Skip to content
2000
Volume 33, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

A series of benzylidene derivatives of fenobam and its thio analogues () have been evaluated for their cytotoxicity against breast cancer (MCF-7, MDA-MB-231), ovarian cancer (A2780, SKOV-3) and cervical cancer (HELA) cell lines.

Methods

These compounds () exhibited 72-83% inhibition of Erk activity against the ovarian cancer cell line (A2780). Compounds and showed the highest DNA damage effect in comet assay against the A2780 cancer cell line as compared to the other tested analogues (, , , , and ) by using % Tail DNA and OTM. Compounds , and 11 showed significant activities and selectivity towards COX-2 with 78%, 97%, and 89% inhibition, as compared to 17%, 57%, and 26% inhibition against COX-1 isoenzyme, respectively.

Results

Interestingly, molecular docking scores were also in very good agreement with the experimental results regarding discriminating the selectivity index of the tested compounds against COX-1 & COX-2 enzymes. Further molecular dynamics (MD) simulation study revealed that the most selective compound, 13, binds with the COX-2 enzyme in a similar fashion to that of Rofecoxib, which was further supported by their MD-based free binding energies (MM-GBSA) of -49.76 ± 4.27 kcal/mol, and -44.84 ±3.78 kcal/mol, respectively.

Conclusion

Moreover, ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345068241120045638
2024-12-16
2026-02-19
Loading full text...

Full text loading...

References

  1. AkhtarW. NainwalL.M. KhanM.F. VermaG. ChashooG. BakhtA. IqbalM. AkhtarM. ShaquiquzzamanM. AlamM.M. Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents.J. Fluor. Chem.202023610957910.1016/j.jfluchem.2020.109579
    [Google Scholar]
  2. WHO report on cancer: Setting priorities, investing wisely and providing care for allWorld Health Organization20201149
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  4. MajérusM-A. The cause of cancer: The unifying theory.Advances in Cancer Biology - Metastasis.Elsevier2022100034
    [Google Scholar]
  5. MoonJ. KittyI. RenataK. QinS. ZhaoF. KimW. DNA damage and its role in cancer therapeutics.Int. J. Mol. Sci.2023245474110.3390/ijms24054741 36902170
    [Google Scholar]
  6. HuangR. ZhouP.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy.Signal Transduct. Target. Ther.20216125410.1038/s41392‑021‑00648‑7 34238917
    [Google Scholar]
  7. CooperG.M. A Molecular Approach.The Development and Causes of Cancer.2nd edSinauer Associates2000
    [Google Scholar]
  8. BalkwillF. MantovaniA. Inflammation and cancer: Back to Virchow?Lancet2001357925553954510.1016/S0140‑6736(00)04046‑0 11229684
    [Google Scholar]
  9. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  10. RuddarrajuR.R. MurugullaA.C. KotlaR. Chandra Babu TirumalasettyM. WudayagiriR. DonthabakthuniS. MarojuR. BaburaoK. ParasaL.S. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives.Eur. J. Med. Chem.201612337939610.1016/j.ejmech.2016.07.024 27487568
    [Google Scholar]
  11. VenugopalaK.N. Targeting the DNA damage response machinery for lung cancer treatment.Pharmaceuticals20221512147510.3390/ph15121475 36558926
    [Google Scholar]
  12. SchmidtA. WeberO.F. In memoriam of Rudolf virchow: A historical retrospective including aspects of inflammation, infection and neoplasia.Contrib. Microbiol.20061311510.1159/000092961 16627956
    [Google Scholar]
  13. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature01322 12490959
    [Google Scholar]
  14. MantovaniA. AllavenaP. SicaA. BalkwillF. Cancer-related inflammation.Nature2008454720343644410.1038/nature07205 18650914
    [Google Scholar]
  15. BiltekinS.N. KaradağA.E. DemirciF. DemirciB. In vitro anti-inflammatory and anticancer evaluation of Mentha spicata L. and Matricaria chamomilla L. Essential Oils.ACS Omega2023819171431715010.1021/acsomega.3c01501 37214687
    [Google Scholar]
  16. Hashemi GoradelN. NajafiM. SalehiE. FarhoodB. MortezaeeK. Cyclooxygenase-2 in cancer: A review.J. Cell. Physiol.201923455683569910.1002/jcp.27411 30341914
    [Google Scholar]
  17. HungJ.H. SuI.J. LeiH.Y. WangH.C. LinW.C. ChangW.T. HuangW. ChangW.C. ChangY.S. ChenC.C. LaiM.D. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase.J. Biol. Chem.200427945463844639210.1074/jbc.M403568200 15319438
    [Google Scholar]
  18. GuoY.J. PanW.W. LiuS.B. ShenZ.F. XuY. HuL.L. ERK/MAPK signalling pathway and tumorigenesis.Exp. Ther. Med.202019319972007 32104259
    [Google Scholar]
  19. LaxN.C. GeorgeD.C. IgnatzC. KolberB.J. The mGluR5 antagonist fenobam induces analgesic conditioned place preference in mice with spared nerve injury.PLoS One201497e10352410.1371/journal.pone.0103524 25061818
    [Google Scholar]
  20. PorterR.H.P. JaeschkeG. SpoorenW. BallardT.M. BüttelmannB. KolczewskiS. PetersJ.U. PrinssenE. WichmannJ. VieiraE. MühlemannA. GattiS. MutelV. MalherbeP. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity.J. Pharmacol. Exp. Ther.2005315271172110.1124/jpet.105.089839 16040814
    [Google Scholar]
  21. JacobW. GraviusA. PietraszekM. NagelJ. BelozertsevaI. ShekunovaE. MalyshkinA. GrecoS. BarberiC. DanyszW. The anxiolytic and analgesic properties of fenobam, a potent mGlu5 receptor antagonist, in relation to the impairment of learning.Neuropharmacology20095729710810.1016/j.neuropharm.2009.04.011 19426746
    [Google Scholar]
  22. VenugopalaK.N. DebP.K. HouraniW. NefisathP. MorsyM.A. ShashiprabhaS. DasappaJ.P. VenugopalaR. MailavaramR.P. Benzylidene derivatives of fenobam as anti-inflammatory agents.US Patent 119052792024
  23. P, N.; Prasad Dasappa, J.; B, H.; Chopra, D.; Venugopala, K.N.; Deb, P.K.; Gleiser, R.M.; Mohanlall, V.; Maharaj, R.; S, S.; Poojary, V. Synthesis, characterization and larvicidal activity of novel benzylidene derivatives of fenobam and its thio analogues with crystal insight.J. Mol. Struct.2021122612938610.1016/j.molstruc.2020.129386
    [Google Scholar]
  24. DasappaJ.P. NefisathP. ChopraH.B. VenugopalaK.N. ChopraH.B. KishoreP. GleiserR.M. MohanlallV. MaharajR. Synthesis, structural elucidation and larvicidal activity of novel arylhydrazones.J. Mol. Struct.20211236130305
    [Google Scholar]
  25. SimonettiG. BaffaS. SimonettiN. Contact imidazole activity against resistant bacteria and fungi.Int. J. Antimicrob. Agents200117538939310.1016/S0924‑8579(01)00306‑5 11337226
    [Google Scholar]
  26. StrippoliV. D’AuriaF.D. TeccaM. CallariA. SimonettiG. Propyl gallate increases in vitro antifungal imidazole activity against Candida albicans.Int. J. Antimicrob. Agents2000161737610.1016/S0924‑8579(00)00200‑4 11185418
    [Google Scholar]
  27. SaudiM. ZmurkoJ. KapteinS. RozenskiJ. NeytsJ. Van AerschotA. Synthesis and evaluation of imidazole-4,5- and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus.Eur. J. Med. Chem.20148752953910.1016/j.ejmech.2014.09.062 25285371
    [Google Scholar]
  28. VishvakarmaV.K. ShuklaN. Reetu KumariK. PatelR. SinghP. A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds.Heliyon201958e0212410.1016/j.heliyon.2019.e02124 31406937
    [Google Scholar]
  29. VenkateshamA. SaudiM. KapteinS. NeytsJ. RozenskiJ. FroeyenM. Van AerschotA. Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors.Eur. J. Med. Chem.201712610110910.1016/j.ejmech.2016.10.008 27750144
    [Google Scholar]
  30. PfallerM.A. KrogstadD.J. Oxygen enhances the antimalarial activity of the imidazoles.Am. J. Trop. Med. Hyg.198332466066510.4269/ajtmh.1983.32.660 6349393
    [Google Scholar]
  31. VenugopalaK.N. DebP.K. PillayM. NefisathP. MorsyM.A. ShashiprabhaS. DasappaJ.P. VenugopalaR. Oxoimidazolidine derivatives as anti-tubercular agents.US Patent 1981643162024
  32. UsuiT. WatanabeH. HayaseF. Isolation and identification of 5-methyl-imidazolin-4-one derivative as glyceraldehyde-derived advanced glycation end product.Biosci. Biotechnol. Biochem.20067061496149810.1271/bbb.50584 16794333
    [Google Scholar]
  33. ProulxC. LubellW.D. N-Amino-imidazolin-2-one peptide mimic synthesis and conformational analysis.Org. Lett.201214174552455510.1021/ol302021n 22892053
    [Google Scholar]
  34. ChandrashekharappaS. VenugopalaK.N. NayakS.K.M. GleiserR. GarcíaD.A. KumaloH.M. KulkarniR.S. MahomoodallyF.M. VenugopalaR. MohanM.K. OdhavB. One-pot microwave assisted synthesis and structural elucidation of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates with larvicidal activity against Anopheles arabiensis.J. Mol. Struct.2018115637738410.1016/j.molstruc.2017.11.131
    [Google Scholar]
  35. VenugopalaK.N. UpparV. ChandrashekharappaS. AbdallahH.H. PillayM. DebP.K. MorsyM.A. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. TratratC. Yousef JaberA. VenugopalaR. MailavaramR.P. Al-JaidiB.A. KandeelM. HarounM. PadmashaliB. Cytotoxicity and antimycobacterial properties of pyrrolo [1,2-a] quinoline Derivatives: Molecular target identification and molecular docking studies.Antibiotics20209523310.3390/antibiotics9050233 32392709
    [Google Scholar]
  36. VenugopalaK.N. TratratC. PillayM. MahomoodallyF.M. BhandaryS. ChopraD. MorsyM.A. HarounM. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. VenugopalaR. ChandrashekharappaS. AlwassilO.I. OdhavB. Anti-tubercular activity of substituted 7-methyl and 7-formylindolizines and in silico study for prospective molecular target identification.Antibiotics20198424710.3390/antibiotics8040247 31816928
    [Google Scholar]
  37. ChandrashekharappaS. VenugopalaK.N. TratratC. MahomoodallyF.M. AldhubiabB.E. HarounM. VenugopalaR. MohanM.K. KulkarniR.S. AttimaradM.V. HarshaS. OdhavB. Efficient synthesis and characterization of novel indolizines: Exploration of in vitro COX-2 inhibitory activity and molecular modelling studies.New J. Chem.20184274893490110.1039/C7NJ05010K
    [Google Scholar]
  38. VenugopalaK.N. KhedrM.A. PillayM. NayakS.K. ChandrashekharappaS. AldhubiabB.E. HarshaS. AttimardM. OdhavB. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics.J. Biomol. Struct. Dyn.20193771830184210.1080/07391102.2018.1470035 29697293
    [Google Scholar]
  39. DahabiyehL.A. HouraniW. DarwishW. HudaibF. Abu-IrmailehB. DebP.K. VenugopalaK.N. MohanlallV. Abu-DahabR. SemreenM.H. BustanjiY. Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines.Sci. Rep.20221212159910.1038/s41598‑022‑26148‑4 36517571
    [Google Scholar]
  40. Al-JaidiB.A. DebP.K. TelfahS.T. DakkahA.N. BatainehY.A. Khames AgaQ.A.A. Al-dhounM.A. Ahmad Al-SubeihiA.A. OdetallahH.M. BardaweelS.K. MailavaramR. VenugopalaK.N. NairA.B. Synthesis and evaluation of 2,4,5-trisubstitutedthiazoles as carbonic anhydrase-III inhibitors.J. Enzyme Inhib. Med. Chem.20203511483149010.1080/14756366.2020.1786820 32635773
    [Google Scholar]
  41. DebP.K. Al-Shar’iN.A. VenugopalaK.N. PillayM. BorahP. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis.J. Enzyme Inhib. Med. Chem.202136186988410.1080/14756366.2021.1900162 34060396
    [Google Scholar]
  42. VenugopalaK.N. ChandrashekharappaS. DebP.K. TratratC. PillayM. ChopraD. Al-Shar’iN.A. HouraniW. DahabiyehL.A. BorahP. NagdeveR.D. NayakS.K. PadmashaliB. MorsyM.A. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. HarounM. ShashikanthS. MohanlallV. MailavaramR. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme.J. Enzyme Inhib. Med. Chem.20213611471148610.1080/14756366.2021.1919889 34210233
    [Google Scholar]
  43. AlhawamdehM. IsrebM. AzizA. JacobB.K. AndersonD. NajafzadehM. Interferon-γ liposome: A new system to improve drug delivery in the treatment of lung cancer.ERJ Open Res.202173005550202010.1183/23120541.00555‑2020 34435034
    [Google Scholar]
  44. BIOVIADassault Systèmes.2023Available from: https://www.3ds.com/products/biovia/discovery-studio
    [Google Scholar]
  45. Al-Shar’iN. MuslehS.S. CHK1 kinase inhibition: identification of allosteric hits using MD simulations, pharmacophore modeling, docking and MM-PBSA calculations.Mol. Divers.202226290392110.1007/s11030‑021‑10202‑w 33686514
    [Google Scholar]
  46. Al-Shar’iN.A. Tackling COVID-19: Identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and MM-PBSA calculations.J. Biomol. Struct. Dyn.202139176689670410.1080/07391102.2020.1800514 32734828
    [Google Scholar]
  47. Al-Shar’iN.A. AlnabulsiS.M. Explaining the autoinhibition of the SMYD enzyme family: A theoretical study.J. Mol. Graph. Model.20166814715710.1016/j.jmgm.2016.07.001 27447830
    [Google Scholar]
  48. LiaoX. WangW. FanC. YangN. ZhaoJ. ZhangY. GaoR. ShenG. XiaS. LiG. Prokaryotic expression, purification and characterization of human cyclooxygenase-2.Int. J. Mol. Med.2017401758210.3892/ijmm.2017.3007 28560423
    [Google Scholar]
  49. GierseJ.K. McDonaldJ.J. HauserS.D. RangwalaS.H. KoboldtC.M. SeibertK. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors.J. Biol. Chem.199627126158101581410.1074/jbc.271.26.15810 8663121
    [Google Scholar]
  50. ZarghiA. ArfaeiS. Selective COX-2 inhibitors: A review of their structure-activity relationships.Iran. J. Pharm. Res.2011104655683 24250402
    [Google Scholar]
  51. GedawyE.M. KassabA.E. El KerdawyA.M. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors.Eur. J. Med. Chem.202018911206610.1016/j.ejmech.2020.112066 31982653
    [Google Scholar]
  52. RouzerC.A. MarnettL.J. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs.Chem. Rev.2020120157592764110.1021/acs.chemrev.0c00215 32609495
    [Google Scholar]
  53. RouzerC.A. MarnettL.J. Cyclooxygenases: Structural and functional insights.J. Lipid Res.200950S29S3410.1194/jlr.R800042‑JLR200
    [Google Scholar]
  54. LimongelliV. BonomiM. MarinelliL. GervasioF.L. CavalliA. NovellinoE. ParrinelloM. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition.Proc. Natl. Acad. Sci. USA2010107125411541610.1073/pnas.0913377107 20215464
    [Google Scholar]
  55. ChandrasekharanN.V. SimmonsD.L. The cyclooxygenases.Genome Biol.20045924110.1186/gb‑2004‑5‑9‑241 15345041
    [Google Scholar]
  56. WuG. RobertsonD.H. BrooksC.L.III ViethM. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm.J. Comput. Chem.200324131549156210.1002/jcc.10306 12925999
    [Google Scholar]
  57. DebP.K. MailabaramR.P. Al-JaidiB. SaadhM.J. Molecular basis of binding interactions of NSAIDs and computer-aided drug design approaches in the pursuit of the development of cyclooxygenase-2 (COX-2) selective inhibitors.Nonsteroidal Anti-Inflammatory DrugsIntechOpen20176410.5772/intechopen.68318
    [Google Scholar]
  58. Al-OudatB.A. JaradatH.M. Al-BalasQ.A. Al-Shar’iN.A. Bryant-FriedrichA. BediM.F. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents.Bioorg. Med. Chem.2020281611560810.1016/j.bmc.2020.115608 32690268
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345068241120045638
Loading
/content/journals/cmc/10.2174/0109298673345068241120045638
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test