Skip to content
2000
image of Anticancer and Cyclooxygenase Inhibitory Activity of Benzylidene Derivatives of Fenobam and its Thio Analogues

Abstract

Introduction

A series of benzylidene derivatives of fenobam and its thio analogues () have been evaluated for their cytotoxicity against breast cancer (MCF-7, MDA-MB-231), ovarian cancer (A2780, SKOV-3) and cervical cancer (HELA) cell lines.

Method

These compounds () exhibited 72-83% inhibition of Erk activity against the ovarian cancer cell line (A2780). Compounds and showed the highest DNA damage effect in Comet Assay against the A2780 cancer cell line as compared to the other tested analogues ( and ) by using % Tail DNA and OTM. Compounds , and 11 showed significant activities and selectivity towards COX-2 with 78%, 97%, and 89% inhibition, as compared to 17%, 57%, and 26% inhibition against COX-1 isoenzyme, respectively.

Results

Interestingly, molecular docking scores were also in very good agreement with the experimental results regarding discriminating the selectivity index of the tested compounds against COX-1 & COX-2 enzymes. Further molecular dynamics (MD) simulation study revealed that the most selective compound, 13, binds with the COX-2 enzyme in a similar fashion to that of Rofecoxib, which was further supported by their MD-based free binding energies (MM-GBSA) of -49.76 ± 4.27 kcal/mol, and -44.84 ±3.78 kcal/mol, respectively.

Conclusion

Moreover, ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345068241120045638
2024-12-16
2025-01-18
Loading full text...

Full text loading...

References

  1. Akhtar W. Nainwal L.M. Khan M.F. Verma G. Chashoo G. Bakht A. Iqbal M. Akhtar M. Shaquiquzzaman M. Alam M.M. Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents. J. Fluor. Chem. 2020 236 109579 10.1016/j.jfluchem.2020.109579
    [Google Scholar]
  2. WHO WHO report on cancer: Setting priorities, investing wisely and providing care for all. World Health Organization 2020 1 149
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. Majérus M.-A. The cause of cancer: The unifying theory. Advances in Cancer Biology - Metastasis. Elsevier 2022
    [Google Scholar]
  5. Moon J. Kitty I. Renata K. Qin S. Zhao F. Kim W. DNA damage and its role in cancer therapeutics. Int. J. Mol. Sci. 2023 24 5 4741 10.3390/ijms24054741 36902170
    [Google Scholar]
  6. Huang R. Zhou P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 254 10.1038/s41392‑021‑00648‑7 34238917
    [Google Scholar]
  7. Cooper G.M. A Molecular Approach The Development and Causes of Cancer. 2nd ed Sinauer Associates 2000
    [Google Scholar]
  8. Balkwill F. Mantovani A. Inflammation and cancer: Back to Virchow? Lancet 2001 357 9255 539 545 10.1016/S0140‑6736(00)04046‑0 11229684
    [Google Scholar]
  9. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  10. Ruddarraju R.R. Murugulla A.C. Kotla R. Chandra Babu Tirumalasetty M. Wudayagiri R. Donthabakthuni S. Maroju R. Baburao K. Parasa L.S. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives. Eur. J. Med. Chem. 2016 123 379 396 10.1016/j.ejmech.2016.07.024 27487568
    [Google Scholar]
  11. Venugopala K.N. Targeting the DNA damage response machinery for lung cancer treatment. Pharmaceuticals 2022 15 12 1475 10.3390/ph15121475 36558926
    [Google Scholar]
  12. Schmidt A. Weber O.F. In memoriam of Rudolf virchow: A historical retrospective including aspects of inflammation, infection and neoplasia. Contrib. Microbiol. 2006 13 1 15 10.1159/000092961 16627956
    [Google Scholar]
  13. Coussens L.M. Werb Z. Inflammation and cancer. Nature 2002 420 6917 860 867 10.1038/nature01322 12490959
    [Google Scholar]
  14. Mantovani A. Allavena P. Sica A. Balkwill F. Cancer-related inflammation. Nature 2008 454 7203 436 444 10.1038/nature07205 18650914
    [Google Scholar]
  15. Biltekin S.N. Karadağ A.E. Demirci F. Demirci B. In Vitro Anti-Inflammatory and Anticancer Evaluation of Mentha spicata L. and Matricaria chamomilla L. Essential Oils. ACS Omega 2023 8 19 17143 17150 10.1021/acsomega.3c01501 37214687
    [Google Scholar]
  16. Hashemi Goradel N. Najafi M. Salehi E. Farhood B. Mortezaee K. Cyclooxygenase‐2 in cancer: A review. J. Cell. Physiol. 2019 234 5 5683 5699 10.1002/jcp.27411 30341914
    [Google Scholar]
  17. Hung J.H. Su I.J. Lei H.Y. Wang H.C. Lin W.C. Chang W.T. Huang W. Chang W.C. Chang Y.S. Chen C.C. Lai M.D. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J. Biol. Chem. 2004 279 45 46384 46392 10.1074/jbc.M403568200 15319438
    [Google Scholar]
  18. Guo Y.J. Pan W.W. Liu S.B. Shen Z.F. Xu Y. Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 32104259
    [Google Scholar]
  19. Lax N.C. George D.C. Ignatz C. Kolber B.J. The mGluR5 antagonist fenobam induces analgesic conditioned place preference in mice with spared nerve injury. PLoS One 2014 9 7 e103524 10.1371/journal.pone.0103524 25061818
    [Google Scholar]
  20. Porter R.H.P. Jaeschke G. Spooren W. Ballard T.M. Büttelmann B. Kolczewski S. Peters J.U. Prinssen E. Wichmann J. Vieira E. Mühlemann A. Gatti S. Mutel V. Malherbe P. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J. Pharmacol. Exp. Ther. 2005 315 2 711 721 10.1124/jpet.105.089839 16040814
    [Google Scholar]
  21. Jacob W. Gravius A. Pietraszek M. Nagel J. Belozertseva I. Shekunova E. Malyshkin A. Greco S. Barberi C. Danysz W. The anxiolytic and analgesic properties of fenobam, a potent mGlu5 receptor antagonist, in relation to the impairment of learning. Neuropharmacology 2009 57 2 97 108 10.1016/j.neuropharm.2009.04.011 19426746
    [Google Scholar]
  22. Venugopala K.N. Deb P.K. Hourani W. Nefisath P. Morsy M.A. Shashiprabha S. Dasappa J.P. Venugopala R. Mailavaram R.P. Benzylidene derivatives of fenobam as anti-inflammatory agents. US Patent 11905279 2024
  23. P N. Prasad Dasappa J. B H. Chopra D. Venugopala K.N. Deb P.K. Gleiser R.M. Mohanlall V. Maharaj R. S S. Poojary V. Synthesis, characterization and larvicidal activity of novel benzylidene derivatives of fenobam and its thio analogues with crystal insight. J. Mol. Struct. 2021 1226 129386 10.1016/j.molstruc.2020.129386
    [Google Scholar]
  24. Dasappa J.P. Nefisath P. Chopra H.B. Venugopala K.N. Chopra H.B. Kishore P. Gleiser R.M. Mohanlall V. Maharaj R. Synthesis, structural elucidation and larvicidal activity of novel arylhydrazones. J. Mol. Struct. 2021 1236 130305
    [Google Scholar]
  25. Simonetti G. Baffa S. Simonetti N. Contact imidazole activity against resistant bacteria and fungi. Int. J. Antimicrob. Agents 2001 17 5 389 393 10.1016/S0924‑8579(01)00306‑5 11337226
    [Google Scholar]
  26. Strippoli V. D’Auria F.D. Tecca M. Callari A. Simonetti G. Propyl gallate increases in vitro antifungal imidazole activity against Candida albicans. Int. J. Antimicrob. Agents 2000 16 1 73 76 10.1016/S0924‑8579(00)00200‑4 11185418
    [Google Scholar]
  27. Saudi M. Zmurko J. Kaptein S. Rozenski J. Neyts J. Van Aerschot A. Synthesis and evaluation of imidazole-4,5- and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus. Eur. J. Med. Chem. 2014 87 529 539 10.1016/j.ejmech.2014.09.062 25285371
    [Google Scholar]
  28. Vishvakarma V.K. Shukla N. Reetu Kumari K. Patel R. Singh P. A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon 2019 5 8 e02124 10.1016/j.heliyon.2019.e02124 31406937
    [Google Scholar]
  29. Venkatesham A. Saudi M. Kaptein S. Neyts J. Rozenski J. Froeyen M. Van Aerschot A. Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors. Eur. J. Med. Chem. 2017 126 101 109 10.1016/j.ejmech.2016.10.008 27750144
    [Google Scholar]
  30. Pfaller M.A. Krogstad D.J. Oxygen enhances the antimalarial activity of the imidazoles. Am. J. Trop. Med. Hyg. 1983 32 4 660 665 10.4269/ajtmh.1983.32.660 6349393
    [Google Scholar]
  31. Venugopala K.N. Deb P.K. Pillay M. Nefisath P. Morsy M.A. Shashiprabha S. Dasappa J.P. Venugopala R. Oxoimidazolidine derivatives as anti-tubercular agents. US Patent 198164316 2024
  32. Usui T. Watanabe H. Hayase F. Isolation and identification of 5-methyl-imidazolin-4-one derivative as glyceraldehyde-derived advanced glycation end product. Biosci. Biotechnol. Biochem. 2006 70 6 1496 1498 10.1271/bbb.50584 16794333
    [Google Scholar]
  33. Proulx C. Lubell W.D. N-Amino-imidazolin-2-one peptide mimic synthesis and conformational analysis. Org. Lett. 2012 14 17 4552 4555 10.1021/ol302021n 22892053
    [Google Scholar]
  34. Chandrashekharappa S. Venugopala K.N. Nayak S.K.M. Gleiser R. García D.A. Kumalo H.M. Kulkarni R.S. Mahomoodally F.M. Venugopala R. Mohan M.K. Odhav B. One-pot microwave assisted synthesis and structural elucidation of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates with larvicidal activity against Anopheles arabiensis. J. Mol. Struct. 2018 1156 377 384 10.1016/j.molstruc.2017.11.131
    [Google Scholar]
  35. Venugopala K.N. Uppar V. Chandrashekharappa S. Abdallah H.H. Pillay M. Deb P.K. Morsy M.A. Aldhubiab B.E. Attimarad M. Nair A.B. Sreeharsha N. Tratrat C. Yousef Jaber A. Venugopala R. Mailavaram R.P. Al-Jaidi B.A. Kandeel M. Haroun M. Padmashali B. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline Derivatives: Molecular target identification and molecular docking studies. Antibiotics 2020 9 5 233 10.3390/antibiotics9050233 32392709
    [Google Scholar]
  36. Venugopala K.N. Tratrat C. Pillay M. Mahomoodally F.M. Bhandary S. Chopra D. Morsy M.A. Haroun M. Aldhubiab B.E. Attimarad M. Nair A.B. Sreeharsha N. Venugopala R. Chandrashekharappa S. Alwassil O.I. Odhav B. Anti-tubercular activity of substituted 7-methyl and 7-formylindolizines and in silico study for prospective molecular target identification. Antibiotics 2019 8 4 247 10.3390/antibiotics8040247 31816928
    [Google Scholar]
  37. Chandrashekharappa S. Venugopala K.N. Tratrat C. Mahomoodally F.M. Aldhubiab B.E. Haroun M. Venugopala R. Mohan M.K. Kulkarni R.S. Attimarad M.V. Harsha S. Odhav B. Efficient synthesis and characterization of novel indolizines: Exploration of in vitro COX-2 inhibitory activity and molecular modelling studies. New J. Chem. 2018 42 7 4893 4901 10.1039/C7NJ05010K
    [Google Scholar]
  38. Venugopala K.N. Khedr M.A. Pillay M. Nayak S.K. Chandrashekharappa S. Aldhubiab B.E. Harsha S. Attimard M. Odhav B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn. 2019 37 7 1830 1842 10.1080/07391102.2018.1470035 29697293
    [Google Scholar]
  39. Dahabiyeh L.A. Hourani W. Darwish W. Hudaib F. Abu-Irmaileh B. Deb P.K. Venugopala K.N. Mohanlall V. Abu-Dahab R. Semreen M.H. Bustanji Y. Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines. Sci. Rep. 2022 12 1 21599 10.1038/s41598‑022‑26148‑4 36517571
    [Google Scholar]
  40. Al-Jaidi B.A. Deb P.K. Telfah S.T. Dakkah A.N. Bataineh Y.A. Khames Aga Q.A.A. Al-dhoun M.A. Ahmad Al-Subeihi A.A. Odetallah H.M. Bardaweel S.K. Mailavaram R. Venugopala K.N. Nair A.B. Synthesis and evaluation of 2,4,5-trisubstitutedthiazoles as carbonic anhydrase-III inhibitors. J. Enzyme Inhib. Med. Chem. 2020 35 1 1483 1490 10.1080/14756366.2020.1786820 32635773
    [Google Scholar]
  41. Deb P.K. Al-Shar’i N.A. Venugopala K.N. Pillay M. Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2021 36 1 869 884 10.1080/14756366.2021.1900162 34060396
    [Google Scholar]
  42. Venugopala K.N. Chandrashekharappa S. Deb P.K. Tratrat C. Pillay M. Chopra D. Al-Shar’i N.A. Hourani W. Dahabiyeh L.A. Borah P. Nagdeve R.D. Nayak S.K. Padmashali B. Morsy M.A. Aldhubiab B.E. Attimarad M. Nair A.B. Sreeharsha N. Haroun M. Shashikanth S. Mohanlall V. Mailavaram R. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. J. Enzyme Inhib. Med. Chem. 2021 36 1 1471 1486 10.1080/14756366.2021.1919889 34210233
    [Google Scholar]
  43. Alhawamdeh M. Isreb M. Aziz A. Jacob B.K. Anderson D. Najafzadeh M. Interferon-γ liposome: A new system to improve drug delivery in the treatment of lung cancer. ERJ Open Res. 2021 7 3 00555-2020 10.1183/23120541.00555‑2020 34435034
    [Google Scholar]
  44. BIOVIA Dassault Systèmes 2023 Available from: https://www.3ds.com/products/biovia/discovery-studio
  45. Al-Shar’i N. Musleh S.S. CHK1 kinase inhibition: identification of allosteric hits using MD simulations, pharmacophore modeling, docking and MM-PBSA calculations. Mol. Divers. 2022 26 2 903 921 10.1007/s11030‑021‑10202‑w 33686514
    [Google Scholar]
  46. Al-Shar’i N.A. Tackling COVID-19: Identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and MM-PBSA calculations. J. Biomol. Struct. Dyn. 2021 39 17 6689 6704 10.1080/07391102.2020.1800514 32734828
    [Google Scholar]
  47. Al-Shar’i N.A. Alnabulsi S.M. Explaining the autoinhibition of the SMYD enzyme family: A theoretical study. J. Mol. Graph. Model. 2016 68 147 157 10.1016/j.jmgm.2016.07.001 27447830
    [Google Scholar]
  48. Liao X. Wang W. Fan C. Yang N. Zhao J. Zhang Y. Gao R. Shen G. Xia S. Li G. Prokaryotic expression, purification and characterization of human cyclooxygenase-2. Int. J. Mol. Med. 2017 40 1 75 82 10.3892/ijmm.2017.3007 28560423
    [Google Scholar]
  49. Gierse J.K. McDonald J.J. Hauser S.D. Rangwala S.H. Koboldt C.M. Seibert K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J. Biol. Chem. 1996 271 26 15810 15814 10.1074/jbc.271.26.15810 8663121
    [Google Scholar]
  50. Zarghi A. Arfaei S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. 2011 10 4 655 683 24250402
    [Google Scholar]
  51. Gedawy E.M. Kassab A.E. El Kerdawy A.M. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur. J. Med. Chem. 2020 189 112066 10.1016/j.ejmech.2020.112066 31982653
    [Google Scholar]
  52. Rouzer C.A. Marnett L.J. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem. Rev. 2020 120 15 7592 7641 10.1021/acs.chemrev.0c00215 32609495
    [Google Scholar]
  53. Rouzer C.A. Marnett L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res 2009 50 S29 34 10.1194/jlr.R800042‑JLR200
    [Google Scholar]
  54. Limongelli V. Bonomi M. Marinelli L. Gervasio F.L. Cavalli A. Novellino E. Parrinello M. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc. Natl. Acad. Sci. USA 2010 107 12 5411 5416 10.1073/pnas.0913377107 20215464
    [Google Scholar]
  55. Chandrasekharan N.V. Simmons D.L. The cyclooxygenases. Genome Biol. 2004 5 9 241 10.1186/gb‑2004‑5‑9‑241 15345041
    [Google Scholar]
  56. Wu G. Robertson D.H. Brooks C.L. III Vieth M. Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm. J. Comput. Chem. 2003 24 13 1549 1562 10.1002/jcc.10306 12925999
    [Google Scholar]
  57. Deb P.K. Mailabaram R.P. Al-Jaidi B. Saadh M.J. Molecular basis of binding interactions of NSAIDs and computer-aided drug design approaches in the pursuit of the development of cyclooxygenase-2 (COX-2) selective inhibitors. Nonsteroidal Anti-Inflammatory Drugs IntechOpen 2017 64 10.5772/intechopen.68318
    [Google Scholar]
  58. Al-Oudat B.A. Jaradat H.M. Al-Balas Q.A. Al-Shar’i N.A. Bryant-Friedrich A. Bedi M.F. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents. Bioorg. Med. Chem. 2020 28 16 115608 10.1016/j.bmc.2020.115608 32690268
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345068241120045638
Loading
/content/journals/cmc/10.2174/0109298673345068241120045638
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Erk analysis ; COX 1 inhibition ; Benzylidene derivatives ; COMET assay ; COX 2 inhibition ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test