Skip to content
2000
image of Design, Synthesis, Molecular Docking, Pharmacokinetic Properties, and Molecular Dynamics Simulation of Sulfonyl Derivatives of Benzimidazole against Parkinson’s Disease

Abstract

Introduction

The disability and mortality related to Parkinson's disease (PD), a neurodegenerative disease, are increasing globally at a faster rate than other neurological disorders. With no permanent cure for PD, there is an urgent need to develop novel and effective anti-PD drugs.

Method

Targeting monoamine oxidases (MAO), which catalyze the breakdown of neurotransmitters, is one way to treat neurodegenerative diseases. In this context, an initial molecular docking of twenty designed sulfonyl derivatives of benzimidazole against monoamine oxidase B (MAO-B) associated with PD was conducted using AutoDock Vina.

Result

The results were compared with those of the conventional inhibitors, selegiline and rasagiline. Based on the docking score, the pharmacokinetic properties (ADME), drug-likeness, and toxicity profiles of the newly synthesized molecules were examined using SwissADME, PreADMET, ProTox-3.0, vNN, and ADMETlab web tools. Then, twelve potential derivatives were synthesized and characterized by IR, 1H-NMR, 13C-NMR, 19F-NMR (for some compounds), and mass spectrometry. Derivatives and were the two molecules having the best binding affinity of -11.9 and -11.8 kcal/mol, respectively, against MAO-B, exhibiting a higher binding affinity compared to that of some commercially available drugs. A 50 ns MD simulation run was performed to observe the stability of the top two docked complexes, MAO-B- and MAO-B-, in order to further validate the efficacy of those two substances. Moreover, the MM-PBSA method was used to calculate the final, binding free energy of the simulated (MAO-B-) complex.

Conclusion

This study indicates that the binding affinity of most of the hits was superior to that of known MAO inhibitors; therefore, these newly synthesized benzimidazole derivatives may be developed into essential drug candidates for the treatment of PD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673337912241007120510
2024-10-24
2025-06-24
The full text of this item is not currently available.

References

  1. Hou Y. Dan X. Babbar M. Wei Y. Hasselbalch S.G. Croteau D.L. Bohr V.A. Ageing as a risk factor for neuro-degenerative disease. Nat. Rev. Neurol. 2019 15 10 565 581 10.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  2. Zhang S. Dong H. Bian J. Li D. Liu C. Targeting amy-loid proteins for clinical diagnosis of neurodegenerative dis-eases. Fundam. Res. 2023 3 4 505 519 10.1016/j.fmre.2022.10.009 38933553
    [Google Scholar]
  3. Lim E.W. Aarsland D. Ffytche D. Taddei R.N. van Wamelen D.J. Wan Y.M. Tan E.K. Ray Chaudhuri K. Amyloid-β and Parkinson’s disease. J. Neurol. 2019 266 11 2605 2619 10.1007/s00415‑018‑9100‑8 30377818
    [Google Scholar]
  4. Klemann C.J.H.M. Martens G.J.M. Sharma M. Martens M.B. Isacson O. Gasser T. Visser J.E. Poelmans G. In-tegrated molecular landscape of Parkinson’s disease. NPJ Parkinsons Dis. 2017 3 1 14 10.1038/s41531‑017‑0015‑3 28649614
    [Google Scholar]
  5. Driver J.A. Logroscino G. Gaziano J.M. Kurth T. Inci-dence and remaining lifetime risk of Parkinson disease in ad-vanced age. Neurology 2009 72 5 432 438 10.1212/01.wnl.0000341769.50075.bb 19188574
    [Google Scholar]
  6. Cheng G. Liu Y. Ma R. Cheng G. Guan Y. Chen X. Wu Z. Chen T. Anti-parkinsonian therapy: Strategies for crossing the blood–brain barrier and nano-biological effects of nanomaterials. Nano-Micro Lett. 2022 14 1 105 10.1007/s40820‑022‑00847‑z 35426525
    [Google Scholar]
  7. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brun-din P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017 3 1 17013 10.1038/nrdp.2017.13 28332488
    [Google Scholar]
  8. Homayoun H. Parkinson disease. Ann. Intern. Med. 2018 169 5 ITC33 ITC48 10.7326/AITC201809040 30178019
    [Google Scholar]
  9. Pringsheim T. Day G.S. Smith D.B. Rae-Grant A. Licking N. Armstrong M.J. de Bie R.M.A. Roze E. Miyasaki J.M. Hauser R.A. Espay A.J. Martello J.P. Gurwell J.A. Billinghurst L. Sullivan K. Fitts M.S. Cothros N. Hall D.A. Rafferty M. Hagerbrant L. Has-tings T. O’Brien M.D. Silsbee H. Gronseth G. Lang A.E. Dopaminergic therapy for motor symptoms in early parkinson disease practice guideline summary: A report of the AAN guideline subcommittee. Neurology 2021 97 20 942 957 10.1212/WNL.0000000000012868 34782410
    [Google Scholar]
  10. Charvin D. Medori R. Hauser R.A. Rascol O. Therapeu-tic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat. Rev. Drug Discov. 2018 17 11 804 822 10.1038/nrd.2018.136 30262889
    [Google Scholar]
  11. Elkouzi A. Vedam-Mai V. Eisinger R.S. Okun M.S. Emerging therapies in Parkinson disease — Repurposed drugs and new approaches. Nat. Rev. Neurol. 2019 15 4 204 223 10.1038/s41582‑019‑0155‑7 30867588
    [Google Scholar]
  12. Hansen C.A. Miller D.R. Annarumma S. Rusch C.T. Ramirez-Zamora A. Khoshbouei H. Levodopa-induced dyskinesia: A historical review of Parkinson’s disease, do-pamine, and modern advancements in research and treatment. J. Neurol. 2022 269 6 2892 2909 10.1007/s00415‑022‑10963‑w 35039902
    [Google Scholar]
  13. Hely M.A. Morris J.G.L. Reid W.G.J. Trafficante R. Sydney multicenter study of Parkinson’s disease: Non‐L‐dopa–responsive problems dominate at 15 years. Mov. Disord. 2005 20 2 190 199 10.1002/mds.20324 15551331
    [Google Scholar]
  14. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  15. Jilani T.N. Sabir S. Patel P. Sharma S. Trihexyphenidyl. Treasure Island, FL StatPearls 2023
    [Google Scholar]
  16. Corea N. Benztropine xPharm: The Comprehensive Pharmacology Reference Academic Press 2007 1 4 10.1016/B978‑008055232‑3.61299‑1
    [Google Scholar]
  17. Jiang D.Q. Jiang L.L. Wang Y. Li M.X. The role of pramipexole in the treatment of patients with depression and Parkinson’s disease: A meta-analysis of randomized con-trolled trials. Asian J. Psychiatr. 2021 61 102691 10.1016/j.ajp.2021.102691 33992852
    [Google Scholar]
  18. Lloret S.P. Rascol O. Rotigotine for the treatment of ad-vanced Parkinson’s disease. Eur. Neurol. Rev. 2009 4 2 24 10.17925/ENR.2009.04.02.24
    [Google Scholar]
  19. Salat D. Tolosa E. Levodopa in the treatment of Parkin-son’s disease: Current status and new developments. J. Parkinsons Dis. 2013 3 3 255 269 10.3233/JPD‑130186 23948989
    [Google Scholar]
  20. Pålhagen S.E. Heinonen E. Use of selegiline as monotherapy and in combination with levodopa in the management of Parkinson’s disease: Perspectives from the MONOCOMB study Prog. Neurother. Neuropsychopharmacol 2008 3 1 10.1017/S174823210700002X
    [Google Scholar]
  21. Nayak L. Henchcliffe C. Rasagiline in treatment of Parkin-son’s disease. Neuropsychiatr. Dis. Treat. 2008 4 1 23 32 18728823
    [Google Scholar]
  22. Leegwater-Kim J. Waters C. Role of tolcapone in the treat-ment of Parkinson’s disease. Expert Rev. Neurother. 2007 7 12 1649 1657 10.1586/14737175.7.12.1649 18052761
    [Google Scholar]
  23. Zhu H. Lemos H. Bhatt B. Islam B.N. Singh A. Gurav A. Huang L. Browning D.D. Mellor A. Fulzele S. Singh N. Carbidopa, a drug in use for management of Parkinson disease inhibits T cell activation and autoimmuni-ty. PLoS One 2017 12 9 e0183484 10.1371/journal.pone.0183484 28898256
    [Google Scholar]
  24. Rascol O. Fabbri M. Poewe W. Amantadine in the treat-ment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021 20 12 1048 1056 10.1016/S1474‑4422(21)00249‑0 34678171
    [Google Scholar]
  25. Walag A.M.P. Ahmed O. Jeevanandam J. Akram M. Ephraim-Emmanuel B.C. Egbuna C. Semwal P. Iqbal M. Hassan S. Uba J.O. Health benefits of organosulfur compounds. Functional Foods and Nutraceuticals. Eg-buna C. Dable Tupas G. Cham Springer International Pub-lishing 2020 445 472 10.1007/978‑3‑030‑42319‑3_21
    [Google Scholar]
  26. Osipova V. Polovinkina M. Gracheva Y. Shpakovsky D. Osipova A. Berberova N. Antioxidant activity of some organosulfur compounds in vitro. Arab. J. Chem. 2021 14 4 103068 10.1016/j.arabjc.2021.103068
    [Google Scholar]
  27. Osmont K.S. Arnt C.R. Goldman I.L. Temporal aspects of onion-induced antiplatelet activity. Plant Foods Hum. Nutr. 2003 58 1 27 40 10.1023/A:1024062330700 12859011
    [Google Scholar]
  28. Schepetkin I.A. Kirpotina L.N. Khlebnikov A.I. Bal-asubramanian N. Quinn M.T. Neutrophil immunomodula-tory activity of natural organosulfur compounds. Molecules 2019 24 9 1809 10.3390/molecules24091809 31083328
    [Google Scholar]
  29. Moriguchi T. Saito H. Nishiyama N. Anti-ageing effect of aged garlic extract in the inbred brain atrophy mouse model. Clin. Exp. Pharmacol. Physiol. 1997 24 3-4 235 242 10.1111/j.1440‑1681.1997.tb01813.x 9131291
    [Google Scholar]
  30. Bhatwalkar S.B. Mondal R. Krishna S.B.N. Adam J.K. Govender P. Anupam R. Antibacterial properties of or-ganosulfur compounds of garlic (Allium sativum). Front. Microbiol. 2021 12 613077 10.3389/fmicb.2021.613077 34394014
    [Google Scholar]
  31. Nair A.S. Singh A.K. Kumar A. Kumar S. Sukumaran S. Koyiparambath V.P. Pappachen L.K. Rangarajan T.M. Kim H. Mathew B. FDA-approved trifluoromethyl group-containing drugs: A review of 20 years. Processes (Basel) 2022 10 10 2054 10.3390/pr10102054
    [Google Scholar]
  32. Bastos M.M. Costa C.C.P. Bezerra T.C. da Silva F.C. Boechat N. Efavirenz a nonnucleoside reverse transcriptase inhibitor of first-generation: Approaches based on its medici-nal chemistry. Eur. J. Med. Chem. 2016 108 455 465 10.1016/j.ejmech.2015.11.025 26708112
    [Google Scholar]
  33. Wong D.T. Perry K.W. Bymaster F.P. Case history: The discovery of fluoxetine hydrochloride (Prozac). Nat. Rev. Drug Discov. 2005 4 9 764 774 10.1038/nrd1821 16121130
    [Google Scholar]
  34. Walker C. Are All Oral COX-2 selective inhibitors the same? A consideration of celecoxib, etoricoxib, and diclo-fenac. Int. J. Rheumatol. 2018 2018 1 12 10.1155/2018/1302835 30631366
    [Google Scholar]
  35. Nepali K. Lee H.Y. Liou J.P. Nitro-group-containing drugs. J. Med. Chem. 2019 62 6 2851 2893 10.1021/acs.jmedchem.8b00147 30295477
    [Google Scholar]
  36. Löfmark S. Edlund C. Nord C.E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 2010 50 Suppl. 1 S16 S23 10.1086/647939 20067388
    [Google Scholar]
  37. Gler M.T. Skripconoka V. Sanchez-Garavito E. Xiao H. Cabrera-Rivero J.L. Vargas-Vasquez D.E. Gao M. Awad M. Park S.K. Shim T.S. Suh G.Y. Danilovits M. Ogata H. Kurve A. Chang J. Suzuki K. Tupasi T. Koh W.J. Seaworth B. Geiter L.J. Wells C.D. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med. 2012 366 23 2151 2160 10.1056/NEJMoa1112433 22670901
    [Google Scholar]
  38. Kuhlmann F.M. Fleckenstein J.M. Antiparasitic agents. Infectious Diseases. Elsevier 2017 1345 1372.e2 10.1016/B978‑0‑7020‑6285‑8.00157‑X
    [Google Scholar]
  39. Noriega S. Cardoso-Ortiz J. López-Luna A. Cuevas-Flores M.D.R. Flores De La Torre J.A. The diverse bio-logical activity of recently synthesized nitro compounds. Pharmaceuticals (Basel) 2022 15 6 717 10.3390/ph15060717 35745635
    [Google Scholar]
  40. Sen S. Singh B. Biswas G. Corticosteroids: A boon or bane for COVID-19 patients? Steroids 2022 188 109102 10.1016/j.steroids.2022.109102 36029810
    [Google Scholar]
  41. Bitew M. Desalegn T. Demissie T.B. Belayneh A. En-dale M. Eswaramoorthy R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One 2021 16 12 e0260853 10.1371/journal.pone.0260853 34890431
    [Google Scholar]
  42. Pathare B. Bansode T. Review - Biological active benzim-idazole derivatives. Results in Chemistry 2021 3 100200 10.1016/j.rechem.2021.100200
    [Google Scholar]
  43. Albino S.L. da Silva J.M. de C Nobre, M.S.; de M E Sil-va, Y.M.S.; Santos, M.B.; de Araújo, R.S.A.; do C A de Lima, M.; Schmitt, M.; de Moura, R.O. Bioprospecting of nitrogenous heterocyclic scaffolds with potential action for neglected parasitosis: A review. Curr. Pharm. Des. 2020 26 33 4112 4150 10.2174/1381612826666200701160904 32611290
    [Google Scholar]
  44. Abdel-Wahab B. Shaaban S. Thiazolothiadiazoles and thiazolooxadiazoles: Synthesis and biological applications. Synthesis 2014 46 13 1709 1716 10.1055/s‑0033‑1338627
    [Google Scholar]
  45. Singh K. Pal R. Khan S.A. Kumar B. Akhtar M.J. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepres-sant compounds: An updated review. J. Mol. Struct. 2021 1237 130369 10.1016/j.molstruc.2021.130369
    [Google Scholar]
  46. El-Senduny F.F. Shabana S.M. Rösel D. Brabek J. Althagafi I. Angeloni G. Manolikakes G. Shaaban S. Urea-functionalized organoselenium compounds as promis-ing anti-HepG2 and apoptosis-inducing agents. Future Med. Chem. 2021 13 19 1655 1677 10.4155/fmc‑2021‑0114 34427101
    [Google Scholar]
  47. Yadav S. Narasimhan B. kaur, H. Perspectives of benzim-idazole derivatives as anticancer agents in the new era. Anticancer. Agents Med. Chem. 2016 16 11 1403 1425 10.2174/1871520616666151103113412 26526461
    [Google Scholar]
  48. Kanwal A. Ahmad M. Aslam S. Naqvi S.A.R. Saif M.J. Recent advances in antiviral benzimidazole derivatives: A mini review. Pharm. Chem. J. 2019 53 3 179 187 10.1007/s11094‑019‑01976‑3
    [Google Scholar]
  49. Iemura R. Kawashima T. Fukuda T. Ito K. Tsukamoto G. Synthesis of benzimidazole derivatives as potential H 1 ‐antihistaminic agents. J. Heterocycl. Chem. 1987 24 1 31 37 10.1002/jhet.5570240107
    [Google Scholar]
  50. Gaba M. Singh S. Mohan C. Benzimidazole: An emerg-ing scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem. 2014 76 494 505 10.1016/j.ejmech.2014.01.030 24602792
    [Google Scholar]
  51. Bansal Y. Silakari O. The therapeutic journey of benzimid-azoles: A review. Bioorg. Med. Chem. 2012 20 21 6208 6236 10.1016/j.bmc.2012.09.013 23031649
    [Google Scholar]
  52. Welage L.S. Berardi R.R. Evaluation of omeprazole, lan-soprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J. Am. Pharm. Assoc. 2000 40 1 52 62 10.1016/S1086‑5802(16)31036‑1
    [Google Scholar]
  53. Anastassova N. Aluani D. Hristova-Avakumova N. Tzankova V. Kondeva-Burdina M. Rangelov M. Todo-rova N. Yancheva D. Study on the neuroprotective, radical-scavenging and mao-b inhibiting properties of new benzim-idazole arylhydrazones as potential multi-target drugs for the treatment of Parkinson’s disease. Antioxidants 2022 11 5 884 10.3390/antiox11050884 35624746
    [Google Scholar]
  54. Roy S. Sen S. Saha S. Deb S.K. Singh B. Biswas G. Design, synthesis and molecular docking studies of 5-fluoro 1-aryl/alkyl sulfonyl benzimidazole derivatives for treatment of Parkinson’s disease. Phosphorus Sulfur Silicon Relat. Elem. 2023 198 4 336 344 10.1080/10426507.2022.2150852
    [Google Scholar]
  55. Binda C. Hubálek F. Li M. Herzig Y. Sterling J. Ed-mondson D.E. Mattevi A. Binding of rasagiline-related in-hibitors to human monoamine oxidases: A kinetic and crys-tallographic analysis. J. Med. Chem. 2005 48 26 8148 8154 10.1021/jm0506266 16366596
    [Google Scholar]
  56. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Be-lew R.K. Goodsell D.S. Olson A.J. AutoDock4 and Au-toDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  57. O’Boyle N.M. Banck M. James C.A. Morley C. Van-dermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  58. Sen S. Baildya N. Alphonse-Mendoza M. Singh B. Chakraborty S. Nath Ghosh N. Biswas G. Experimental and theoretical study on supramolecular encapsulation of molnupiravir by cucurbit[7]uril: A potential formulating agent for COVID-19. J. Mol. Liq. 2023 ••• 123877 10.1016/j.molliq.2023.123877
    [Google Scholar]
  59. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, effi-cient optimization, and multithreading. J. Comput. Chem. 2009 31 2 451 461 10.1002/jcc.21334
    [Google Scholar]
  60. Pawar S.S. Rohane S.H. Review on discovery studio: An important tool for molecular docking. Asian J. Res. Chem 2021 14 1 1 3 10.5958/0974‑4150.2021.00014.6
    [Google Scholar]
  61. Introducing PyMOL 3.0 2024 Available from: https://www.pymol.org/
  62. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  63. Viana Nunes A.M. das Chagas Pereira de Andrade, F.; Filgueiras, L.A.; de Carvalho Maia, O.A.; Cunha, R.L.O.R.; Rodezno, S.V.A.; Maia Filho, A.L.M.; de Amorim Car-valho, F.A.; Braz, D.C.; Mendes, A.N. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environ. Toxicol. Pharmacol. 2020 80 103470 10.1016/j.etap.2020.103470 32814174
    [Google Scholar]
  64. Remko M. Theoretical study of molecular structure, pKa, lipophilicity, solubility, absorption, and polar surface area of some hypoglycemic agents. J. Mol. Struct. Theochem 2009 897 1-3 73 82 10.1016/j.theochem.2008.11.021
    [Google Scholar]
  65. Dong J. Wang N.N. Yao Z.J. Zhang L. Cheng Y. Ouyang D. Lu A.P. Cao D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehen-sively collected ADMET database. J. Cheminform. 2018 10 1 29 10.1186/s13321‑018‑0283‑x 29943074
    [Google Scholar]
  66. Schyman P. Liu R. Desai V. Wallqvist A. vNN web server for ADMET predictions. Front. Pharmacol. 2017 8 889 10.3389/fphar.2017.00889 29255418
    [Google Scholar]
  67. Banerjee P. Kemmler E. Dunkel M. Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 52 W1 W513 W520 10.1093/nar/gkae303 38647086
    [Google Scholar]
  68. Cai H. Liu Q. Gao D. Wang T. Chen T. Yan G. Chen K. Xu Y. Wang H. Li Y. Zhu W. Novel fatty acid binding protein 4 (FABP4) inhibitors: Virtual screening, synthesis and crystal structure determination. Eur. J. Med. Chem. 2015 90 241 250 10.1016/j.ejmech.2014.11.020 25461324
    [Google Scholar]
  69. Gao X. Yu B. Mei Q. Yang Z. Zhao Y. Zhang H. Hao L. Liu Z. Atmospheric CO 2 promoted synthesis of N-containing heterocycles over B(C 6 F 5) 3 catalyst. New J. Chem. 2016 40 10 8282 8287 10.1039/C6NJ01721E
    [Google Scholar]
  70. Peng J. Ye M. Zong C. Hu F. Feng L. Wang X. Wang Y. Chen C. Copper-catalyzed intramolecular C-N bond formation: A straightforward synthesis of benzimidaz-ole derivatives in water. J. Org. Chem. 2011 76 2 716 719 10.1021/jo1021426 21175149
    [Google Scholar]
  71. Cheddie A. Shintre S.A. Bantho A. Mocktar C. Koorbanally N.A. Synthesis and antibacterial activity of a series of 2‐trifluoromethylbenzimidazole‐thiazolidinone de-rivatives. J. Heterocycl. Chem. 2020 57 1 299 307 10.1002/jhet.3777
    [Google Scholar]
  72. Zhang X. Huang R. Marrot J. Coeffard V. Xiong Y. Hypervalent iodine-mediated synthesis of benzoxazoles and benzimidazoles via an oxidative rearrangement. Tetrahedron 2015 71 4 700 708 10.1016/j.tet.2014.11.066
    [Google Scholar]
  73. Hasan M. Rashid N. Malik F. Akhtar K. Osman S. Duddeck H. Preparation, separation and NMR spectral peak assignment of regio-isomeric unsymmetrical benzimidazoles. J. Chem. Soc. Pak. 1992 14 1 54 59
    [Google Scholar]
  74. Yu X. Ma Z. Zhu W. Liu H. Zhang Z. Liu Y. Zhang M. Zhao J. Zhang P. Xia C. Tandem reduction, ammono-lysis, condensation, and deamination reaction for synthesis of benzothiadiazines and 1-(phenylsulfonyl)-1 H -benzimidazoles. J. Org. Chem. 2022 87 21 14738 14752 10.1021/acs.joc.2c02071 36269195
    [Google Scholar]
  75. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  76. Lee S. Tran A. Allsopp M. Lim J.B. Hénin J. Klauda J.B. CHARMM36 united atom chain model for lipids and surfactants. J. Phys. Chem. B 2014 118 2 547 556 10.1021/jp410344g 24341749
    [Google Scholar]
  77. Vanommeslaeghe K. Hatcher E. Acharya C. Kundu S. Zhong S. Shim J. Darian E. Guvench O. Lopes P. Vorobyov I. Mackerell A.D. CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comput. Chem. 2010 31 4 671 690 10.1002/jcc.21367 19575467
    [Google Scholar]
  78. Vanommeslaeghe K. MacKerell A.D. Automation of the CHARMM General Force Field (CGenFF) I: bond percep-tion and atom typing. J. Chem. Inf. Model. 2012 52 12 3144 3154 10.1021/ci300363c 23146088
    [Google Scholar]
  79. Kumari R. Kumar R. Lynn A. g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calcula-tions. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  80. De Virgilio A. Greco A. Fabbrini G. Inghilleri M. Riz-zo M.I. Gallo A. Conte M. Rosato C. Ciniglio Appiani M. de Vincentiis M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev. 2016 15 10 1005 1011 10.1016/j.autrev.2016.07.022 27497913
    [Google Scholar]
  81. Ellis J.M. Fell M.J. Current approaches to the treatment of Parkinson’s Disease. Bioorg. Med. Chem. Lett. 2017 27 18 4247 4255 10.1016/j.bmcl.2017.07.075 28869077
    [Google Scholar]
  82. Guglielmi P. Carradori S. D’Agostino I. Campestre C. Petzer J.P. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin. Ther. Pat. 2022 32 8 849 883 10.1080/13543776.2022.2083501 35638744
    [Google Scholar]
  83. Mao F. Ni W. Xu X. Wang H. Wang J. Ji M. Li J. Chemical structure-related drug-like criteria of global ap-proved drugs. Molecules 2016 21 1 75 10.3390/molecules21010075 26771590
    [Google Scholar]
  84. Benedetto Tiz D. Bagnoli L. Rosati O. Marini F. Sanci-neto L. Santi C. New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and phar-maceutical use. Molecules 2022 27 5 1643 10.3390/molecules27051643 35268744
    [Google Scholar]
  85. Jayan J. Lee J. Kumar S. Manoharan A. Narayanan A.P. Jauhari R. Abdelgawad M.A. Ghoneim M.M. Ebrahim H.A. Mary Zachariah S. Kim H. Mathew B. Development of a new class of monoamine oxidase-B inhibi-tors by fine-tuning the halogens on the acylhydrazones. ACS Omega 2023 8 50 47606 47615 10.1021/acsomega.3c05719 38144071
    [Google Scholar]
  86. Mathew B. Mathew G.E. Ucar G. Joy M. Nafna E.K. Lohidakshan K.K. Suresh J. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int. J. Biol. Macromol. 2017 104 Pt A 1321 1329 10.1016/j.ijbiomac.2017.05.162 28577983
    [Google Scholar]
  87. Pinheiro P.S.M. Franco L.S. Fraga C.A.M. The magic methyl and its tricks in drug discovery and development. Pharmaceuticals (Basel) 2023 16 8 1157 10.3390/ph16081157 37631072
    [Google Scholar]
  88. Adam M.S.S. Abu-Dief A.M. Makhlouf M.M. Shaaban S. Alzahrani S.O. Alkhatib F. Masaret G.S. Mohamed M.A. Alsehli M. El-Metwaly N.M. Mohamad A.D.M. Tailoring, structural inspection of novel oxy and non-oxy metal-imine chelates for DNA interaction, pharmaceutical and molecular docking studies. Polyhedron 2021 201 115167 10.1016/j.poly.2021.115167
    [Google Scholar]
  89. Shaaban S. Al-Faiyz Y.S. Alsulaim G.M. Alaasar M. Amri N. Ba-Ghazal H. Al-Karmalawy A.A. Abdou A. Synthesis of new organoselenium-based succinanilic and ma-leanilic derivatives and in silico studies as possible SARS-CoV-2 main protease inhibitors. Inorganics (Basel) 2023 11 8 321 10.3390/inorganics11080321
    [Google Scholar]
  90. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solu-bility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  91. Pathak M. Ojha H. Tiwari A.K. Sharma D. Saini M. Kakkar R. Design, synthesis and biological evaluation of an-timalarial activity of new derivatives of 2,4,6-s-triazine. Chem. Cent. J. 2017 11 1 132 10.1186/s13065‑017‑0362‑5 29256159
    [Google Scholar]
  92. Clark D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci. 1999 88 8 807 814 10.1021/js9804011 10430547
    [Google Scholar]
  93. Landry M.L. Crawford J.J. Log D. Log D contributions of substituents commonly used in medicinal chemistry. ACS Med. Chem. Lett. 2020 11 1 72 76 10.1021/acsmedchemlett.9b00489 31938466
    [Google Scholar]
  94. Shaaban S. Shabana S.M. Al-Faiyz Y.S. Manolikakes G. El-Senduny F.F. Enhancing the chemosensitivity of HepG2 cells towards cisplatin by organoselenium pseudo-peptides. Bioorg. Chem. 2021 109 104713 10.1016/j.bioorg.2021.104713 33611136
    [Google Scholar]
  95. Sharma B. Bhattacherjee D. Zyryanov G.V. Purohit R. An insight from computational approach to explore novel, high-affinity phosphodiesterase 10A inhibitors for neurolog-ical disorders. J. Biomol. Struct. Dyn. 2022 41 19 9424 9436 10.1080/07391102.2022.2141895 36336960
    [Google Scholar]
  96. Aier I. Varadwaj P.K. Raj U. Structural insights into con-formational stability of both wild-type and mutant EZH2 re-ceptor. Sci. Rep. 2016 6 1 34984 10.1038/srep34984 27713574
    [Google Scholar]
  97. Alomair L. Mustafa S. Jafri M.S. Alharbi W. Aljouie A. Almsned F. Alawad M. Bokhari Y.A. Rashid M. Molecular dynamics simulations to decipher the role of phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in viral replication. Viruses 2022 14 11 2436 10.3390/v14112436 36366534
    [Google Scholar]
  98. Lobanov M.Y. Bogatyreva N.S. Galzitskaya O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008 42 4 623 628 10.1134/S0026893308040195 18856071
    [Google Scholar]
  99. Bhowmik D. Sharma R.D. Prakash A. Kumar D. Identi-fication of Nafamostat and VR23 as COVID-19 drug candi-dates by targeting 3CLpro and PLpro. J. Mol. Struct. 2021 1233 130094 10.1016/j.molstruc.2021.130094 33612858
    [Google Scholar]
  100. Maiorov V.N. Crippen G.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 1994 235 2 625 634 10.1006/jmbi.1994.1017 8289285
    [Google Scholar]
  101. Pandey B. Grover A. Mechanistic and Structural Insight into R2R3-MYB Transcription Factor in Plants: Molecular Dynamics Based Binding Free Energy Analysis. J. Biomol. Struct. Dyn. 2023 42 5 2632 2642 10.1080/07391102.2023.2206911 37154800
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673337912241007120510
Loading
/content/journals/cmc/10.2174/0109298673337912241007120510
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Parkinson’s disease ; drug-likeness ; docking ; benzimidazole ; MD simulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test