Skip to content
2000
image of SQSTM1/P62 Mediates the Effects of CPNE3 on the Epithelial-mesenchymal Transition and Migratory Inhibition of Lung Adenocarcinoma Cells

Abstract

Introduction

Copine-3 (CPNE3) is a conservative calcium-dependent phospholipid-binding protein belonging to the copines protein family. CPNE3 has been implicated in the development and progression of several diseases, including cancer.

Method

Herein, we investigated the molecular mechanisms through which CPNE3 regulates the migration of lung adenocarcinoma (LUAD) cells . Western blotting and immunohistochemical assays showed that CPNE3 is widely distributed in LUAD tissues and cell lines and that CPNE3 downregulation promotes the migration of human LUAD A549 cells.

Results

Stable isotope labelling with amino acids in cell culture, which is a quantitative proteomics approach coupled with bioinformatic analyses, revealed that CPNE3 regulates SQSTM1/p62 and vimentin expression, indicating that CPNE3 may mediate epithelial-mesenchymal transition (EMT). CPNE3 silencing by siRNA upregulated vimentin levels but downregulated E-cadherin levels in the A549 cells.

Conclusion

Furthermore, SQSTM1/p62 knockdown enhanced migratory ability and EMT progression in CPNE3-silenced A549 cells. Overall, CPNE3 knockdown was found to promote EMT by inhibiting SQSTM1/p62 signalling and facilitating cell migration. Our findings highlight the role of CPNE3 as a tumour suppressor, providing deeper insights into its carcinogenic roles in LUAD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673340242250102104725
2025-01-21
2025-04-13
Loading full text...

Full text loading...

References

  1. Yang L. Wang L. Zhang Y. Immunotherapy for lung cancer: Advances and prospects. Am. J. Clin. Exp. Immunol. 2016 5 1 1 20 27168951
    [Google Scholar]
  2. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  3. Guo T. Ding Y. Chen L. Zhu L. Lin J. Zhang J. Huang Y. Li W. Lin R. Pan X. Evaluation of pembrolizumab for the treatment of advanced non-small cell lung cancer: A retrospective, single-centre, single-arm study. J. Thorac. Dis. 2021 13 1 282 290 10.21037/jtd‑20‑3413 33569208
    [Google Scholar]
  4. Ansari J. Shackelford R.E. Osta E.H. Epigenetics in non-small cell lung cancer: From basics to therapeutics. Transl. Lung Cancer Res. 2016 5 2 155 171 10.21037/tlcr.2016.02.02 27186511
    [Google Scholar]
  5. Vallières E. Peters S. Houtte V.P. Dalal P. Lim E. Therapeutic advances in non-small cell lung cancer. Thorax 2012 67 12 1097 1101 10.1136/thoraxjnl‑2011‑201043 22058187
    [Google Scholar]
  6. Kenaan N. Hanna G. Sardini M. Iyoun M.O. Layka K. Hannouneh Z.A. Alshehabi Z. Advances in early detection of non‐small cell lung cancer: A comprehensive review. Cancer Med. 2024 13 18 e70156 10.1002/cam4.70156 39300939
    [Google Scholar]
  7. Houda I. Dickhoff C. Groot U.C.A. Reguart N. Provencio M. Levy A. Dziadziuszko R. Pompili C. Maio D.M. Thomas M. Brunelli A. Popat S. Senan S. Bahce I. New systemic treatment paradigms in resectable non-small cell lung cancer and variations in patient access across Europe. Lancet Reg. Health Eur. 2024 38 100840 10.1016/j.lanepe.2024.100840 38476748
    [Google Scholar]
  8. Hendriks L.E. Kerr K.M. Menis J. Mok T.S. Nestle U. Passaro A. Peters S. Planchard D. Smit E.F. Solomon B.J. Veronesi G. Reck M. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023 34 4 339 357 10.1016/j.annonc.2022.12.009 36872130
    [Google Scholar]
  9. Caudell E.G. Caudell J.J. Tang C.H. Yu T.K. Frederick M.J. Grimm E.A. Characterization of human copine III as a phosphoprotein with associated kinase activity. Biochemistry 2000 39 42 13034 13043 10.1021/bi001250v 11041869
    [Google Scholar]
  10. Cowland J.B. Carter D. Bjerregaard M.D. Johnsen A.H. Borregaard N. Lollike K. Tissue expression of copines and isolation of copines I and III from the cytosol of human neutrophils. J. Leukoc. Biol. 2003 74 3 379 388 10.1189/jlb.0203083 12949241
    [Google Scholar]
  11. Heinrich C. Keller C. Boulay A. Vecchi M. Bianchi M. Sack R. Lienhard S. Duss S. Hofsteenge J. Hynes N.E. Copine-III interacts with ErbB2 and promotes tumor cell migration. Oncogene 2010 29 11 1598 1610 10.1038/onc.2009.456 20010870
    [Google Scholar]
  12. Thomas G. Jacobs K.B. Yeager M. Kraft P. Wacholder S. Orr N. Yu K. Chatterjee N. Welch R. Hutchinson A. Crenshaw A. Tassin C.G. Staats B.J. Wang Z. Bosquet G.J. Fang J. Deng X. Berndt S.I. Calle E.E. Feigelson H.S. Thun M.J. Rodriguez C. Albanes D. Virtamo J. Weinstein S. Schumacher F.R. Giovannucci E. Willett W.C. Cussenot O. Valeri A. Andriole G.L. Crawford E.D. Tucker M. Gerhard D.S. Fraumeni J.F. Jr Hoover R. Hayes R.B. Hunter D.J. Chanock S.J. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 2008 40 3 310 315 10.1038/ng.91 18264096
    [Google Scholar]
  13. Fu L. Fu H. Qiao J. Pang Y. Xu K. Zhou L. Wu Q. Li Z. Ke X. Xu K. Shi J. High expression ofCPNE 3 predicts adverse prognosis in acute myeloid leukemia. Cancer Sci. 2017 108 9 1850 1857 10.1111/cas.13311 28670859
    [Google Scholar]
  14. Lin H. Zhang F. Geng Q. Yu T. Cui Y. Liu X. Li J. Yan M. Liu L. He X. Li J. Yao M. Quantitative proteomic analysis identifies CPNE3 as a novel metastasis-promoting gene in NSCLC. J. Proteome Res. 2013 12 7 3423 3433 10.1021/pr400273z 23713811
    [Google Scholar]
  15. Lin H. Zhang X. Liao L. Yu T. Li J. Pan H. Liu L. Kong H. Sun L. Yan M. Yao M. CPNE3 promotes migration and invasion in non-small cell lung cancer by interacting with RACK1 via FAK signaling activation. J. Cancer 2018 9 22 4215 4222 10.7150/jca.25872 30519322
    [Google Scholar]
  16. Gupta G.P. Massagué J. Cancer metastasis: Building a framework. Cell 2006 127 4 679 695 10.1016/j.cell.2006.11.001 17110329
    [Google Scholar]
  17. Venning F.A. Wullkopf L. Erler J.T. Targeting ECM disrupts cancer progression. Front. Oncol. 2015 5 224 10.3389/fonc.2015.00224 26539408
    [Google Scholar]
  18. Joseph J.P. Harishankar M.K. Pillai A.A. Devi A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 2018 80 23 32 10.1016/j.oraloncology.2018.03.004 29706185
    [Google Scholar]
  19. Ming H. Li B. Zhou L. Goel A. Huang C. Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim. Biophys. Acta Rev. Cancer 2021 1875 2 188519 10.1016/j.bbcan.2021.188519 33548345
    [Google Scholar]
  20. Chambers A.F. Groom A.C. MacDonald I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2002 2 8 563 572 10.1038/nrc865 12154349
    [Google Scholar]
  21. Thiery J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002 2 6 442 454 10.1038/nrc822 12189386
    [Google Scholar]
  22. Demirkan B. The roles of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in breast cancer bone metastasis: Potential targets for prevention and treatment. J. Clin. Med. 2013 2 4 264 282 10.3390/jcm2040264 26237148
    [Google Scholar]
  23. Zhang Y. Mun S.R. Linares J.F. Towers C.G. Thorburn A. Meco D.M.T. Kwon Y.T. Kutateladze T.G. Mechanistic insight into the regulation of SQSTM1/p62. Autophagy 2019 15 4 735 737 10.1080/15548627.2019.1569935 30653391
    [Google Scholar]
  24. Chen Y. Li Q. Li Q. Xing S. Liu Y. Liu Y. Chen Y. Liu W. Feng F. Sun H. p62/SQSTM1, A central but unexploited target: Advances in its physiological/pathogenic functions and small molecular modulators. J. Med. Chem. 2020 63 18 10135 10157 10.1021/acs.jmedchem.9b02038 32324396
    [Google Scholar]
  25. Troncoso C.C. Godoy V.M. Burgos P.V. Pro-tumoral functions of autophagy receptors in the modulation of cancer progression. Front. Oncol. 2021 10 619727 10.3389/fonc.2020.619727 33634029
    [Google Scholar]
  26. Lu Y. Xiao L. Liu Y. Wang H. Li H. Zhou Q. Pan J. Lei B. Huang A. Qi S. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation. Autophagy 2015 11 12 2213 2232 10.1080/15548627.2015.1108507 26553592
    [Google Scholar]
  27. Li J. Yang B. Zhou Q. Wu Y. Shang D. Guo Y. Song Z. Zheng Q. Xiong J. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial–mesenchymal transition. Carcinogenesis 2013 34 6 1343 1351 10.1093/carcin/bgt063 23430956
    [Google Scholar]
  28. Liu X. Meng L. Li X. Li D. Liu Q. Chen Y. Li X. Bu W. Sun H. Regulation of FN1 degradation by the p62/SQSTM1-dependent autophagy–lysosome pathway in HNSCC. Int. J. Oral Sci. 2020 12 1 34 10.1038/s41368‑020‑00101‑5 33318468
    [Google Scholar]
  29. Lv Q. Hua F. Hu Z.W. DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 2012 8 11 1675 1676 10.4161/auto.21438 22874565
    [Google Scholar]
  30. Bertrand M. Petit V. Jain A. Amsellem R. Johansen T. Larue L. Codogno P. Beau I. SQSTM1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors. Cell Cycle 2015 14 3 364 374 10.4161/15384101.2014.987619 25496309
    [Google Scholar]
  31. Qiang L. He Y.Y. Autophagy deficiency stabilizes TWIST1 to promote epithelial-mesenchymal transition. Autophagy 2014 10 10 1864 1865 10.4161/auto.32171 25126736
    [Google Scholar]
  32. Qiang L. Zhao B. Ming M. Wang N. He T.C. Hwang S. Thorburn A. He Y.Y. RETRACTED: Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc. Natl. Acad. Sci. 2014 111 25 9241 9246 10.1073/pnas.1322913111 24927592
    [Google Scholar]
  33. Lu J. Liu S.Y. Zhang J. Yang G.M. Gao G.B. Yu N.N. Li Y.P. Li Y.X. Ma Z.Q. Wang Y. Lu C.H. Inhibition of BAG3 enhances the anticancer effect of shikonin in hepatocellular carcinoma. Am. J. Cancer Res. 2021 11 7 3575 3593 34354861
    [Google Scholar]
  34. Szklarczyk D. Franceschini A. Wyder S. Forslund K. Heller D. Cepas H.J. Simonovic M. Roth A. Santos A. Tsafou K.P. Kuhn M. Bork P. Jensen L.J. Mering v.C. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 43 D1 D447 D452 10.1093/nar/gku1003 25352553
    [Google Scholar]
  35. Tang H. Pang P. Qin Z. Zhao Z. Wu Q. Song S. Li F. The CPNE family and their role in cancers. Front. Genet. 2021 12 689097 10.3389/fgene.2021.689097 34367247
    [Google Scholar]
  36. Li J. Ye W. Xu W. Chang T. Zhang L. Ma J. Pei R. He M. Zhou J. Activation of autophagy inhibits epithelial to mesenchymal transition process of human lens epithelial cells induced by high glucose conditions. Cell. Signal. 2020 75 109768 10.1016/j.cellsig.2020.109768 32896607
    [Google Scholar]
  37. Wang Y. Xiong H. Liu D. Hill C. Ertay A. Li J. Zou Y. Miller P. White E. Downward J. Goldin R.D. Yuan X. Lu X. Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy 2019 15 5 886 899 10.1080/15548627.2019.1569912 30782064
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673340242250102104725
Loading
/content/journals/cmc/10.2174/0109298673340242250102104725
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: SQSTM1/p62 ; EMT ; CPNE3 ; lung adenocarcinoma ; SILAC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test