Skip to content
2000
image of Exploring the Dynamics of Asparagus racemosus Phytochemicals as Dual Target Inhibitors of Monkeypox Virus

Abstract

Aim

This study aimed to screen the potential phytochemicals derived from (Shatavari) against Thymidylate Kinase (TMPK) and D9 decapping enzyme, which is the vital target of the monkeypox virus and helps in the host-pathogen interaction mechanism, using integrated docking, QSAR analysis, and a molecular dynamics approach.

Background

The Monkeypox Virus (MPXV) is a recently emerging outbreak with ongoing infection cases. Drugs and vaccines for smallpox are being used to contain it. However, no specific drugs or vaccines are available to combat this infection.

Methods

The TMPK and D9 decapping enzymes were retrieved from the MPXV virus UK strain in FASTA format. Due to the unavailability of an experimentally determined structure, the 3D structure was modelled SWISS-MODEL and further enhanced and validated. The structure was subjected to docking analysis with the derived phytochemicals from using a maestro module. The potential inhibitors were examined QSAR analysis. Additionally, through MD simulation 250ns, the stability was analyzed, and the MM-GBSA was employed to calculate the binding affinities.

Results

The molecular investigation revealed asparoside-C (PubChem ID: 158598) and asparoside-D (PubChem ID: 158597) to be potential hits among others for both targets (TMPK and D9 decapping enzyme) compared to the reference drugs, , tecovirimat, brincidofovir, and cidofovir, possessing antiviral and required bioactivity analyzed the ADME and QSAR analyses. Moreover, the simulation study of over 250ns revealed strong stability, followed by RMSD, RMSF, The free energy calculation MM-GBSA exhibited strong affinities of asparoside-C and asparoside-D towards the TMPK and the D9 decapping enzyme according to their respective scores.

Conclusion

The docking, QSAR, and simulation investigation revealed dual-target inhibitors activity of phytochemicals from towards the MPXV targeting TMPK and D9 decapping enzyme. It has been observed that asparoside-D and asparoside-C can potentially combat MPXV.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673361923250101072831
2025-02-10
2025-04-01
Loading full text...

Full text loading...

References

  1. Adedoyin O.B. Soykan E. Covid-19 pandemic and online learning: The challenges and opportunities. Interact. Learn. Environ. 2023 31 2 863 875 10.1080/10494820.2020.1813180
    [Google Scholar]
  2. Mishra S.K. Priya P. Rai G.P. Haque R. Shanker A. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2. Comput. Biol. Med. 2023 163 107233 10.1016/j.compbiomed.2023.107233 37422941
    [Google Scholar]
  3. Bragazzi N.L. Woldegerima W.A. Iyaniwura S.A. Han Q. Wang X. Shausan A. Badu K. Okwen P. Prescod C. Westin M. Omame A. Converti M. Mellado B. Wu J. Kong J.D. Knowing the unknown: The underestimation of monkeypox cases. Insights and implications from an integrative review of the literature. Front. Microbiol. 2022 13 1011049 10.3389/fmicb.2022.1011049 36246252
    [Google Scholar]
  4. Huggett J.F. French D. O’Sullivan D.M. Moran-Gilad J. Zumla A. Monkeypox: Another test for PCR. Euro Surveill. 2022 27 32 2200497 10.2807/1560‑7917.ES.2022.27.32.2200497 35959687
    [Google Scholar]
  5. Sahu A. Gaur M. Mahanandia N.C. Subudhi E. Swain R.P. Subudhi B.B. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs against them: An in silico approach. Comput. Biol. Med. 2023 161 106971 10.1016/j.compbiomed.2023.106971 37211001
    [Google Scholar]
  6. Podduturi S. Vemula D. Singothu S. Bhandari V. In-silico investigation of E8 surface protein of the monkeypox virus to identify potential therapeutic agents. J. Biomol. Struct. Dyn. 2023 1 14 37555596
    [Google Scholar]
  7. Likos A.M. Sammons S.A. Olson V.A. Frace A.M. Li Y. Olsen-Rasmussen M. Davidson W. Galloway R. Khristova M.L. Reynolds M.G. Zhao H. Carroll D.S. Curns A. Formenty P. Esposito J.J. Regnery R.L. Damon I.K. A tale of two clades: Monkeypox viruses. J. Gen. Virol. 2005 86 10 2661 2672 10.1099/vir.0.81215‑0 16186219
    [Google Scholar]
  8. Ladnyj I.D. Ziegler P. Kima E. A human infection caused by monkeypox virus in basankusu territory, democratic republic of the congo. Bull. World Health Organ. 1972 46 5 593 597 4340218
    [Google Scholar]
  9. Jezek Z. Khodakevich L.N. Wickett J.F. Smallpox and its post-eradication surveillance. Bull. World Health Organ. 1987 65 4 425 434 3319266
    [Google Scholar]
  10. Nakazawa Y. Mauldin M. Emerson G. Reynolds M. Lash R. Gao J. Zhao H. Li Y. Muyembe J.J. Kingebeni P. Wemakoy O. Malekani J. Karem K. Damon I. Carroll D. A phylogeographic investigation of African monkeypox. Viruses 2015 7 4 2168 2184 10.3390/v7042168 25912718
    [Google Scholar]
  11. Ghate S.D. Pinto L. Alva S. Srinivasa M.G. Vangala R.K. Naik P. Revanasiddappa B.C. Rao R.S.P. In silico identification of potential phytochemical inhibitors for mpox virus: Molecular docking, MD simulation, and ADMET studies. Mol. Divers. 2024 10.1007/s11030‑023‑10797‑2 38519803
    [Google Scholar]
  12. Otu A. Ebenso B. Walley J. Barceló J.M. Ochu C.L. Global human monkeypox outbreak: Atypical presentation demanding urgent public health action. Lancet Microbe 2022 3 8 e554 e555 10.1016/S2666‑5247(22)00153‑7 35688169
    [Google Scholar]
  13. Sahoo A.K. Augusthian P.D. Muralitharan I. Vivek-Ananth R.P. Kumar K. Kumar G. Ranganathan G. Samal A. In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol. Divers. 2022 1 16 36331784
    [Google Scholar]
  14. Chadha J. Khullar L. Gulati P. Chhibber S. Harjai K. Insights into the monkeypox virus: Making of another pandemic within the pandemic? Environ. Microbiol. 2022 24 10 4547 4560 10.1111/1462‑2920.16174 35974453
    [Google Scholar]
  15. Rao A.K. Petersen B.W. Whitehill F. Razeq J.H. Isaacs S.N. Merchlinsky M.J. Campos-Outcalt D. Morgan R.L. Damon I. Sánchez P.J. Bell B.P. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: Recommendations of the advisory committee on immunization practices — United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022 71 22 734 742 10.15585/mmwr.mm7122e1 35653347
    [Google Scholar]
  16. Khamees A. Awadi S. Al-Shami K. Alkhoun H.A. Al-Eitan S.F. Alsheikh A.M. Saeed A. Al-Zoubi R.M. Zoubi M.S.A. Human monkeypox virus in the shadow of the COVID-19 pandemic. J. Infect. Public Health 2023 16 8 1149 1157 10.1016/j.jiph.2023.05.013 37269693
    [Google Scholar]
  17. Siegrist E.A. Sassine J. Antivirals with activity against Mpox: A clinically oriented review. Clin. Infect. Dis. 2023 76 1 155 164 10.1093/cid/ciac622 35904001
    [Google Scholar]
  18. Caillat C. Topalis D. Agrofoglio L.A. Pochet S. Balzarini J. Deville-Bonne D. Meyer P. Crystal structure of poxvirus thymidylate kinase: An unexpected dimerization has implications for antiviral therapy. Proc. Natl. Acad. Sci. USA 2008 105 44 16900 16905 10.1073/pnas.0804525105 18971333
    [Google Scholar]
  19. Guimarães A.P. Ramalho T.C. França T.C.C. Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase from Variola virus. J. Biomol. Struct. Dyn. 2014 32 10 1601 1612 10.1080/07391102.2013.830578 23998201
    [Google Scholar]
  20. Bednarczyk M. Peters J.K. Kasprzyk R. Starek J. Warminski M. Spiewla T. Mugridge J.S. Gross J.D. Jemielity J. Kowalska J. Fluorescence-based activity screening assay reveals small molecule inhibitors of vaccinia virus mRNA decapping enzyme D9. ACS Chem. Biol. 2022 17 6 1460 1471 10.1021/acschembio.2c00049 35576528
    [Google Scholar]
  21. Farlow J. Ichou M.A. Huggins J. Ibrahim S. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus. Virol. J. 2010 7 1 110 10.1186/1743‑422X‑7‑110 20509894
    [Google Scholar]
  22. Khan A. Adil S. Qudsia H.A. Waheed Y. Alshabrmi F.M. Wei D.Q. Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Comput. Biol. Med. 2023 158 106797 10.1016/j.compbiomed.2023.106797 36966556
    [Google Scholar]
  23. Tuz-Zohura F. Shawon A.R.M. Hasan M.M. Aeyas A. Chowdhury F.I. Khandaker M.U. In-silico approach to designing effective antiviral drugs against SARS-CoV-2 and SARS-CoV-1 from reported phytochemicals: A quality improvement study. Ann. Med. Surg. 2023 85 7 3446 3460 10.1097/MS9.0000000000000839 37427236
    [Google Scholar]
  24. Chikhale R.V. Gupta V.K. Eldesoky G.E. Wabaidur S.M. Patil S.A. Islam M.A. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J. Biomol. Struct. Dyn. 2020 1 16 32741259
    [Google Scholar]
  25. Vegad U.G. Gajjar N.D. Nagar P.R. Chauhan S.P. Pandya D.J. Dhameliya T.M. In silico screening, ADMET analysis and MD simulations of phytochemicals of Onosma bracteata Wall. as SARS CoV-2 inhibitors. 3 Biotech 2023 13 7 221
    [Google Scholar]
  26. Halder S.K. Sultana I. Shuvo M.N. Shil A. Himel M.K. Hasan M.A. Shawan M.M.A.K. In silico identification and analysis of potentially bioactive antiviral phytochemicals against SARS‐CoV‐2: A molecular docking and dynamics simulation approach. BioMed Res. Int. 2023 2023 1 5469258 10.1155/2023/5469258 37214084
    [Google Scholar]
  27. Kurnia D. Putri S.A. Tumilaar S.G. Zainuddin A. Dharsono H.D.A. Amin M.F. In silico study of antiviral activity of polyphenol compounds from ocimum basilicum by molecular docking, ADMET, and drug-likeness analysis. Adv. Appl. Bioinform. Chem. 2023 16 37 47 10.2147/AABC.S403175 37131997
    [Google Scholar]
  28. Sruthi D. Dhanalakshmi M. Rao H.C.Y. Parthasarathy R. Deepanraj S.P. Jayabaskaran C. Curative potential of high-value phytochemicals on COVID-19 infection. Biochemistry 2023 88 1 64 72 10.1134/S0006297923010066 37068882
    [Google Scholar]
  29. Vakhariya Sakina S. Mishra S.K. Sharma K. Georrge J.J. Designing of a novel curcumin analogue to inhibit mitogen-activated protein kinase: A cheminformatics approach. J. Phytonanotechnol. Pharm. Sci. 2023 3 1 37 47
    [Google Scholar]
  30. Zha X. Ji R. Zhou S. Marine bacteria: A source of novel bioactive natural products. Curr. Med. Chem. 2024 31 41 6842 6854 10.2174/0929867331666230821102521 37605398
    [Google Scholar]
  31. Alok S. Jain S.K. Verma A. Kumar M. Mahor A. Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis. 2013 3 3 242 251 10.1016/S2222‑1808(13)60049‑3
    [Google Scholar]
  32. Boonsom T. Waranuch N. Ingkaninan K. Denduangboripant J. Sukrong S. Molecular analysis of the genus Asparagus based on matK sequences and its application to identify A. racemosus, a medicinally phytoestrogenic species. Fitoterapia 2012 83 5 947 953 10.1016/j.fitote.2012.04.014 22542919
    [Google Scholar]
  33. Upadhyay S. Jeena G.S. Kumar S. Shukla R.K. Asparagus racemosus bZIP transcription factor-regulated squalene epoxidase (ArSQE) promotes germination and abiotic stress tolerance in transgenic tobacco. Plant Sci. 2020 290 110291 10.1016/j.plantsci.2019.110291 31779892
    [Google Scholar]
  34. Lalert L. Kruevaisayawan H. Amatyakul P. Ingkaninan K. Khongsombat O. Neuroprotective effect of Asparagus racemosus root extract via the enhancement of brain-derived neurotrophic factor and estrogen receptor in ovariectomized rats. J. Ethnopharmacol. 2018 225 336 341 10.1016/j.jep.2018.07.014 30009979
    [Google Scholar]
  35. Kohli D. Champawat P.S. Mudgal V.D. Asparagus ( Asparagus racemosus L. ) roots: nutritional profile, medicinal profile, preservation, and value addition. J. Sci. Food Agric. 2023 103 5 2239 2250 10.1002/jsfa.12358 36433663
    [Google Scholar]
  36. Kishore N. Balakumar S. David Raj C. Sivakumar N. Thirumalaivasan R. Mahesh N. Selvankumar T. Implications of Asparagus racemosus and Terminalia chebula extracts on oxazolone induced inflammatory bowel disease in Danio rerio (zebrafish). Biocatal. Agric. Biotechnol. 2023 51 102790 10.1016/j.bcab.2023.102790
    [Google Scholar]
  37. Krishnan A. Packirisamy A.S.B. Exploration of therapeutic potential and pesticidal activity of Sapindus mukorossi by In vitro and In silico profiling of phytochemicals. J. Mol. Struct. 2024 1315 138866 10.1016/j.molstruc.2024.138866
    [Google Scholar]
  38. Jeevanandam J. Madhumitha R. Saraswathi N.T. Identification of potential phytochemical lead against diabetic cataract: An insilico approach. J. Mol. Struct. 2021 1226 129428 10.1016/j.molstruc.2020.129428
    [Google Scholar]
  39. Sushma Prasad D. Maithani R. Safi Z. Wazzan N. Berisha A. To investigate the anticorrosive properties of Ageratina adenophora extract as a green inhibitor for SS-410 in hydrochloric acid solution: Experimental and computational studies. J. Mol. Struct. 2024 1313 138560 10.1016/j.molstruc.2024.138560
    [Google Scholar]
  40. Chikhale R.V. Sinha S.K. Patil R.B. Prasad S.K. Shakya A. Gurav N. Prasad R. Dhaswadikar S.R. Wanjari M. Gurav S.S. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J. Biomol. Struct. Dyn. 2021 39 14 5033 5047 10.1080/07391102.2020.1784289 32579064
    [Google Scholar]
  41. Ait Lahcen N. Liman W. Oubahmane M. Hdoufane I. Habibi Y. Alanazi A.S. Alanazi M.M. Delaite C. Maatallah M. Cherqaoui D. Drug design of new anti-EBOV inhibitors: QSAR, homology modeling, molecular docking and molecular dynamics studies. Arab. J. Chem. 2024 17 9 105870 10.1016/j.arabjc.2024.105870
    [Google Scholar]
  42. Wang Y. Xu T. Chen X. Ye Y. Liu L. Wang Y. Zhang P. Network pharmacology and molecular docking approach to investigate the mechanism of a Chinese herbal formulation Yougui pills against steroid-related osteonecrosis of the femoral head. Arab. J. Chem. 2024 17 3 105609 10.1016/j.arabjc.2024.105609
    [Google Scholar]
  43. Alqahtani S.M. A multi-target mechanism of Withania somnifera bioactive compounds in autism spectrum disorder (ASD) treatment: Network pharmacology, molecular docking, and molecular dynamics simulations studies. Arab. J. Chem. 2024 17 6 105772 10.1016/j.arabjc.2024.105772
    [Google Scholar]
  44. Xu S. Yuan H. Li L. Yang K. Zhao L. Computational screening of potential bromodomain-containing protein 2 inhibitors for blocking SARS-CoV-2 infection through pharmacophore modeling, molecular docking and molecular dynamics simulation. Arab. J. Chem. 2024 17 1 105365 10.1016/j.arabjc.2023.105365
    [Google Scholar]
  45. Mishra S.K. Jeba Praba J. Georrge J.J. An emerging trends of bioinformatics and big data analytics in healthcare. Digital transformation in healthcare 5.0. Metaverse, Nanorobots and Machine Learning De Gruyter 2024 Vol. 2 159
    [Google Scholar]
  46. Luukkonen S. van den Maagdenberg H.W. Emmerich M.T.M. van Westen G.J.P. Artificial intelligence in multi-objective drug design. Curr. Opin. Struct. Biol. 2023 79 102537 10.1016/j.sbi.2023.102537 36774727
    [Google Scholar]
  47. Vinjoda P. Nanotechnology and In Silico Tools. Elsevier 2024 377 383 10.1016/B978‑0‑443‑15457‑7.00007‑1
    [Google Scholar]
  48. Vaghasia V.V. Nanotechnology and In Silico Tools. Elsevier 2024 309 317 10.1016/B978‑0‑443‑15457‑7.00015‑0
    [Google Scholar]
  49. Sinha P. Yadav A.K. Unraveling the anti-breast cancer activity of Cimicifugae rhizoma using biological network pathways and molecular dynamics simulation. Mol. Divers. 2024 10.1007/s11030‑024‑10847‑3 38615110
    [Google Scholar]
  50. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  51. Ko J. Park H. Heo L. Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012 40 W294 W297 10.1093/nar/gks493
    [Google Scholar]
  52. Studer G. Rempfer C. Waterhouse A.M. Gumienny R. Haas J. Schwede T. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 2020 36 6 1765 1771 10.1093/bioinformatics/btz828 31697312
    [Google Scholar]
  53. Wiederstein M. Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 35 W407 W410 10.1093/nar/gkm290
    [Google Scholar]
  54. Ahmad S. Bhanu P. Kumar J. Pathak R.K. Mallick D. Uttarkar A. Niranjan V. Mishra V. Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid. Bioinformation 2022 18 3 170 179 10.6026/97320630018170 36518123
    [Google Scholar]
  55. Vennila K.N. Elango K.P. Insilico molecular modelling to identify PDK-1 targeting agents based on its protein-protein docking interaction. J. Biomol. Struct. Dyn. 2023 1 12 37646644
    [Google Scholar]
  56. Jorgensen W.L. Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988 110 6 1657 1666 10.1021/ja00214a001 27557051
    [Google Scholar]
  57. Shivakumar D. Williams J. Wu Y. Damm W. Shelley J. Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010 6 5 1509 1519 10.1021/ct900587b 26615687
    [Google Scholar]
  58. Jakubec D. Skoda P. Krivak R. Novotny M. Hoksza D. PrankWeb 3: Accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Res. 2022 50 W1 W593 W597 10.1093/nar/gkac389 35609995
    [Google Scholar]
  59. Pitsillou E. Liang J. Hung A. Karagiannis T.C. The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of potential small molecule inhibitors by in silico modelling. J. Mol. Graph. Model. 2022 114 108193 10.1016/j.jmgm.2022.108193 35462185
    [Google Scholar]
  60. Lanka G. Banerjee S. Adhikari N. Ghosh B. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches. Mol. Divers. 2024 10.1007/s11030‑024‑10837‑5 38637479
    [Google Scholar]
  61. Verma S. Sahu A. Pradhan D. Raza K. Qazi S. Jain A.K. Computational screening for finding new potent COX-2 inhibitors as anticancer agents. Lett. Drug Des. Discov. 2023 20 2 213 224 10.2174/1570180819666220128122553
    [Google Scholar]
  62. dos Santos Correia P.R. de Souza A.H.D. Chaparro A.R. Tenorio Barajas A.Y. Porto R.S. Molecular docking, ADMET analysis and molecular dynamics (MD) simulation to identify synthetic isoquinolines as potential inhibitors of SARS-CoV-2 MPRO. Curr. Computeraided Drug Des. 2023 19 5 391 404 10.2174/1573409919666230123150013 36694326
    [Google Scholar]
  63. Jawarkar R.D. Zaki M.E.A. Al-Hussain S.A. Al-Mutairi A.A. Samad A. Masand V. Humane V. Mali S. Alzahrani A.Y.A. Rashid S. Elossaily G.M. Mechanistic QSAR modeling derived virtual screening, drug repurposing, ADMET and in - vitro evaluation to identify anticancer lead as lysine-specific demethylase 5a inhibitor. J. Biomol. Struct. Dyn. 2024 1 31 10.1080/07391102.2024.2319104 38385447
    [Google Scholar]
  64. Jangra J. Bajad N.G. Singh R. Kumar A. Singh S.K. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer’s disease. Mol. Divers. 2024 10.1007/s11030‑024‑10821‑z 38517648
    [Google Scholar]
  65. Shah A.A. Ahmad S. Yadav M.K. Raza K. Kamal M.A. Akhtar S. Structure-based virtual screening, molecular docking, molecular dynamics simulation, and metabolic reactivity studies of quinazoline derivatives for their anti-EGFR activity against tumor angiogenesis. Curr. Med. Chem. 2024 31 5 595 619 10.2174/0929867330666230309143711 36892124
    [Google Scholar]
  66. Thangavel N. Albratty M. Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids. J. King Saud Univ. Sci. 2023 35 1 102402 10.1016/j.jksus.2022.102402 36338939
    [Google Scholar]
  67. Aldahham B.J.M. Al-Khafaji K. Saleh M.Y. Abdelhakem A.M. Alanazi A.M. Islam M.A. Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: A pharmacoinformatics study. J. Biomol. Struct. Dyn. 2022 40 9 3899 3906 10.1080/07391102.2020.1851305 33252031
    [Google Scholar]
  68. Du C. Yin H. Xie A. Yu J. Wang Y. Yao F. Zhang S. Zhang Y. Liu L. Wang P. Dong J. Xu X. Virtual screening and biological evaluation of natural products as urate transporter 1 (URAT1) inhibitors. J. Biomol. Struct. Dyn. 2024 1 14 10.1080/07391102.2024.2331101 38553409
    [Google Scholar]
  69. Gopinathan A. Sankhe R. Rathi E. Kodi T. Upadhya R. Pai K.S.R. Kishore A. An in silico drug repurposing approach to identify HDAC1 inhibitors against glioblastoma. J. Biomol. Struct. Dyn. 2024 1 14 10.1080/07391102.2024.2335293 38686917
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673361923250101072831
Loading
/content/journals/cmc/10.2174/0109298673361923250101072831
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test