Skip to content
2000
image of The Role of Lipids in Atherosclerosis: Focus on Molecular Biology Mechanisms and Therapeutic Approaches

Abstract

Atherosclerosis is a complex vascular disease characterized by the buildup of lipids, inflammatory cells and fibrous components in arterial walls leading to plaque formation and potential thrombotic events like myocardial infarction and strokes. Recently, there has been research on the roles of various types of lipids such as low-density lipoprotein (LDL) cholesterol, oxidized LDL (oxLDL) cholesterol and small dense LDL (sdLDL) in the onset and progression of atherosclerosis. These lipoproteins contribute to dysfunction and inflammation processes that play a role in the development and instability of plaques. Moreover, certain enzymes and proteins linked to lipids have been associated with atherosclerosis highlighting the complex interplay between lipid metabolism and inflammation in this disease. This review delves into the mechanisms behind atherosclerosis focusing on the involvement of lipids, enzymes and regulatory proteins. Additionally, it will also discuss present treatments as well as new therapeutic approaches that target these molecular mechanisms with the goal of advancing our knowledge about atherosclerosis and guiding future treatment strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348217241119063941
2025-01-03
2025-04-23
Loading full text...

Full text loading...

References

  1. TrkanjecZ. DemarinV. Atherosclerosis and inflamation.Acta Clinica Croatica1999Available from: https://www.semanticscholar.org/paper/Atherosclerosis-and-Inflamation-Trkanjec-Demarin/fa9282c78fb803edebf096e9923a11031e7fd072
    [Google Scholar]
  2. MajdalawiehA.F. YousefS.M. Abu-YousefI.A. Thymoquinone, a major constituent in Nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis.Eur. J. Pharmacol.202190917442010.1016/j.ejphar.2021.17442034391767
    [Google Scholar]
  3. OjioS. TakatsuH. TanakaT. UenoK. YokoyaK. MatsubaraT. SuzukiT. WatanabeS. MoritaN. KawasakiM. NaganoT. NishioI. SakaiK. NishigakiK. TakemuraG. NodaT. MinatoguchiS. FujiwaraH. Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans: Coronary angiographic findings within 1 week before the onset of infarction.Circulation2000102172063206910.1161/01.CIR.102.17.206311044421
    [Google Scholar]
  4. SchoenhagenP. TuzcuE.M. EllisS.G. Plaque vulnerability, plaque rupture, and acute coronary syndromes: (Multi)-focal manifestation of a systemic disease process.Circulation2002106776076210.1161/01.CIR.0000025708.36290.0512176939
    [Google Scholar]
  5. WangL-M. New understanding on the pathogenesis of acute arterial thrombosis.J. Geriatr. Cardiol.201512320420710.11909/j.issn.1671‑5411.2015.03.02326089842
    [Google Scholar]
  6. GusevE. SarapultsevA. Atherosclerosis and inflammation: Insights from the theory of general pathological processes.Int. J. Mol. Sci.2023249791010.3390/ijms2409791037175617
    [Google Scholar]
  7. VainasT. StassenF.R.M. BruggemanC.A. WeltenR.J.T.J. van den AkkerL.H.J.M. KitslaarP.J.E.H.M. PeñaA.S. MorréS.A. Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease.J. Vasc. Surg.200644232633210.1016/j.jvs.2006.04.03516890863
    [Google Scholar]
  8. OtsukaF. KramerM.C.A. WoudstraP. YahagiK. LadichE. FinnA.V. de WinterR.J. KolodgieF.D. WightT.N. DavisH.R. JonerM. VirmaniR. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study.Atherosclerosis2015241277278210.1016/j.atherosclerosis.2015.05.01126058741
    [Google Scholar]
  9. NewmanJ.L. StoneJ.R. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis.Cardiovasc. Pathol.20194310714810.1016/j.carpath.2019.10714831518915
    [Google Scholar]
  10. SacksF.M. CamposH. Clinical review 163: Cardiovascular endocrinology: Low-density lipoprotein size and cardiovascular disease: A reappraisal.J. Clin. Endocrinol. Metab.200388104525453210.1210/jc.2003‑03063614557416
    [Google Scholar]
  11. BorénJ. ChapmanM.J. KraussR.M. PackardC.J. BentzonJ.F. BinderC.J. DaemenM.J. DemerL.L. HegeleR.A. NichollsS.J. NordestgaardB.G. WattsG.F. BruckertE. FazioS. FerenceB.A. GrahamI. HortonJ.D. LandmesserU. LaufsU. MasanaL. PasterkampG. RaalF.J. RayK.K. SchunkertH. TaskinenM.R. van de SluisB. WiklundO. TokgozogluL. CatapanoA.L. GinsbergH.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel.Eur. Heart J.202041242313233010.1093/eurheartj/ehz96232052833
    [Google Scholar]
  12. VekicJ. ZeljkovicA. CiceroA.F.G. JanezA. StoianA.P. SonmezA. RizzoM. Atherosclerosis development and progression: The role of atherogenic small, dense LDL.Medicina202258229910.3390/medicina5802029935208622
    [Google Scholar]
  13. LintonM.F. The role of lipids and lipoproteins in atherosclerosis.EndotextSouth Dartmouth (MA)2000
    [Google Scholar]
  14. FeigJ.E. FeigJ.L. DangasG.D. The role of HDL in plaque stabilization and regression.Coron. Artery Dis.201627759260310.1097/MCA.000000000000040827414247
    [Google Scholar]
  15. MatsuuraE. KobayashiK. TabuchiM. LopezL. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis.Prog. Lipid Res.200645646648610.1016/j.plipres.2006.05.00116790279
    [Google Scholar]
  16. Di PietroN. FormosoG. PandolfiA. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis.Vascul. Pharmacol.2016841710.1016/j.vph.2016.05.01327256928
    [Google Scholar]
  17. IvanovaE.A. MyasoedovaV.A. MelnichenkoA.A. GrechkoA.V. OrekhovA.N. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases.Oxid. Med. Cell. Longev.201720171127304210.1155/2017/127304228572872
    [Google Scholar]
  18. JinX. YangS. LuJ. WuM. Small, dense low-density lipoprotein-cholesterol and atherosclerosis: Relationship and therapeutic strategies.Front. Cardiovasc. Med.2022880421410.3389/fcvm.2021.80421435224026
    [Google Scholar]
  19. MajdalawiehA. RoH.S. PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1.Nucl. Recept. Signal.201081nrs.0800410.1621/nrs.0800420419060
    [Google Scholar]
  20. KhuseyinovaN. ImhofA. RothenbacherD. TrischlerG. KuelbS. ScharnaglH. MaerzW. BrennerH. KoenigW. Association between Lp-PLA2 and coronary artery disease: Focus on its relationship with lipoproteins and markers of inflammation and hemostasis.Atherosclerosis2005182118118810.1016/j.atherosclerosis.2004.10.04616115490
    [Google Scholar]
  21. LaviS. McConnellJ.P. RihalC.S. PrasadA. MathewV. LermanL.O. LermanA. Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation: Association with early coronary atherosclerosis and endothelial dysfunction in humans.Circulation2007115212715272110.1161/CIRCULATIONAHA.106.67142017502572
    [Google Scholar]
  22. VickersK.C. MaguireC.T. WolfertR. BurnsA.R. ReardonM. GeisR. HolvoetP. MorrisettJ.D. Relationship of lipoprotein-associated phospholipase A2 and oxidized low density lipoprotein in carotid atherosclerosis.J. Lipid Res.20095091735174310.1194/jlr.M800342‑JLR20019359705
    [Google Scholar]
  23. CariouB. OuguerramK. ZaïrY. GueroisR. LanghiC. KourimateS. BenoitI. Le MayC. GayetC. BelabbasK. DufernezF. ChétiveauxM. TarugiP. KrempfM. BenlianP. CostetP. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia.Arterioscler. Thromb. Vasc. Biol.200929122191219710.1161/ATVBAHA.109.19419119762784
    [Google Scholar]
  24. GuardiolaM. PlanaN. IbarretxeD. CabréA. GonzálezM. RibaltaJ. MasanaL. Circulating PCSK9 levels are positively correlated with NMR-assessed atherogenic dyslipidaemia in patients with high cardiovascular risk.Clin. Sci.20151281287788210.1042/CS2014083225649668
    [Google Scholar]
  25. XiaX. PengZ. GuH. WangM. WangG. ZhangD. Regulation of PCSK9 expression and function: Mechanisms and therapeutic implications.Front. Cardiovasc. Med.2021876403810.3389/fcvm.2021.76403834782856
    [Google Scholar]
  26. OoiE.M.M. BarrettP.H.R. ChanD.C. WattsG.F. Apolipoprotein C-III: Understanding an emerging cardiovascular risk factor.Clin. Sci.20081141061162410.1042/CS2007030818399797
    [Google Scholar]
  27. GuérinM. Le GoffW. LasselT.S. Van TolA. SteinerG. ChapmanM.J. Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: Impact of the degree of triglyceridemia.Arterioscler. Thromb. Vasc. Biol.200121228228810.1161/01.ATV.21.2.28211156866
    [Google Scholar]
  28. ChapmanM.J. Le GoffW. GuerinM. KontushA. Cholesteryl ester transfer protein: At the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors.Eur. Heart J.201031214916410.1093/eurheartj/ehp39919825813
    [Google Scholar]
  29. PoznyakA.V. NikiforovN.G. MarkinA.M. KashirskikhD.A. MyasoedovaV.A. GerasimovaE.V. OrekhovA.N. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis.Front. Pharmacol.20211161378010.3389/fphar.2020.61378033510639
    [Google Scholar]
  30. SalonenJ.T. KorpelaH. SalonenR. NyyssonenK. Yla-HerttualaS. YamamotoR. ButlerS. PalinskiW. WitztumJ.L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis.Lancet1992339879888388710.1016/0140‑6736(92)90926‑T1348295
    [Google Scholar]
  31. BergmarkC. WuR. FaireU. LefvertA.K. SwedenborgJ. Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL.Arterioscler. Thromb. Vasc. Biol.199515444144510.1161/01.ATV.15.4.4417749854
    [Google Scholar]
  32. JiangH. ZhouY. NabaviS.M. SahebkarA. LittleP.J. XuS. WengJ. GeJ. Mechanisms of oxidized LDL- mediated endothelial dysfunction and its consequences for the development of atherosclerosis.Front. Cardiovasc. Med.2022992592310.3389/fcvm.2022.92592335722128
    [Google Scholar]
  33. ErikssonM. CarlsonL.A. MiettinenT.A. AngelinB. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans.Circulation1999100659459810.1161/01.CIR.100.6.59410441095
    [Google Scholar]
  34. KheraA.V. CuchelM. de la Llera-MoyaM. RodriguesA. BurkeM.F. JafriK. FrenchB.C. PhillipsJ.A. MucksavageM.L. WilenskyR.L. MohlerE.R. RothblatG.H. RaderD.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.N. Engl. J. Med.2011364212713510.1056/NEJMoa100168921226578
    [Google Scholar]
  35. CuchelM. RaperA.C. ConlonD.M. PrymaD.A. FreifelderR.H. PoriaR. CromleyD. LiX. DunbarR.L. FrenchB. QuL. FarverW. SuC.C. Lund-KatzS. BaerA. RuotoloG. AkerbladP. RyanC.S. XiaoL. KirchgessnerT.G. MillarJ.S. BillheimerJ.T. RaderD.J. A novel approach to measuring macrophage-specific reverse cholesterol transport in vivo in humans.J. Lipid Res.201758475276210.1194/jlr.M07522628167703
    [Google Scholar]
  36. OuimetM. BarrettT.J. FisherE.A. HDL and reverse cholesterol transport.Circ. Res.2019124101505151810.1161/CIRCRESAHA.119.31261731071007
    [Google Scholar]
  37. Tran-DinhA. DialloD. DelboscS. Varela-PerezL.M. DangQ.B. LapergueB. BurilloE. MichelJ.B. LevoyeA. Martin-VenturaJ.L. MeilhacO. HDL and endothelial protection.Br. J. Pharmacol.2013169349351110.1111/bph.1217423488589
    [Google Scholar]
  38. OhkawaR. LowH. MukhamedovaN. FuY. LaiS.J. SasaokaM. HaraA. YamazakiA. KamedaT. HoriuchiY. MeikleP.J. PernesG. LancasterG. DitiatkovskiM. NestelP. VaismanB. SviridovD. MurphyA. RemaleyA.T. SviridovD. TozukaM. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood.J. Lipid Res.202061121577158810.1194/jlr.RA12000063532907987
    [Google Scholar]
  39. IulianoL. MaurielloA. SbarigiaE. SpagnoliL.G. VioliF. Radiolabeled native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque: Effect of vitamin E supplementation.Circulation2000101111249125410.1161/01.CIR.101.11.124910725283
    [Google Scholar]
  40. KhatanaC. SainiN.K. ChakrabartiS. SainiV. SharmaA. SainiR.V. SainiA.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis.Oxid. Med. Cell. Longev.2020202011410.1155/2020/524530833014272
    [Google Scholar]
  41. ZhangY. MaK.L. RuanX.Z. LiuB.C. Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury.Int. J. Biol. Sci.201612556957910.7150/ijbs.1402727019638
    [Google Scholar]
  42. OoiB. GohB. YapW. Oxidative stress in cardiovascular diseases: Involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation.Int. J. Mol. Sci.20171811233610.3390/ijms1811233629113088
    [Google Scholar]
  43. LusisA.J. Atherosclerosis.Nature2000407680123324110.1038/3502520311001066
    [Google Scholar]
  44. LoftusI. Mechanisms of plaque rupture.Mechanisms of Vascular Disease: A Reference Book for Vascular SpecialistsUniversity of Adelaide PressAdelaide (AU)201110.1017/UPO9781922064004.005
    [Google Scholar]
  45. LähdesmäkiK. Experimental and computational studies on lipoprotein lipolysis at acidic pH.Doctoral dissertation2010
    [Google Scholar]
  46. BattyM. BennettM.R. YuE. The role of oxidative stress in atherosclerosis.Cells20221123384310.3390/cells1123384336497101
    [Google Scholar]
  47. TsimikasS. KiechlS. WilleitJ. MayrM. MillerE.R. KronenbergF. XuQ. BergmarkC. WegerS. OberhollenzerF. WitztumJ.L. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: Five-year prospective results from the Bruneck study.J. Am. Coll. Cardiol.200647112219222810.1016/j.jacc.2006.03.00116750687
    [Google Scholar]
  48. FredriksonG.N. SchiopuA. BerglundG. AlmR. ShahP.K. NilssonJ. Autoantibody against the amino acid sequence 661–680 in apo B-100 is associated with decreased carotid stenosis and cardiovascular events.Atherosclerosis20071942e188e19210.1016/j.atherosclerosis.2006.12.01417214995
    [Google Scholar]
  49. McLeodO. SilveiraA. FredriksonG.N. GertowK. BaldassarreD. VegliaF. SennbladB. StrawbridgeR.J. LarssonM. LeanderK. GiganteB. KauhanenJ. RauramaaR. SmitA.J. MannarinoE. GiralP. HumphriesS.E. TremoliE. de FaireU. ÖhrvikJ. NilssonJ. HamstenA. Plasma autoantibodies against apolipoprotein B-100 peptide 210 in subclinical atherosclerosis.Atherosclerosis2014232124224810.1016/j.atherosclerosis.2013.11.04124401246
    [Google Scholar]
  50. LeivaE. Role of oxidized LDL in atherosclerosis.Hypercholesterolemia.IntechOpen201510.5772/59375
    [Google Scholar]
  51. SchaefferD.F. RiazyM. ParharK.S. ChenJ.H. DuronioV. SawamuraT. SteinbrecherU.P. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma.J. Lipid Res.20095081676168410.1194/jlr.M900167‑JLR20019359704
    [Google Scholar]
  52. FuZ. ZhouE. WangX. TianM. KongJ. LiJ. JiL. NiuC. ShenH. DongS. LiuC. VermorkenA. WillardB. ZuL. ZhengL. Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1.Am. J. Physiol. Cell Physiol.20173135C567C57410.1152/ajpcell.00158.201628814403
    [Google Scholar]
  53. WangY. HuangN. YangZ. Revealing the role of zinc ions in atherosclerosis therapy via an engineered three-dimensional pathological model.Adv. Sci.20231018230047510.1002/advs.20230047537092571
    [Google Scholar]
  54. MooreK.J. KoplevS. FisherE.A. TabasI. BjörkegrenJ.L.M. DoranA.C. KovacicJ.C. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis.J. Am. Coll. Cardiol.201872182181219710.1016/j.jacc.2018.08.214730360827
    [Google Scholar]
  55. DomschkeG. GleissnerC.A. CXCL4-induced macrophages in human atherosclerosis.Cytokine201912215414110.1016/j.cyto.2017.08.02128899579
    [Google Scholar]
  56. Beck-JosephJ. TabrizianM. LehouxS. Molecular interactions between vascular smooth muscle cells and macrophages in atherosclerosis.Front. Cardiovasc. Med.2021873793410.3389/fcvm.2021.73793434722670
    [Google Scholar]
  57. TajbakhshA. KovanenP.T. RezaeeM. BanachM. MoallemS.A. SahebkarA. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis.Int. J. Biochem. Cell Biol.202012010568410.1016/j.biocel.2020.10568431911118
    [Google Scholar]
  58. GuiY. ZhengH. CaoR.Y. Foam cells in atherosclerosis: Novel insights into its origins, consequences, and molecular mechanisms.Front. Cardiovasc. Med.2022984594210.3389/fcvm.2022.84594235498045
    [Google Scholar]
  59. GimbroneM.A.Jr García-CardeñaG. Endothelial cell dysfunction and the pathobiology of atherosclerosis.Circ. Res.2016118462063610.1161/CIRCRESAHA.115.30630126892962
    [Google Scholar]
  60. Janaszak-JasieckaA. PłoskaA. WierońskaJ.M. DobruckiL.W. KalinowskiL. Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets.Cell. Mol. Biol. Lett.20232812110.1186/s11658‑023‑00423‑236890458
    [Google Scholar]
  61. HabasK. ShangL. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells.Tissue Cell20185413914310.1016/j.tice.2018.09.00230309503
    [Google Scholar]
  62. WangT.T. WangX.M. ZhangX.L. Circulating vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1): Relationship with carotid artery elasticity in patients with impaired glucose regulation (IGR).Ann. Endocrinol.2019802727610.1016/j.ando.2019.01.00130825997
    [Google Scholar]
  63. JaafarH. HassanG. AlosamiM. A comparison of VCAM-1 and ICAM-1 as atherosclerosis risk factors in patients with systemic lupus erythematosus from Iraq.Bionatura2023811110.21931/RB/2023.08.04.48
    [Google Scholar]
  64. Cook-MillsJ.M. MarcheseM.E. Abdala-ValenciaH. Vascular cell adhesion molecule-1 expression and signaling during disease: Regulation by reactive oxygen species and antioxidants.Antioxid. Redox Signal.20111561607163810.1089/ars.2010.352221050132
    [Google Scholar]
  65. ZhangC. The role of inflammatory cytokines in endothelial dysfunction.Basic Res. Cardiol.2008103539840610.1007/s00395‑008‑0733‑018600364
    [Google Scholar]
  66. Benito-VicenteA. UribeK.B. Larrea-SebalA. PalaciosL. CenarroA. CalleX. Galicia-GarciaU. Jebari-BenslaimanS. Sánchez-HernándezR.M. StefM. LambertG. CiveiraF. MartínC. Leu22_Leu23 duplication at the signal peptide of pcsk9 promotes intracellular degradation of LDLr and autosomal dominant hypercholesterolemia.Arterioscler. Thromb. Vasc. Biol.2022427e203e21610.1161/ATVBAHA.122.31549935510551
    [Google Scholar]
  67. RammsB. GordtsP.L.S.M. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism.Curr. Opin. Lipidol.201829317117910.1097/MOL.000000000000050229547399
    [Google Scholar]
  68. ZhangM. CharlesR. TongH. ZhangL. PatelM. WangF. RamesM.J. RenA. RyeK.A. QiuX. JohnsD.G. CharlesM.A. RenG. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation.Sci. Rep.201551874110.1038/srep0874125737239
    [Google Scholar]
  69. MaraisA.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease.Pathology201951216517610.1016/j.pathol.2018.11.00230598326
    [Google Scholar]
  70. ChengW. HeB. BasuS. SouillacP. Identification of key excipients for the solubilization and structural characterization of lipoprotein lipase, an enzyme for hydrolysis of triglyceride.J. Pharm. Sci.202111051958196810.1016/j.xphs.2021.01.02533516753
    [Google Scholar]
  71. PengH. ChiuT.Y. LiangY.J. LeeC.J. LiuC.S. SuenC.S. YenJ.J.Y. ChenH.T. HwangM.J. HussainM.M. YangH.C. Yang-YenH.F. PRAP1 is a novel lipid-binding protein that promotes lipid absorption by facilitating MTTP-mediated lipid transport.J. Biol. Chem.202129610005210.1074/jbc.RA120.01500233168624
    [Google Scholar]
  72. MantheiK.A. PatraD. WilsonC.J. FawazM.V. PiersimoniL. ShenkarJ.C. YuanW. AndrewsP.C. EngenJ.R. SchwendemanA. OhiM.D. TesmerJ.J.G. Structural analysis of lecithin: Cholesterol acyltransferase bound to high density lipoprotein particles.Commun. Biol.2020312810.1038/s42003‑019‑0749‑z31942029
    [Google Scholar]
  73. GulshanK. BrubakerG. CongerH. WangS. ZhangR. HazenS.L. SmithJ.D. PI(4,5)P2 is translocated by ABCA1 to the cell surface where it mediates apolipoprotein a1 binding and nascent HDL assembly.Circ. Res.2016119782783810.1161/CIRCRESAHA.116.30885627514935
    [Google Scholar]
  74. KeshavarzR. ReinerŽ. ZenginG. EidA.H. SahebkarA. MicroRNA-mediated regulation of LDL receptor: Biological and pharmacological implications.Curr. Med. Chem.202431141830183810.2174/092986733066623040709165237026494
    [Google Scholar]
  75. LintonM.F. TaoH. LintonE.F. YanceyP.G. SR-BI: A multifunctional receptor in cholesterol homeostasis and atherosclerosis.Trends Endocrinol. Metab.201728646147210.1016/j.tem.2017.02.00128259375
    [Google Scholar]
  76. JiangX.C. YuY. The role of phospholipid transfer protein in the development of atherosclerosis.Curr. Atheroscler. Rep.2021233910.1007/s11883‑021‑00907‑633496859
    [Google Scholar]
  77. GestoD.S. PereiraC.M.S. CerqueiraN.M.F.S. SousaS.F. An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia.Molecules20202517389110.3390/molecules2517389132859023
    [Google Scholar]
  78. XuY.X. RedonV. YuH. QuerbesW. PirruccelloJ. LiebowA. DeikA. TrindadeK. WangX. MusunuruK. ClishC.B. CowanC. FizgeraldK. RaderD. KathiresanS. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.Atherosclerosis201826819620610.1016/j.atherosclerosis.2017.08.03129183623
    [Google Scholar]
  79. PirilloA. CatapanoA.L. NorataG.D. Niemann-pick C1-like 1 (NPC1L1) inhibition and cardiovascular diseases.Curr. Med. Chem.2016231098399910.2174/092986732366616022911411126923679
    [Google Scholar]
  80. DengX. DongQ. BridgesD. RaghowR. ParkE.A. ElamM.B. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851121521152910.1016/j.bbalip.2015.08.00726327595
    [Google Scholar]
  81. LagaceT.A. PCSK9 and LDLR degradation.Curr. Opin. Lipidol.201425538739310.1097/MOL.000000000000011425110901
    [Google Scholar]
  82. MaM. HouC. LiuJ. Effect of PCSK9 on atherosclerotic cardiovascular diseases and its mechanisms: Focus on immune regulation.Front. Cardiovasc. Med.202310114848610.3389/fcvm.2023.114848636970356
    [Google Scholar]
  83. ChapmanM. J. PCSK9 inhibitors and cardiovascular disease: Heralding a new therapeutic era.Curr. Opin. Lipidol.201526651110.1097/MOL.0000000000000239
    [Google Scholar]
  84. BlomD. DentR. CastroR. TothP. PCSK9 inhibition in the management of hyperlipidemia: Focus on evolocumab.Vasc. Health Risk Manag.20161218519710.2147/VHRM.S10256427274264
    [Google Scholar]
  85. KatzmannJ.L. Gouni-BertholdI. LaufsU. PCSK9 inhibition: Insights from clinical trials and future prospects.Front. Physiol.20201159581910.3389/fphys.2020.59581933304274
    [Google Scholar]
  86. PackardC.J. PirilloA. TsimikasS. FerenceB.A. CatapanoA.L. Exploring apolipoprotein C-III: Pathophysiological and pharmacological relevance.Cardiovasc. Res.2024119182843285710.1093/cvr/cvad17738039351
    [Google Scholar]
  87. GordtsP.L.S.M. NockR. SonN.H. RammsB. LewI. GonzalesJ.C. ThackerB.E. BasuD. LeeR.G. MullickA.E. GrahamM.J. GoldbergI.J. CrookeR.M. WitztumJ.L. EskoJ.D. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors.J. Clin. Invest.201612682855286610.1172/JCI8661027400128
    [Google Scholar]
  88. KhetarpalS.A. QamarA. MillarJ.S. RaderD.J. Targeting ApoC-III to reduce coronary disease risk.Curr. Atheroscler. Rep.20161895410.1007/s11883‑016‑0609‑y27443326
    [Google Scholar]
  89. OlkkonenV.M. SinisaloJ. JauhiainenM. New medications targeting triglyceride-rich lipoproteins: Can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk?Atherosclerosis2018272273210.1016/j.atherosclerosis.2018.03.01929544086
    [Google Scholar]
  90. BarterP.J. RyeK.A. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk.J. Lipid Res.20125391755176610.1194/jlr.R02407522550134
    [Google Scholar]
  91. BarterP.J. CaulfieldM. ErikssonM. GrundyS.M. KasteleinJ.J.P. KomajdaM. Lopez-SendonJ. MoscaL. TardifJ.C. WatersD.D. ShearC.L. RevkinJ.H. BuhrK.A. FisherM.R. TallA.R. BrewerB. ILLUMINATE Investigators Effects of torcetrapib in patients at high risk for coronary events.N. Engl. J. Med.2007357212109212210.1056/NEJMoa070662817984165
    [Google Scholar]
  92. TaheriH. FilionK.B. WindleS.B. ReynierP. EisenbergM.J. Cholesteryl ester transfer protein inhibitors and cardiovascular outcomes: A systematic review and meta- analysis of randomized controlled trials.Cardiology2020145423625010.1159/00050536532172237
    [Google Scholar]
  93. TardifJ.C. RhaindsD. RhéaumeE. DubéM.P. Cetp.Arterioscler. Thromb. Vasc. Biol.201737339640010.1161/ATVBAHA.116.30712228126828
    [Google Scholar]
  94. SuX. LiG. DengY. ChangD. Cholesteryl ester transfer protein inhibitors in precision medicine.Clin. Chim. Acta202051073374010.1016/j.cca.2020.09.01232941836
    [Google Scholar]
  95. LegaultM.A. BarhdadiA. GamacheI. LemaçonA. Lemieux PerreaultL.P. GrenierJ.C. SylvestreM.P. HussinJ.G. RhaindsD. TardifJ.C. DubéM.P. Study of effect modifiers of genetically predicted CETP reduction.Genet. Epidemiol.202347219821210.1002/gepi.2251436701426
    [Google Scholar]
  96. NgD.S. The role of lecithin: Cholesterol acyltransferase in the modulation of cardiometabolic risks - a clinical update and emerging insights from animal models.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20121821465465910.1016/j.bbalip.2011.12.01222326749
    [Google Scholar]
  97. KunnenS. Van EckM. Lecithin: cholesterol acyltransferase: Old friend or foe in atherosclerosis?J. Lipid Res.20125391783179910.1194/jlr.R02451322566575
    [Google Scholar]
  98. RoussetX. ShamburekR. VaismanB. AmarM. RemaleyA.T. Lecithin cholesterol acyltransferase: An anti- or pro-atherogenic factor?Curr. Atheroscler. Rep.201113324925610.1007/s11883‑011‑0171‑621331766
    [Google Scholar]
  99. MaiolinoG. RossittoG. CaielliP. BisogniV. RossiG.P. CalòL.A. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts.Mediators Inflamm.2013201311310.1155/2013/71465324222937
    [Google Scholar]
  100. CyrusT. WitztumJ.L. RaderD.J. TangiralaR. FazioS. LintonM.F. FunkC.D. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E–deficient mice.J. Clin. Invest.1999103111597160410.1172/JCI589710359569
    [Google Scholar]
  101. BalasubramanianS. AggarwalP. SharmaS. Lipoprotein lipase deficiency.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  102. KumariA. KristensenK.K. PlougM. WintherA.M.L. The importance of lipoprotein lipase regulation in atherosclerosis.Biomedicines20219778210.3390/biomedicines907078234356847
    [Google Scholar]
  103. RammsB. PatelS. SunX. PessentheinerA.R. DucasaG.M. MullickA.E. LeeR.G. CrookeR.M. TsimikasS. WitztumJ.L. GordtsP.L.S.M. Interventional hepatic apoC-III knockdown improves atherosclerotic plaque stability and remodeling by triglyceride lowering.JCI Insight2022713e15841410.1172/jci.insight.15841435653195
    [Google Scholar]
  104. BorénJ. PackardC.J. TaskinenM.R. The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans.Front. Endocrinol.20201147410.3389/fendo.2020.0047432849270
    [Google Scholar]
  105. YangK. WangJ. XiangH. DingP. WuT. JiG. LCAT- Targeted therapies: Progress, failures and future.Biomed. Pharmacother.202214711267710.1016/j.biopha.2022.11267735121343
    [Google Scholar]
  106. CipolloneF. MezzettiA. FaziaM.L. CuccurulloC. IezziA. UcchinoS. SpigonardoF. BucciM. CuccurulloF. PrescottS.M. StafforiniD.M. Association between 5-lipoxygenase expression and plaque instability in humans.Arterioscler. Thromb. Vasc. Biol.20052581665167010.1161/01.ATV.0000172632.96987.2d15933245
    [Google Scholar]
  107. SeoK.W. LeeS.J. KimC.E. YunM.R. ParkH.M. YunJ.W. BaeS.S. KimC.D. Participation of 5-lipoxygenase-derived LTB4 in 4-hydroxynonenal-enhanced MMP-2 production in vascular smooth muscle cells.Atherosclerosis20102081566110.1016/j.atherosclerosis.2009.06.01219586628
    [Google Scholar]
  108. BarterP.J. NichollsS. RyeK.A. AnantharamaiahG.M. NavabM. FogelmanA.M. Antiinflammatory Properties of HDL.Circ. Res.200495876477210.1161/01.RES.0000146094.59640.1315486323
    [Google Scholar]
  109. MineoC. DeguchiH. GriffinJ.H. ShaulP.W. Endothelial and antithrombotic actions of HDL.Circ. Res.200698111352136410.1161/01.RES.0000225982.01988.9316763172
    [Google Scholar]
  110. AroraS. PatraS.K. SainiR. HDL—a molecule with a multi-faceted role in coronary artery disease.Clin. Chim. Acta2016452668110.1016/j.cca.2015.10.02126519003
    [Google Scholar]
  111. AnsellB.J. NavabM. WatsonK.E. FonarowG.C. FogelmanA.M. Anti-Inflammatory Properties of HDL.Rev. Endocr. Metab. Disord.20045435135810.1023/B:REMD.0000045107.71895.b215486468
    [Google Scholar]
  112. RosensonR.S. BrewerH.B.Jr AnsellB.J. BarterP. ChapmanM.J. HeineckeJ.W. KontushA. TallA.R. WebbN.R. Dysfunctional HDL and atherosclerotic cardiovascular disease.Nat. Rev. Cardiol.2016131486010.1038/nrcardio.2015.12426323267
    [Google Scholar]
  113. ZhangQ. LiuL. ZhengX.Y. Protective roles of HDL, apoA-I and mimetic peptide on endothelial function: Through endothelial cells and endothelial progenitor cells.Int. J. Cardiol.2009133328629210.1016/j.ijcard.2008.11.03419068270
    [Google Scholar]
  114. FarmerJ.A. LiaoJ. Evolving concepts of the role of high-density lipoprotein in protection from atherosclerosis.Curr. Atheroscler. Rep.201113210711410.1007/s11883‑011‑0166‑321380938
    [Google Scholar]
  115. BeslerC. HeinrichK. RiwantoM. LüscherT.F. LandmesserU. High-density lipoprotein-mediated anti-atherosclerotic and endothelial-protective effects: A potential novel therapeutic target in cardiovascular disease.Curr. Pharm. Des.201016131480149310.2174/13816121079105101320196740
    [Google Scholar]
  116. ChakrabartiR.S. InghamS.A. KozlitinaJ. GayA. CohenJ.C. RadhakrishnanA. HobbsH.H. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin.eLife20176e2335510.7554/eLife.2335528169829
    [Google Scholar]
  117. MartinetW. SchrijversD.M. De MeyerG.R.Y. Pharmacological modulation of cell death in atherosclerosis: A promising approach towards plaque stabilization?Br. J. Pharmacol.2011164111310.1111/j.1476‑5381.2011.01342.x21418184
    [Google Scholar]
  118. BonizziA. PiuriG. CorsiF. CazzolaR. MazzucchelliS. HDL dysfunctionality: Clinical relevance of quality rather than quantity.Biomedicines20219772910.3390/biomedicines907072934202201
    [Google Scholar]
  119. ChoK.H. The Current status of research on high-density lipoproteins (HDL): A paradigm shift from HDL quantity to HDL quality and HDL functionality.Int. J. Mol. Sci.2022237396710.3390/ijms2307396735409326
    [Google Scholar]
  120. DanskyH.M. BarlowC.B. LominskaC. SikesJ.L. KaoC. WeinsaftJ. CybulskyM.I. SmithJ.D. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage.Arterioscler. Thromb. Vasc. Biol.200121101662166710.1161/hq1001.09662511597942
    [Google Scholar]
  121. Medrano-BoschM. Simón-CodinaB. JiménezW. EdelmanE.R. Melgar-LesmesP. Monocyte-endothelial cell interactions in vascular and tissue remodeling.Front. Immunol.202314119603310.3389/fimmu.2023.119603337483594
    [Google Scholar]
  122. ČejkováS. Králová LesnáI. PoledneR. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development.Cor Vasa2016584e419e42510.1016/j.crvasa.2015.08.002
    [Google Scholar]
  123. FranceschelliS. De CeccoF. PesceM. RipariP. GuagnanoM.T. NuevoA.B. GrilliA. SancilioS. SperanzaL. Hydroxytyrosol reduces foam cell formation and endothelial inflammation regulating the PPARγ/LXRα/ABCA1 pathway.Int. J. Mol. Sci.2023243205710.3390/ijms2403205736768382
    [Google Scholar]
  124. MooreK.J. SheedyF.J. FisherE.A. Macrophages in atherosclerosis: A dynamic balance.Nat. Rev. Immunol.2013131070972110.1038/nri352023995626
    [Google Scholar]
  125. WangY. LiW. ZhaoT. ZouY. DengT. YangZ. YuanZ. MaL. YuR. WangT. YuC. Interleukin-17-producing CD4+ T cells promote inflammatory response and foster disease progression in hyperlipidemic patients and atherosclerotic mice.Front. Cardiovasc. Med.2021866776810.3389/fcvm.2021.66776833981738
    [Google Scholar]
  126. OuyangW. KollsJ.K. ZhengY. The biological functions of T helper 17 cell effector cytokines in inflammation.Immunity200828445446710.1016/j.immuni.2008.03.00418400188
    [Google Scholar]
  127. TsioufisP. TheofilisP. TsioufisK. TousoulisD. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches.Int. J. Mol. Sci.202223241593710.3390/ijms23241593736555579
    [Google Scholar]
  128. Roa-VidalN. Rodríguez-AponteA.S. Lasalde-DominicciJ.A. Capó-VélezC.M. Delgado-VélezM. Cholinergic polarization of human macrophages.Int. J. Mol. Sci.202324211573210.3390/ijms24211573237958716
    [Google Scholar]
  129. StanciulescuL.A. Scafa-UdristeA. DorobantuM. Exploring the association between low-density lipoprotein subfractions and major adverse cardiovascular outcomes-a comprehensive review.Int. J. Mol. Sci.2023247666910.3390/ijms2407666937047642
    [Google Scholar]
  130. WangQ. WuJ. ZengY. ChenK. WangC. YangS. SunN. ChenH. DuanK. ZengG. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease.Clin. Chim. Acta2020510627210.1016/j.cca.2020.06.04432622968
    [Google Scholar]
  131. QianZ. ZhaoY. WanC. DengY. ZhuangY. XuY. ZhuY. LuS. BaoZ. Pyroptosis in the initiation and progression of atherosclerosis.Front. Pharmacol.20211265296310.3389/fphar.2021.65296334122076
    [Google Scholar]
  132. JinX. MaY. LiuD. HuangY. Role of pyroptosis in the pathogenesis and treatment of diseases.MedComm202343e24910.1002/mco2.249
    [Google Scholar]
  133. LinJ. LaiX. FanX. YeB. ZhongL. ZhangY. ShaoR. ShiS. HuangW. SuL. YingM. Oridonin protects against myocardial ischemia–reperfusion injury by inhibiting gsdmd-mediated pyroptosis.Genes20221311213310.3390/genes1311213336421808
    [Google Scholar]
  134. FanX. HanJ. ZhongL. ZhengW. ShaoR. ZhangY. ShiS. LinS. HuangZ. HuangW. CaiX. YeB. Macrophage-derived GSDMD plays an essential role in atherosclerosis and cross talk between macrophages via the mitochondria-STING-IRF3/NF-κB axis.Arterioscler. Thromb. Vasc. Biol.20244461365137810.1161/ATVBAHA.123.32061238695170
    [Google Scholar]
  135. KawaharaI. KitagawaN. TsutsumiK. NagataI. HayashiT. KojiT. The expression of vascular dendritic cells in human atherosclerotic carotid plaques.Hum. Pathol.20073891378138510.1016/j.humpath.2007.02.00417555794
    [Google Scholar]
  136. ErbelC. DenglerT.J. WanglerS. LasitschkaF. BeaF. WambsganssN. HakimiM. BöcklerD. KatusH.A. GleissnerC.A. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability.Basic Res. Cardiol.2011106112513410.1007/s00395‑010‑0135‑y21116822
    [Google Scholar]
  137. PurushothamanK.R. PurushothamanM. MuntnerP. LentoP.A. O’ConnorW.N. SharmaS.K. FusterV. MorenoP.R. Inflammation, neovascularization and intra- plaque hemorrhage are associated with increased reparative collagen content: Implication for plaque progression in diabetic atherosclerosis.Vasc. Med.201116210310810.1177/1358863X1140224921511672
    [Google Scholar]
  138. OlejarzW. ŁachetaD. Kubiak-TomaszewskaG. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability.Int. J. Mol. Sci.20202111394610.3390/ijms2111394632486345
    [Google Scholar]
  139. García-GiustinianiD. SteinR. Genetics of dyslipidemia.Arq. Bras. Cardiol.2016106543443810.5935/abc.2016007427305287
    [Google Scholar]
  140. Matías-PérezD. Pérez-SantiagoA.D. Sánchez MedinaM.A. Alpuche OsornoJ.J. García-MontalvoI.A. PCSK9 gene participates in the development of primary dyslipidemias.Balkan J. Med. Genet.202124151410.2478/bjmg‑2021‑000934447653
    [Google Scholar]
  141. GhodeshwarG.K. DubeA. KhobragadeD. Impact of lifestyle modifications on cardiovascular health: A narrative review.Cureus2023157e4261610.7759/cureus.4261637641769
    [Google Scholar]
  142. FeingoldK.R. The effect of diet on cardiovascular disease and lipid and lipoprotein levels.EndotextSouth Dartmouth (MA)2000
    [Google Scholar]
  143. WangZ. WangD. WangY. Cigarette smoking and adipose tissue: The emerging role in progression of atherosclerosis.Mediators Inflamm.20172017111110.1155/2017/310273729445255
    [Google Scholar]
  144. SzkupM. JurczakA. KarakiewiczB. KotwasA. KopećJ. GrochansE. Influence of cigarette smoking on hormone and lipid metabolism in women in late reproductive stage.Clin. Interv. Aging20181310911510.2147/CIA.S14048729398911
    [Google Scholar]
  145. HegeleR. Gene-environment interactions in atherosclerosis.Mol. Cell. Biochem.1992113217718610.1007/BF002315371325605
    [Google Scholar]
  146. HegeleR.A. The genetic basis of atherosclerosis.Int. J. Clin. Lab. Res.199727121310.1007/BF028272379144022
    [Google Scholar]
  147. HennigB. OesterlingE. ToborekM. Environmental toxicity, nutrition, and gene interactions in the development of atherosclerosis.Nutr. Metab. Cardiovasc. Dis.200717216216910.1016/j.numecd.2006.01.00317306736
    [Google Scholar]
  148. AndreassiM.G. Metabolic syndrome, diabetes and atherosclerosis: Influence of gene–environment interaction.Mutat. Res.20096671-2354310.1016/j.mrfmmm.2008.10.01819028510
    [Google Scholar]
  149. PaszkowskiJ. WhithamS.A. Gene silencing and DNA methylation processes.Curr. Opin. Plant Biol.20014212312910.1016/S1369‑5266(00)00147‑311228434
    [Google Scholar]
  150. ChenY. RollinsJ. PaigenB. WangX. Genetic and genomic insights into the molecular basis of atherosclerosis.Cell Metab.20076316417910.1016/j.cmet.2007.07.00117767904
    [Google Scholar]
  151. LusisA.J. MarR. PajukantaP. Genetics of atherosclerosis.Annu. Rev. Genomics Hum. Genet.2004518921810.1146/annurev.genom.5.061903.175930
    [Google Scholar]
  152. RaynerK.J. SheedyF.J. EsauC.C. HussainF.N. TemelR.E. ParathathS. van GilsJ.M. RaynerA.J. ChangA.N. SuarezY. Fernandez-HernandoC. FisherE.A. MooreK.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.J. Clin. Invest.201112172921293110.1172/JCI5727521646721
    [Google Scholar]
  153. RahmanM.M. IslamF. -Or-RashidM.H. MamunA.A. RahamanM.S. IslamM.M. MeemA.F.K. SutradharP.R. MitraS. MimiA.A. EmranT.B. Fatimawali IdroesR. TalleiT.E. AhmedM. CavaluS. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation.Front. Cell. Infect. Microbiol.20221290357010.3389/fcimb.2022.90357035795187
    [Google Scholar]
  154. AlmeidaC. BarataP. FernandesR. The influence of gut microbiota in cardiovascular diseases-a brief review.Porto Biomed. J.202161e10610.1097/j.pbj.000000000000010633490701
    [Google Scholar]
  155. NesciA. CarnuccioC. RuggieriV. D’AlessandroA. Di GiorgioA. SantoroL. GasbarriniA. SantoliquidoA. PonzianiF.R. Gut microbiota and cardiovascular disease: Evidence on the metabolic and inflammatory background of a complex relationship.Int. J. Mol. Sci.20232410908710.3390/ijms2410908737240434
    [Google Scholar]
  156. BrownE.M. ClardyJ. XavierR.J. Gut microbiome lipid metabolism and its impact on host physiology.Cell Host Microbe202331217318610.1016/j.chom.2023.01.00936758518
    [Google Scholar]
  157. NogalA. ValdesA. M. MenniC. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health.Gut Microbes2021131189721210.1080/19490976.2021.1897212
    [Google Scholar]
  158. YooJ.Y. SniffenS. McGill PercyK.C. PallavalV.B. ChidipiB. Gut dysbiosis and immune system in atherosclerotic cardiovascular disease (ACVD).Microorganisms202210110810.3390/microorganisms1001010835056557
    [Google Scholar]
  159. ZaherA. ElsayghJ. PetersonS. J. WeisbergI. S. ParikhM. A. FrishmanW. H. The interplay of microbiome dysbiosis and cardiovascular disease.Cardiol Rev.202410109710.1097/CRD.0000000000000701
    [Google Scholar]
  160. PullieroA. GodschalkR. AndreassiM.G. CurfsD. Van SchootenF.J. IzzottiA. Environmental carcinogens and mutational pathways in atherosclerosis.Int. J. Hyg. Environ. Health2015218329331210.1016/j.ijheh.2015.01.00725704189
    [Google Scholar]
  161. WilleyJ.Z. ElkindM.S.V. 3-Hydroxy-3-methylglutaryl- coenzyme A reductase inhibitors in the treatment of central nervous system diseases.Arch. Neurol.20106791062106710.1001/archneurol.2010.19920837848
    [Google Scholar]
  162. LiaoJ.K. LaufsU. Pleiotropic effects of statins.Annu. Rev. Pharmacol. Toxicol.20054518911810.1146/annurev.pharmtox.45.120403.09574815822172
    [Google Scholar]
  163. OesterleA. LaufsU. LiaoJ.K. Pleiotropic effects of statins on the cardiovascular system.Circ. Res.2017120122924310.1161/CIRCRESAHA.116.30853728057795
    [Google Scholar]
  164. TakataK. ImaizumiS. ZhangB. MiuraS. SakuK. Stabilization of high-risk plaques.Cardiovasc. Diagn. Ther.20166430432110.21037/cdt.2015.10.0327500090
    [Google Scholar]
  165. AlmeidaS.O. BudoffM. Effect of statins on atherosclerotic plaque.Trends Cardiovasc. Med.201929845145510.1016/j.tcm.2019.01.00130642643
    [Google Scholar]
  166. WongN.D. ZhaoY. QuekR.G.W. BlumenthalR.S. BudoffM.J. CushmanM. GargP. SandfortV. TsaiM. LopezJ.A.G. Residual atherosclerotic cardiovascular disease risk in statin-treated adults: The multi-ethnic study of atherosclerosis.J. Clin. Lipidol.20171151223123310.1016/j.jacl.2017.06.01528754224
    [Google Scholar]
  167. MatsuuraY. KanterJ.E. BornfeldtK.E. Highlighting residual atherosclerotic cardiovascular disease risk.Arterioscler. Thromb. Vasc. Biol.2019391e1e910.1161/ATVBAHA.118.31199930586334
    [Google Scholar]
  168. LiuzzoG. PatronoC. Targeting residual cardiovascular risk in the statin era: Cholesterol or inflammation?Eur. Heart J.202344221973197510.1093/eurheartj/ehad24137138427
    [Google Scholar]
  169. ChaudharyR. GargJ. ShahN. SumnerA. PCSK9 inhibitors: A new era of lipid lowering therapy.World J. Cardiol.201792769110.4330/wjc.v9.i2.7628289523
    [Google Scholar]
  170. BeltranR.A. ZemeirK.J. KimberlingC.R. KneerM.S. MifflinM.D. BroderickT.L. Is a PCSK9 inhibitor right for your patient? A review of treatment data for individualized therapy.Int. J. Environ. Res. Public Health202219241689910.3390/ijerph19241689936554779
    [Google Scholar]
  171. ParikhR.R. BreveF. MagnussonP. BehzadiP. PergolizziJ. The use of monoclonal antibody-based proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia.Cureus2022146e2564110.7759/cureus.2564135795514
    [Google Scholar]
  172. HeN. LiQ. WuC. RenZ. GaoY. PanL. WangM. WenH. JiangZ. TangZ. LiuL. Lowering serum lipids via PCSK9-targeting drugs: Current advances and future perspectives.Acta Pharmacol. Sin.201738330131110.1038/aps.2016.13428112180
    [Google Scholar]
  173. MarfellaR. PrattichizzoF. SarduC. PaolissoP. D’OnofrioN. ScisciolaL. La GrottaR. FrigéC. FerraraccioF. PanareseI. FanelliM. ModugnoP. CalafioreA.M. MelchionnaM. SassoF.C. FurbattoF. D’AndreaD. SiniscalchiM. MauroC. CesaroA. CalabròP. SantulliG. BalestrieriM.L. BarbatoE. CerielloA. PaolissoG. Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque.Atherosclerosis202337811718010.1016/j.atherosclerosis.2023.06.97137422356
    [Google Scholar]
  174. LuoJ. LiaoW. WangX. XuR. LiW. LiW. LiuK. HuangK. MaY. WangT. YangB. JiaoL. PCSK9 inhibitors for anti-inflammation in atherosclerosis: Protocol for a systematic review and meta-analysis of randomised controlled trials.BMJ Open20221211e06204610.1136/bmjopen‑2022‑06204636424111
    [Google Scholar]
  175. PradhanA.D. AdayA.W. RoseL.M. RidkerP.M. Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy.Circulation2018138214114910.1161/CIRCULATIONAHA.118.03464529716940
    [Google Scholar]
  176. PittsR.N. EckelR.H. The emerging role of PCSK9 inhibitors in preventive cardiology.Eur. Cardiol.201492657010.15420/ecr.2014.9.2.6530310488
    [Google Scholar]
  177. O’DonoghueM.L. FazioS. GiuglianoR.P. StroesE.S.G. KanevskyE. Gouni-BertholdI. ImK. Lira PinedaA. WassermanS.M. ČeškaR. EzhovM.V. JukemaJ.W. JensenH.K. TokgözoğluS.L. MachF. HuberK. SeverP.S. KeechA.C. PedersenT.R. SabatineM.S. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk.Circulation2019139121483149210.1161/CIRCULATIONAHA.118.03718430586750
    [Google Scholar]
  178. StaelsB. DallongevilleJ. AuwerxJ. SchoonjansK. LeitersdorfE. FruchartJ.C. Mechanism of action of fibrates on lipid and lipoprotein metabolism.Circulation199898192088209310.1161/01.CIR.98.19.20889808609
    [Google Scholar]
  179. FeingoldK.R. Triglyceride lowering drugs.EndotextSouth Dartmouth (MA)2000
    [Google Scholar]
  180. KimI.S. SilwalP. JoE.K. Peroxisome proliferator-activated receptor-targeted therapies: Challenges upon infectious diseases.Cells202312465010.3390/cells1204065036831317
    [Google Scholar]
  181. YoussefJ. BadrM. Role of peroxisome proliferator-activated receptors in inflammation control.BioMed Res. Int.20042004315616610.1155/S111072430430806515292582
    [Google Scholar]
  182. SinghG. CorreaR. Fibrate medications.StatPearls.Treasure Island, FLStatPearls Publishing2024395432
    [Google Scholar]
  183. SahebkarA. Simental-MendíaL.E. WattsG.F. SerbanM.C. BanachM. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of head-to-head randomized controlled trials.BMC Med.20171512210.1186/s12916‑017‑0787‑728153024
    [Google Scholar]
  184. Gallego-ColonE. DaumA. YosefyC. Statins and PCSK9 inhibitors: A new lipid-lowering therapy.Eur. J. Pharmacol.202087817311410.1016/j.ejphar.2020.17311432302598
    [Google Scholar]
  185. BansalS. BurmanA. TripathiA.K. Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes.World J. Diabetes20231481146116210.4239/wjd.v14.i8.114637664478
    [Google Scholar]
  186. MantaC.P. LeibingT. FriedrichM. NolteH. AdrianM. SchledzewskiK. KrzistetzkoJ. KirkammC. David SchmidC. XiY. StojanovicA. TonackS. de la TorreC. HammadS. OffermannsS. KrügerM. CerwenkaA. PlattenM. GoerdtS. GéraudC. Targeting of scavenger receptors stabilin-1 and stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating monocyte/macrophage suppression.Circulation2022146231783179910.1161/CIRCULATIONAHA.121.05861536325910
    [Google Scholar]
  187. YurdagulA.Jr SulzmaierF.J. ChenX.L. PattilloC.B. SchlaepferD.D. OrrA.W. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-κB activation and VCAM-1 expression.J. Cell Sci.201612981580159110.1242/jcs.18209726906414
    [Google Scholar]
  188. BanksW.A. EngelkeK. HansenK.M. BullockK.M. CaliasP. Modest blood-brain barrier permeability of the cyclodextrin kleptose: Modification by efflux and luminal surface binding.J. Pharmacol. Exp. Ther.2019371112112910.1124/jpet.119.26049731320494
    [Google Scholar]
  189. GardinaliM. Treatment of Raynaud’s phenomenon with intravenous prostaglandin E1alpha-cyclodextrin improves endothelial cell injury in systemic sclerosis.J. Rheumatol.2001284786794
    [Google Scholar]
  190. ZimmerS. GrebeA. BakkeS.S. BodeN. HalvorsenB. UlasT. SkjellandM. De NardoD. LabzinL.I. KerksiekA. HempelC. HenekaM.T. HawxhurstV. FitzgeraldM.L. TrebickaJ. BjörkhemI. GustafssonJ.Å. WesterterpM. TallA.R. WrightS.D. EspevikT. SchultzeJ.L. NickenigG. LütjohannD. LatzE. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming.Sci. Transl. Med.20168333333ra5010.1126/scitranslmed.aad610027053774
    [Google Scholar]
  191. Lucia AppletonS. Navarro-OrcajadaS. Martínez-NavarroF.J. CalderaF. López-NicolásJ.M. TrottaF. MatencioA. Cyclodextrins as anti-inflammatory agents: Basis, drugs and perspectives.Biomolecules2021119138410.3390/biom1109138434572597
    [Google Scholar]
  192. KongP. CuiZ.Y. HuangX.F. ZhangD.D. GuoR.J. HanM. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention.Signal Transduct. Target. Ther.20227113110.1038/s41392‑022‑00955‑735459215
    [Google Scholar]
  193. BodeN. GrebeA. KerksiekA. LütjohannD. WernerN. NickenigG. LatzE. ZimmerS. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice.Biochem. Biophys. Res. Commun.2016478135636210.1016/j.bbrc.2016.07.04727416761
    [Google Scholar]
  194. KotbM.A. Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: Ursodeoxycholic acid freezes regeneration & induces hibernation mode.Int. J. Mol. Sci.20121378882891410.3390/ijms1307888222942741
    [Google Scholar]
  195. GallucciG.M. AlsuwaytB. AuclairA.M. BoyerJ.L. AssisD.N. GhonemN.S. Fenofibrate downregulates NF-κB signaling to inhibit proinflammatory cytokine secretion in human THP-1 macrophages and during primary biliary cholangitis.Inflammation20224562570258110.1007/s10753‑022‑01713‑135838934
    [Google Scholar]
  196. TranN. GarciaT. AniqaM. AliS. AllyA. NauliS.M. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: In physiology and in disease states.Am J Biomed Sci Res202215215317735072089
    [Google Scholar]
  197. YuX-H. ZhengX-L. TangC-K. Chapter seven - Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis.Advances in Clinical Chemistry. MakowskiG.S. Elsevier20157117120310.1016/bs.acc.2015.06.005
    [Google Scholar]
  198. BonacinaF. MartiniE. SveclaM. NourJ. CremonesiM. BerettaG. MoregolaA. PellegattaF. ZampoleriV. CatapanoA.L. KallikourdisM. NorataG.D. Adoptive transfer of CX3CR1 transduced-T regulatory cells improves homing to the atherosclerotic plaques and dampens atherosclerosis progression.Cardiovasc. Res.202111792069208210.1093/cvr/cvaa26432931583
    [Google Scholar]
  199. CuiK. GaoX. WangB. WuH. ArulsamyK. DongY. XiaoY. JiangX. MalovichkoM.V. LiK. PengQ. LuY.W. ZhuB. ZhengR. WongS. CowanD.B. LintonM. SrivastavaS. ShiJ. ChenK. ChenH. Epsin nanotherapy regulates cholesterol transport to fortify atheroma regression.Circ. Res.20231321e22e4210.1161/CIRCRESAHA.122.32172336444722
    [Google Scholar]
  200. GuoK. HuL. XiD. ZhaoJ. LiuJ. LuoT. MaY. LaiW. GuoZ. PSRC1 overexpression attenuates atherosclerosis progression in apoE −/− mice by modulating cholesterol transportation and inflammation.J. Mol. Cell. Cardiol.2018116698010.1016/j.yjmcc.2018.01.01329378206
    [Google Scholar]
  201. YeD. LammersB. ZhaoY. MeursI. Van BerkelT.J. Van EckM. ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: Important targets for the treatment of atherosclerosis.Curr. Drug Targets201112564766010.2174/13894501179537852221039336
    [Google Scholar]
  202. LiD. LiuD. WangY. SunQ. SunR. ZhangJ. HongX. HuoR. ZhangS. CuiC. Multifunctional liposomes Co-encapsulating epigallocatechin-3-gallate (EGCG) and miRNA for atherosclerosis lesion elimination.Nanoscale Adv.20236122123210.1039/D3NA00369H38125586
    [Google Scholar]
  203. DogbeyD.M. TorresV.E.S. FajemisinE. MpondoL. NgwenyaT. AkinrinmadeO.A. PerrimanA.W. BarthS. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy.Drug Deliv. Transl. Res.202313112719273810.1007/s13346‑023‑01362‑337301780
    [Google Scholar]
  204. BacharB.J. MannaB. Coronary artery bypass graft.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  205. AlexanderJ.H. SmithP.K. Coronary-artery bypass grafting.N. Engl. J. Med.2016374201954196410.1056/NEJMra140694427192673
    [Google Scholar]
  206. DaCostaM. TadiP. SurowiecS.M. Carotid endarterectomy.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  207. ChambersB.R. DonnanG. Carotid endarterectomy for asymptomatic carotid stenosis.Cochrane Libr.200520084CD00192310.1002/14651858.CD001923.pub216235289
    [Google Scholar]
  208. AhmadM. MehtaP. ReddivariA.K.R. MungeeS. Percutaneous coronary intervention.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  209. ChoS.C. ParkD.W. ParkS.J. Percutaneous coronary intervention and coronary artery bypass grafting for the treatment of left main coronary artery disease.Korean Circ. J.201949536938310.4070/kcj.2019.011231074210
    [Google Scholar]
  210. AkkusN. AbdulbakiA. JimenezE. TandonN. Atherectomy devices: Technology update.Med. Devices2014811010.2147/MDER.S5059425565904
    [Google Scholar]
  211. WardleB.G. AmblerG.K. RadwanR.W. HinchliffeR.J. TwineC.P. Atherectomy for peripheral arterial disease.Cochrane Libr.202020209CD00668010.1002/14651858.CD006680.pub332990327
    [Google Scholar]
  212. PentonA. LinJ. KoldeG. DeJongM. BlechaM. Investigation of combined carotid endarterectomy and coronary artery bypass graft surgery outcomes and adverse event risk factors in the vascular quality initiative.Vasc. Endovascular Surg.202357888490010.1177/1538574423118374137303074
    [Google Scholar]
  213. ZukowskaA. KaczmarczykM. ListewnikM. ZukowskiM. Impact of post-operative infection after cabg on long-term survival.J. Clin. Med.2023129312510.3390/jcm1209312537176568
    [Google Scholar]
  214. PalmeriniT. SaviniC. Di EusanioM. Risks of stroke after coronary artery bypass graft – recent insights and perspectives.Interv. Cardiol.201192778310.15420/icr.2011.9.2.7729588782
    [Google Scholar]
  215. MajeedH. ChowdhuryY.S. Percutaneous transluminal angioplasty and balloon catheters.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348217241119063941
Loading
/content/journals/cmc/10.2174/0109298673348217241119063941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test