Skip to content
2000
image of Analyzing and Validating the Role of Genes Related to Glucagon-like Peptide-1 Signaling in the Prognosis of Pancreatic Cancer

Abstract

Aims

We aimed to develop a reliable prognostic tool related to glucagon-like peptide-1 (GLP-1) for guiding treatment of pancreatic cancer (PC).

Background

The treatment strategies for PC being greatly advanced the prognosis of cancer still remains unfavorable.

Objective

To develop a RiskScore model for evaluating PC prognosis.

Method

The bulk RNA-seq data of PC patients were obtained from the UCSCXena and GEO database, and the GSE156405 cohort was used for single-cell RNA-seq (scRNA-seq) analysis in the “Seurat” package. Firstly, the gene expression and mutation in the PC samples were analyzed to perform differentially expressed genes (DEGs) analysis using the “limma” package. The “survival” package was employed to conduct un/multivariate Cox regression and Kaplan-Meier (KM) survival analysis. Secondly, a RiskScore model was developed and assessed using the “glmnet” and “timeROC” packages. Next, the CIBERSORT algorithm and the ssGSEA method were applied for immune infiltration analysis and calculation of the immune cell scores, respectively. Finally, pathway enrichment analysis was conducted using gene set enrichment analysis (GSEA).

Results

Most GLP-1 signaling genes were overexpressed in the PC samples with multiple mutation types. LASSO analysis selected 3 GLP-1 genes for the development of a RiskScore model with a high classification accuracy (AUC >0.6). Notably, high-risk patients showed a significantly shorter survival time in both training and validation sets. In addition, as an independent factor, the RiskScore was further used to establish a nomogram model for the survival prediction of PC in clinical practice. The tumor microenvironment (TME) analysis revealed that low-risk patients with more abundant immune and stroma components had higher levels of anti-tumor immune cell infiltration (such as activated B and T cells), while the proliferation pathways (E2F targets, G2M checkpoint) were significantly activated in the high-risk groups. The genes in the RiskScore model may affect the survival of PC patients through modulating the activities of NK cells and macrophages.

Conclusion

We demonstrated that the GLP-1 signaling affected PC development and developed a reliable RiskSocre model for the prognosis assessment in PC. Our findings are expected to improve PC diagnosis and treatment in clinical practice.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367232250102015441
2025-02-12
2025-03-31
Loading full text...

Full text loading...

References

  1. Yee N.S. Immunotherapeutic approaches in Pancreatic adenocarcinoma: Current status and future perspectives. Curr. Mol. Pharmacol. 2016 9 3 231 241 10.2174/1874467208666150716120810 26177643
    [Google Scholar]
  2. Liu W. Lu Y. Zhang D. Shi L. Zu G. Yan H. Sun D. MicroRNA-708 inhibits the proliferation and chemoresistance of pancreatic cancer cells. Biocell 2020 44 1 73 80 10.32604/biocell.2020.08613
    [Google Scholar]
  3. Pourshams A. Sepanlou S.G. Ikuta K.S. Bisignano C. Safiri S. Roshandel G. Sharif M. Khatibian M. Fitzmaurice C. Nixon M.R. Abbasi N. Afarideh M. Ahmadian E. Akinyemiju T. Alahdab F. Alam T. Alipour V. Allen C.A. Anber N.H. Ansari-Moghaddam A. Arabloo J. Badawi A. Bagherzadeh M. Belayneh Y.M. Biadgo B. Bijani A. Biondi A. Bjørge T. Borzì A.M. Bosetti C. Briko A.N. Briko N.I. Carreras G. Carvalho F. Choi J-Y.J. Chu D-T. Dang A.K. Daryani A. Davitoiu D.V. Demoz G.T. Desai R. Dey S. Do H.T. Do H.P. Eftekhari A. Esteghamati A. Farzadfar F. Fernandes E. Filip I. Fischer F. Foroutan M. Gad M.M. Gallus S. Geta B. Gorini G. Hafezi-Nejad N. Harvey J.D. Hasankhani M. Hasanzadeh A. Hassanipour S. Hay S.I. Hidru H.D. Hoang C.L. Hostiuc S. Househ M. Ilesanmi O.S. Ilic M.D. Irvani S.S.N. Jafari Balalami N. James S.L. Joukar F. Kasaeian A. Kassa T.D. Kengne A.P. Khalilov R. Khan E.A. Khater A. Khosravi Shadmani F. Kocarnik J.M. Komaki H. Koyanagi A. Kumar V. La Vecchia C. Lopukhov P.D. Manafi F. Manafi N. Manda A-L. Mansour-Ghanaei F. Mehta D. Mehta V. Meier T. Meles H.G. Mengistu G. Miazgowski T. Mohamadnejad M. Mohammadian-Hafshejani A. Mohammadoo-Khorasani M. Mohammed S. Mohebi F. Mokdad A.H. Monasta L. Moossavi M. Moradzadeh R. Naik G. Negoi I. Nguyen C.T. Nguyen L.H. Nguyen T.H. Olagunju A.T. Olagunju T.O. Pennini A. Rabiee M. Rabiee N. Radfar A. Rahimi M. Rath G.K. Rawaf D.L. Rawaf S. Reiner R.C. Jr Rezaei N. Rezapour A. Saad A.M. Saadatagah S. Sahebkar A. Salimzadeh H. Samy A.M. Sanabria J. Sarveazad A. Sawhney M. Sekerija M. Shabalkin P. Shaikh M.A. Sharma R. Sheikhbahaei S. Shirkoohi R. Siddappa Malleshappa S.K. Sisay M. Soreide K. Soshnikov S. Sotoudehmanesh R. Starodubov V.I. Subart M.L. Tabarés-Seisdedos R. Tadesse D.B.B. Traini E. Tran B.X. Tran K.B. Ullah I. Vacante M. Vahedian-Azimi A. Varavikova E. Westerman R. Wondafrash D.D.Z. Xu R. Yonemoto N. Zadnik V. Zhang Z-J. Malekzadeh R. Naghavi M. GBD 2017 Pancreatic Cancer Collaborators The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019 4 12 934 947 10.1016/S2468‑1253(19)30347‑4 31648972
    [Google Scholar]
  4. Duan H. Li L. He S. Advances and prospects in the treatment of pancreatic cancer. Int. J. Nanomedicine 2023 18 3973 3988 10.2147/IJN.S413496 37489138
    [Google Scholar]
  5. Wang D. Shi Y. Wang Z. Zhang J. Wang L. Ma H. Shi S. Lian X. Huang H. Wang X. Lian C. Meiotic nuclear divisions 1 suppresses the proliferation and invasion of pancreatic cancer cells via regulating H2A.X variant histone. Biocell 2024 48 1 111 122 10.32604/biocell.2023.046903
    [Google Scholar]
  6. Blackford A.L. Canto M.I. Klein A.P. Hruban R.H. Goggins M. Recent trends in the incidence and survival of stage 1A pancreatic cancer: A surveillance, epidemiology, and end results analysis. J. Natl. Cancer Inst. 2020 112 11 1162 1169 10.1093/jnci/djaa004 31958122
    [Google Scholar]
  7. Blair A.B. Yin L.D. Pu N. Yu J. Groot V.P. Rozich N.S. Javed A.A. Zheng L. Cameron J.L. Burkhart R.A. Weiss M.J. Wolfgang C.L. He J. Recurrence in patients achieving pathological complete response after neoadjuvant treatment for advanced pancreatic cancer. Ann. Surg. 2021 274 1 162 169 10.1097/SLA.0000000000003570 32304375
    [Google Scholar]
  8. Lambert A. Schwarz L. Borbath I. Henry A. Van Laethem J.L. Malka D. Ducreux M. Conroy T. An update on treatment options for pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 2019 11 1758835919875568 10.1177/1758835919875568 31598142
    [Google Scholar]
  9. Sahin T.K. Ayasun R. Rizzo A. Guven D.C. Prognostic value of neutrophil-to-eosinophil ratio (NER) in cancer: A systematic review and meta-analysis. Cancers 2024 16 21 3689 10.3390/cancers16213689 39518127
    [Google Scholar]
  10. Di Federico A. Mosca M. Pagani R. Carloni R. Frega G. De Giglio A. Rizzo A. Ricci D. Tavolari S. Di Marco M. Palloni A. Brandi G. Immunotherapy in pancreatic cancer: Why do we keep failing? A focus on tumor immune microenvironment, predictive biomarkers and treatment outcomes. Cancers 2022 14 10 2429 10.3390/cancers14102429 35626033
    [Google Scholar]
  11. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support. Care Cancer 2023 31 11 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  12. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  13. De Luca R. Gianotti L. Pedrazzoli P. Brunetti O. Rizzo A. Sandini M. Paiella S. Pecorelli N. Pugliese L. Pietrabissa A. Zerbi A. Salvia R. Boggi U. Casirati A. Falconi M. Caccialanza R. Immunonutrition and prehabilitation in pancreatic cancer surgery: A new concept in the era of ERAS® and neoadjuvant treatment. Eur. J. Surg. Oncol. 2023 49 3 542 549 10.1016/j.ejso.2022.12.006 36577556
    [Google Scholar]
  14. Wolfgang C.L. Herman J.M. Laheru D.A. Klein A.P. Erdek M.A. Fishman E.K. Hruban R.H. Recent progress in pancreatic cancer. CA Cancer J. Clin. 2013 63 5 318 348 10.3322/caac.21190 23856911
    [Google Scholar]
  15. Pushalkar S. Hundeyin M. Daley D. Zambirinis C.P. Kurz E. Mishra A. Mohan N. Aykut B. Usyk M. Torres L.E. Werba G. Zhang K. Guo Y. Li Q. Akkad N. Lall S. Wadowski B. Gutierrez J. Kochen Rossi J.A. Herzog J.W. Diskin B. Torres-Hernandez A. Leinwand J. Wang W. Taunk P.S. Savadkar S. Janal M. Saxena A. Li X. Cohen D. Sartor R.B. Saxena D. Miller G. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018 8 4 403 416 10.1158/2159‑8290.CD‑17‑1134 29567829
    [Google Scholar]
  16. Carrer A. Trefely S. Zhao S. Campbell S.L. Norgard R.J. Schultz K.C. Sidoli S. Parris J.L.D. Affronti H.C. Sivanand S. Egolf S. Sela Y. Trizzino M. Gardini A. Garcia B.A. Snyder N.W. Stanger B.Z. Wellen K.E. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 2019 9 3 416 435 10.1158/2159‑8290.CD‑18‑0567 30626590
    [Google Scholar]
  17. Jerlhag E. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies. Front. Pharmacol. 2023 14 1063033 10.3389/fphar.2023.1063033 37063267
    [Google Scholar]
  18. Kabahizi A. Wallace B. Lieu L. Chau D. Dong Y. Hwang E.S. Williams K.W. Glucagon‐like peptide‐1 (GLP‐1) signalling in the brain: From neural circuits and metabolism to therapeutics. Br. J. Pharmacol. 2022 179 4 600 624 10.1111/bph.15682 34519026
    [Google Scholar]
  19. Müller T.D. Finan B. Bloom S.R. D’Alessio D. Drucker D.J. Flatt P.R. Fritsche A. Gribble F. Grill H.J. Habener J.F. Holst J.J. Langhans W. Meier J.J. Nauck M.A. Perez-Tilve D. Pocai A. Reimann F. Sandoval D.A. Schwartz T.W. Seeley R.J. Stemmer K. Tang-Christensen M. Woods S.C. DiMarchi R.D. Tschöp M.H. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019 30 72 130 10.1016/j.molmet.2019.09.010 31767182
    [Google Scholar]
  20. Yang F. Zeng F. Luo X. Lei Y. Li J. Lu S. Huang X. Lan Y. Liu R. GLP-1 Receptor: A New Target for Sepsis. Front. Pharmacol. 2021 12 706908 10.3389/fphar.2021.706908 34335269
    [Google Scholar]
  21. Xue S. Wasserfall C.H. Parker M. Brusko T.M. McGrail S. McGrail K. Moore M. Campbell-Thompson M. Schatz D.A. Atkinson M.A. Haller M.J. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Ann. N. Y. Acad. Sci. 2008 1150 1 152 156 10.1196/annals.1447.049 19120286
    [Google Scholar]
  22. Zhu C. Lai Y. Liu C. Teng L. Zhu Y. Lin X. Fu X. Lai Q. Liu S. Zhou X. Fang Y. Comprehensively prognostic and immunological analyses of GLP-1 signaling-related genes in pan-cancer and validation in colorectal cancer. Front. Pharmacol. 2024 15 1387243 10.3389/fphar.2024.1387243 39104385
    [Google Scholar]
  23. Zulibiya A. Single-cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot. Congenit. Heart Dis. 2023 18 6 611 625
    [Google Scholar]
  24. Zhou J. Guo L. Wang Y. Li L. Guo Y. Duan L. Jiao M. Xi P. Wang P. Development and validation of a risk prognostic model based on the H. pylori infection phenotype for stomach adenocarcinoma. Heliyon 2024 10 17 e36882 10.1016/j.heliyon.2024.e36882 39281596
    [Google Scholar]
  25. Niu X. Wang B. A network medical framework based on inflammatory genes to identify drug candidates for abdominal aortic aneurysms. Curr. Mol. Pharmacol. 2024 17 1 e170523216998 37198994
    [Google Scholar]
  26. Song Z. Transcriptome expression profile database and interactive analysis platform for congenital heart disease. Congenit. Heart Dis. 2023 18 6 693 701
    [Google Scholar]
  27. Wang Q. Qiao W. Zhang H. Liu B. Li J. Zang C. Mei T. Zheng J. Zhang Y. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Front. Immunol. 2022 13 1019638 10.3389/fimmu.2022.1019638 36505501
    [Google Scholar]
  28. Chu Y. Yao Y. Hu Q. Song Q. Riskscore model based on oxidative stress–related genes may facilitate the prognosis evaluation for patients with colon cancer. Clin. Transl. Gastroenterol. 2023 14 6 e00582 10.14309/ctg.0000000000000582 36927989
    [Google Scholar]
  29. Liang W. Luo Q. Zhang Z. Yang K. Yang A. Chi Q. Hu H. An integrated bioinformatics analysis and experimental study identified key biomarkers CD300A or CXCL1, pathways and immune infiltration in diabetic nephropathy mice. Biocell 2022 46 8 1989 2002 10.32604/biocell.2022.019300
    [Google Scholar]
  30. Charoentong P. Finotello F. Angelova M. Mayer C. Efremova M. Rieder D. Hackl H. Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017 18 1 248 262 10.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  31. Du X. Angiogenic gene PTK2 is a potential biomarker of gestational diabetes mellitus and is significantly associated with breast cancer immune infiltration. Oncologie 2022 24 4 769 787
    [Google Scholar]
  32. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  33. Jager L.E. Hazards in the plating industry. Occup. Health Rev. 1966 18 2 3 10 5982584
    [Google Scholar]
  34. McGuigan A. Kelly P. Turkington R.C. Jones C. Coleman H.G. McCain R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018 24 43 4846 4861 10.3748/wjg.v24.i43.4846 30487695
    [Google Scholar]
  35. Eso Y. Seno H. Current status of treatment with immune checkpoint inhibitors for gastrointestinal, hepatobiliary, and pancreatic cancers. Therap. Adv. Gastroenterol. 2020 13 1756284820948773 10.1177/1756284820948773 32913444
    [Google Scholar]
  36. Nauck M.A. Quast D.R. Wefers J. Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – State-of-the-art. Mol. Metab. 2021 46 101102 10.1016/j.molmet.2020.101102 33068776
    [Google Scholar]
  37. Newsome P.N. Buchholtz K. Cusi K. Linder M. Okanoue T. Ratziu V. Sanyal A.J. Sejling A.S. Harrison S.A. NN9931-4296 Investigators A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 2021 384 12 1113 1124 10.1056/NEJMoa2028395 33185364
    [Google Scholar]
  38. Li J. Jin C. Zou C. Qiao X. Ma P. Hu D. Li W. Jin J. Jin X. Fan P. GNG12 regulates PD‐L1 expression by activating NF‐κB signaling in pancreatic ductal adenocarcinoma. FEBS Open Bio 2020 10 2 278 287 10.1002/2211‑5463.12784 31898405
    [Google Scholar]
  39. Wong T.H. Chiu W.Z. Breedveld G.J. Li K.W. Verkerk A.J.M.H. Hondius D. Hukema R.K. Seelaar H. Frick P. Severijnen L.A. Lammers G.J. Lebbink J.H.G. van Duinen S.G. Kamphorst W. Rozemuller A.J. Bakker E.B. Neumann M. Willemsen R. Bonifati V. Smit A.B. van Swieten J. Netherlands Brain Bank International Parkinsonism Genetics Network PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain 2014 137 5 1361 1373 10.1093/brain/awu067 24722252
    [Google Scholar]
  40. Beristain A.G. Molyneux S.D. Joshi P.A. Pomroy N.C. Di Grappa M.A. Chang M.C. Kirschner L.S. Privé G.G. Pujana M.A. Khokha R. PKA signaling drives mammary tumorigenesis through Src. Oncogene 2015 34 9 1160 1173 10.1038/onc.2014.41 24662820
    [Google Scholar]
  41. Zhao A. Li D. Mao X. Yang M. Deng W. Hu W. Chen C. Yang G. Li L. GNG2 acts as a tumor suppressor in breast cancer through stimulating MRAS signaling. Cell Death Dis. 2022 13 3 260 10.1038/s41419‑022‑04690‑3 35322009
    [Google Scholar]
  42. Yajima I. Kumasaka M.Y. Yamanoshita O. Zou C. Li X. Ohgami N. Kato M. GNG2 inhibits invasion of human malignant melanoma cells with decreased FAK activity. Am. J. Cancer Res. 2014 4 2 182 188 24660107
    [Google Scholar]
  43. Sivori S. Pende D. Quatrini L. Pietra G. Della Chiesa M. Vacca P. Tumino N. Moretta F. Mingari M.C. Locatelli F. Moretta L. NK cells and ILCs in tumor immunotherapy. Mol. Aspects Med. 2021 80 100870 10.1016/j.mam.2020.100870 32800530
    [Google Scholar]
  44. Wang S. Liu W. Ly D. Xu H. Qu L. Zhang L. Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol. 2019 16 1 6 18 10.1038/s41423‑018‑0027‑x 29628498
    [Google Scholar]
  45. Germain C. Gnjatic S. Tamzalit F. Knockaert S. Remark R. Goc J. Lepelley A. Becht E. Katsahian S. Bizouard G. Validire P. Damotte D. Alifano M. Magdeleinat P. Cremer I. Teillaud J.L. Fridman W.H. Sautès-Fridman C. Dieu-Nosjean M.C. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care Med. 2014 189 7 832 844 10.1164/rccm.201309‑1611OC 24484236
    [Google Scholar]
  46. Mata M. Gerken C. Nguyen P. Krenciute G. Spencer D.M. Gottschalk S. Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov. 2017 7 11 1306 1319 10.1158/2159‑8290.CD‑17‑0263 28801306
    [Google Scholar]
  47. Palucka A.K. Coussens L.M. The basis of oncoimmunology. Cell 2016 164 6 1233 1247 10.1016/j.cell.2016.01.049 26967289
    [Google Scholar]
  48. Manohar M. Kandikattu H.K. Upparahalli Venkateshaiah S. Yadavalli C.S. Mishra A. Eosinophils in the pathogenesis of pancreatic disorders. Semin. Immunopathol. 2021 43 3 411 422 10.1007/s00281‑021‑00853‑0 33783592
    [Google Scholar]
  49. Zhang Y. Liu T. Deng Z. Fang W. Zhang X. Zhang S. Wang M. Luo S. Meng Z. Liu J. Sukhova G.K. Li D. McKenzie A.N.J. Libby P. Shi G.P. Guo J. Group 2 innate lymphoid cells protect mice from abdominal aortic aneurysm formation via IL5 and eosinophils. Adv. Sci. 2023 10 7 2206958 10.1002/advs.202206958 36592421
    [Google Scholar]
  50. Oshi M. Patel A. Le L. Tokumaru Y. Yan L. Matsuyama R. Endo I. Takabe K. G2M checkpoint pathway alone is associated with drug response and survival among cell proliferation-related pathways in pancreatic cancer. Am. J. Cancer Res. 2021 11 6 3070 3084 34249445
    [Google Scholar]
  51. Neoptolemos J.P. Stocken D.D. Friess H. Bassi C. Dunn J.A. Hickey H. Beger H. Fernandez-Cruz L. Dervenis C. Lacaine F. Falconi M. Pederzoli P. Pap A. Spooner D. Kerr D.J. Büchler M.W. European Study Group for Pancreatic Cancer A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2004 350 12 1200 1210 10.1056/NEJMoa032295 15028824
    [Google Scholar]
  52. Khan T. Seddon A. Dalgleish A. Khelwatty S. Ioannou N. Mudan S. Modjtahedi H. Synergistic activity of agents targeting growth factor receptors, CDKs and downstream signaling molecules in a panel of pancreatic cancer cell lines and the identification of antagonistic combinations: Implications for future clinical trials in pancreatic cancer. Oncol. Rep. 2020 44 6 2581 2594 10.3892/or.2020.7822 33125153
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367232250102015441
Loading
/content/journals/cmc/10.2174/0109298673367232250102015441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test