E.G. Inflammation, antiinflammatory agents, and alzheimer’s disease: The last 22 years. J. Alzheimers Dis. 2016 54 3 853 857 10.3233/JAD‑160488 27716676
    [Google Scholar]
  73. Xu H. Wang Z. Zhu L. Sui Z. Bi W. Liu R. Bi K. Li Q. Targeted neurotransmitters profiling identifies metabolic signatures in rat brain by LC-MS/MS: Application in insomnia, depression and Alzheimer’s disease. Molecules 2018 23 9 2375 10.3390/molecules23092375 30227663
    [Google Scholar]
  74. Wei B. Liu M. Chen Z. Wei M. Schisandrin ameliorates cognitive impairment and attenuates Aβ deposition in APP/PS1 transgenic mice: Involvement of adjusting neurotransmitters and their metabolite changes in the brain. Acta Pharmacol. Sin. 2018 39 4 616 625 10.1038/aps.2017.135 29323336
    [Google Scholar]
  75. Memo M. Missale C. Trivelli L. Spano P.F. Acute scopolamine treatment decreases dopamine metabolism in rat hippocampus and frontal cortex. Eur. J. Pharmacol. 1988 149 3 367 370 10.1016/0014‑2999(88)90670‑X 3409960
    [Google Scholar]
  76. Ashford J.W. Treatment of Alzheimer’s disease: Trazodone, sleep, serotonin, norepinephrine, and future directions. J. Alzheimers Dis. 2019 67 3 923 930 10.3233/JAD‑181106 30776014
    [Google Scholar]
  77. Chakraborty S. Lennon J.C. Malkaram S.A. Zeng Y. Fisher D.W. Dong H. Serotonergic system, cognition, and BPSD in Alzheimer’s disease. Neurosci. Lett. 2019 704 36 44 10.1016/j.neulet.2019.03.050 30946928
    [Google Scholar]
  78. Wang Z.X. Lian W.W. He J. He X.L. Wang Y.M. Pan C.H. Li M. Zhang W.K. Liu L.Q. Xu J.K. Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: Involvement of neurotransmitter and oxidative stress. J. Ethnopharmacol. 2022 293 115252 10.1016/j.jep.2022.115252 35405255
    [Google Scholar]
  79. Grouselle D. Winsky-Sommerer R. David J.P. Delacourte A. Dournaud P. Epelbaum J. Loss of somatostatin-like immunoreactivity in the frontal cortex of Alzheimer patients carrying the apolipoprotein epsilon 4 allele. Neurosci. Lett. 1998 255 1 21 24 10.1016/S0304‑3940(98)00698‑3 9839717
    [Google Scholar]
  80. Gueli M.C. Taibi G. Alzheimer’s disease: Amino acid levels and brain metabolic status. Neurol. Sci. 2013 34 9 1575 1579 10.1007/s10072‑013‑1289‑9 23354600
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330002241015085330
Loading
/content/journals/cmc/10.2174/0109298673330002241015085330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test