Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The influenza virus, a well-known pathogen that causes respiratory illness, remains an important global health threat because of the significant morbidity and mortality rates of people infected with the virus annually. The influenza virus undergoes frequent antigenic variation, and with the increasing frequency of resistant influenza strains against existing antiviral drugs, there is an urgent need for the development of new anti-influenza treatment strategies. Peptides have the potential to offer high potency, selectivity, and relatively low drug resistance. As such, the design and screening of novel anti-influenza virus peptides with high potency have become increasingly important in an effort to fight global influenza epidemics. Herein, we introduce three approaches to developing anti-influenza virus peptides: discovery from natural products, library construction for antiviral peptide screening, and rational design based on functional regions of influenza viral proteins. This review summarizes recent progress in the discovery and design of anti-influenza virus peptides over the past 20 years.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325318241004100506
2024-11-07
2026-02-12
Loading full text...

Full text loading...

References

  1. JavanianM. BararyM. GhebrehewetS. KoppoluV. VasigalaV. EbrahimpourS. A brief review of influenza virus infection.J. Med. Virol.20219384638464610.1002/jmv.2699033792930
    [Google Scholar]
  2. NogalesA. AydilloT. Ávila-PérezG. EscaleraA. ChiemK. CadaganR. DeDiegoM.L. LiF. García-SastreA. Martínez-SobridoL. Functional characterization and direct comparison of influenza A, B, C, and D NS1 proteins in vitro and in vivo.Front. Microbiol.201910286210.3389/fmicb.2019.0286231921042
    [Google Scholar]
  3. LiuR. ShengZ. HuangC. WangD. LiF. Influenza D virus.Curr. Opin. Virol.20204415416110.1016/j.coviro.2020.08.00432932215
    [Google Scholar]
  4. IwasakiA. PillaiP.S. Innate immunity to influenza virus infection.Nat. Rev. Immunol.201414531532810.1038/nri366524762827
    [Google Scholar]
  5. LongJ.S. MistryB. HaslamS.M. BarclayW.S. Host and viral determinants of influenza A virus species specificity.Nat. Rev. Microbiol.201917212412410.1038/s41579‑018‑0140‑y30560932
    [Google Scholar]
  6. TongS. ZhuX. LiY. ShiM. ZhangJ. BourgeoisM. YangH. ChenX. RecuencoS. GomezJ. ChenL.M. JohnsonA. TaoY. DreyfusC. YuW. McBrideR. CarneyP.J. GilbertA.T. ChangJ. GuoZ. DavisC.T. PaulsonJ.C. StevensJ. RupprechtC.E. HolmesE.C. WilsonI.A. DonisR.O. New world bats harbor diverse influenza A viruses.PLoS Pathog.2013910e100365710.1371/journal.ppat.100365724130481
    [Google Scholar]
  7. LambR.A. JacksonD. Extinct 1918 virus comes alive.Nat. Med.200511111154115610.1038/nm1105‑115416270067
    [Google Scholar]
  8. BelsheR.B. The origins of pandemic influenza-lessons from the 1918 virus.N. Engl. J. Med.2005353212209221110.1056/NEJMp05828116306515
    [Google Scholar]
  9. WilsonC. Modern flu may be down to 1918 virus.New Sci.202225433872210.1016/S0262‑4079(22)00883‑135615658
    [Google Scholar]
  10. NelsonR. InfluenzaA. Influenza A H2N2 saga remains unexplained.Lancet Infect. Dis.20055633233210.1016/S1473‑3099(05)70126‑215948311
    [Google Scholar]
  11. KilbourneE.D. Influenza pandemics of the 20th century.Emerg. Infect. Dis.200612191410.3201/eid1201.05125416494710
    [Google Scholar]
  12. PhippsK.L. MarshallN. TaoH. DanzyS. OnuohaN. SteelJ. LowenA.C. Seasonal H3N2 and 2009 pandemic H1N1 influenza a viruses reassort efficiently but produce attenuated progeny.J. Virol.20179117e00830-1710.1128/JVI.00830‑1728637755
    [Google Scholar]
  13. LiutovV.V. RudakovIuV. KharitonovM.A. ShishkinM.K. SergeevS.M. GribovaL.N. ZasimovV.S. KrasikovE.K. Fatal course of virus-associated pneumonia in patient with influenza A(H1N1).Voen. Med. Zh.20133343323523808213
    [Google Scholar]
  14. PaulesC.I. FauciA.S. Influenza vaccines: Good, but we can do better.J. Infect. Dis.2019219Suppl. 1S1S410.1093/infdis/jiy63330715469
    [Google Scholar]
  15. MosconaA. Global transmission of oseltamivir-resistant influenza.N. Engl. J. Med.20093601095395610.1056/NEJMp090064819258250
    [Google Scholar]
  16. HurtA.C. HardieK. WilsonN.J. DengY.M. StudiesM.O.B.N.G.D.L. GehrigN. KelsoA. Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza.N. Engl. J. Med.2011365262541254210.1056/NEJMc111107822204735
    [Google Scholar]
  17. PloskerG.L. BrogdenR.N. Leuprorelin.Drugs199448693096710.2165/00003495‑199448060‑000087533699
    [Google Scholar]
  18. KrambovitisE. PorichisF. SpandidosD.A. HIV entry inhibitors: A new generation of antiretroviral drugs.Acta Pharmacol. Sin.200526101165117310.1111/j.1745‑7254.2005.00193.x16174430
    [Google Scholar]
  19. LundgrenJ.R. JanusC. JensenS.B.K. JuhlC.R. OlsenL.M. ChristensenR.M. SvaneM.S. BandholmT. Bojsen-MøllerK.N. BlondM.B. JensenJ.E.B. StallknechtB.M. HolstJ.J. MadsbadS. TorekovS.S. Healthy weight loss maintenance with exercise, liraglutide, or both combined.N. Engl. J. Med.2021384181719173010.1056/NEJMoa202819833951361
    [Google Scholar]
  20. MuttenthalerM. KingG.F. AdamsD.J. AlewoodP.F. Trends in peptide drug discovery.Nat. Rev. Drug Discov.202120430932510.1038/s41573‑020‑00135‑833536635
    [Google Scholar]
  21. MuruganN.A. RajaK.M.P. SaraswathiN.T. Antiviral Drug Discovery and Development. LiuX. ZhanP. Menéndez-AriasL. PoongavanamV. SingaporeSpringer Singapore202126128410.1007/978‑981‑16‑0267‑2_10
    [Google Scholar]
  22. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  23. GomesB. AugustoM.T. FelícioM.R. HollmannA. FrancoO.L. GonçalvesS. SantosN.C. Designing improved active peptides for therapeutic approaches against infectious diseases.Biotechnol. Adv.201836241542910.1016/j.biotechadv.2018.01.00429330093
    [Google Scholar]
  24. SkalickovaS. HegerZ. KrejcovaL. PekarikV. BastlK. JandaJ. KostolanskyF. VareckovaE. ZitkaO. AdamV. KizekR. Perspective of use of antiviral peptides against influenza virus.Viruses20157105428544210.3390/v710288326492266
    [Google Scholar]
  25. AgamennoneM. FantacuzziM. VivenzioG. ScalaM.C. CampigliaP. SupertiF. SalaM. Antiviral peptides as anti-influenza agents.Int. J. Mol. Sci.202223191143310.3390/ijms23191143336232735
    [Google Scholar]
  26. SimsE.K. CarrA.L.J. OramR.A. DiMeglioL.A. Evans-MolinaC. 100 years of insulin: Celebrating the past, present and future of diabetes therapy.Nat. Med.20212771154116410.1038/s41591‑021‑01418‑234267380
    [Google Scholar]
  27. CraikD.J. FairlieD.P. LirasS. PriceD. The future of peptide-based drugs.Chem. Biol. Drug Des.201381113614710.1111/cbdd.1205523253135
    [Google Scholar]
  28. Mousavi MalekiM.S. SardariS. Ghandehari AlavijehA. MadanchiH. Recent patents and FDA-approved drugs based on antiviral peptides and other peptide-related antivirals.Int. J. Pept. Res. Ther.2022291510.1007/s10989‑022‑10477‑z36466430
    [Google Scholar]
  29. MartynaA. BahsounB. BadhamM.D. SrinivasanS. HowardM.J. RossmanJ.S. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission.Sci. Rep.2017744695
    [Google Scholar]
  30. JungY. KongB. MoonS. YuS.H. ChungJ. BanC. ChungW.J. KimS.G. KweonD.H. Envelope-deforming antiviral peptide derived from influenza virus M2 protein.Biochem. Biophys. Res. Commun.2019517350751210.1016/j.bbrc.2019.07.08831375212
    [Google Scholar]
  31. MatusevichO.V. EgorovV.V. GluzdikovI.A. TitovM.I. ZarubaevV.V. ShtroA.A. SlitaA.V. DukovM.I. ShuryginaA.P.S. SmirnovaT.D. KudryavtsevI.V. VasinA.V. KiselevO.I. Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments.Antiviral Res.201511341010.1016/j.antiviral.2014.10.01525446335
    [Google Scholar]
  32. ChenQ. GuoY. Influenza viral hemagglutinin peptide inhibits influenza viral entry by shielding the host receptor.ACS Infect. Dis.20162318719310.1021/acsinfecdis.5b0013927623031
    [Google Scholar]
  33. WuW. LinD. ShenX. LiF. FangY. LiK. XunT. YangG. YangJ. LiuS. HeJ. New influenza A virus entry inhibitors derived from the viral fusion peptides.PLoS One2015109e013842610.1371/journal.pone.013842626382764
    [Google Scholar]
  34. SaitoM. ItohY. YasuiF. MunakataT. YamaneD. OzawaM. ItoR. KatohT. IshigakiH. NakayamaM. ShichinoheS. YamajiK. YamamotoN. IkejiriA. HondaT. SanadaT. SakodaY. KidaH. LeT.Q.M. KawaokaY. OgasawaraK. Tsukiyama-KoharaK. SugaH. KoharaM. Macrocyclic peptides exhibit antiviral effects against influenza virus HA and prevent pneumonia in animal models.Nat. Commun.2021121265410.1038/s41467‑021‑22964‑w33976181
    [Google Scholar]
  35. HoffmannJ. SchneiderC. HeinbockelL. BrandenburgK. ReimerR. GabrielG. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment.Antiviral Res.2014104233310.1016/j.antiviral.2014.01.01524486207
    [Google Scholar]
  36. LiJ. ChenY. YuanN. ZengM. ZhaoY. YuR. LiuZ. WuH. DongS. A novel natural influenza A H1N1 virus neuraminidase inhibitory peptide derived from cod skin hydrolysates and its antiviral mechanism.Mar. Drugs2018161037710.3390/md1610037730308963
    [Google Scholar]
  37. D’AgostinoI. GiacchelloI. NannettiG. FallacaraA.L. DeodatoD. MusumeciF. GrossiG. PalùG. CauY. TristI.M. LoregianA. SchenoneS. BottaM. Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction.Eur. J. Med. Chem.201815774375810.1016/j.ejmech.2018.08.03230142611
    [Google Scholar]
  38. ZagottoG. BortoliM. Drug design: Where we are and future prospects.Molecules20212622706110.3390/molecules2622706134834152
    [Google Scholar]
  39. DoytchinovaI. Drug design—past, present, future.Molecules2022275149610.3390/molecules2705149635268598
    [Google Scholar]
  40. LiuM.Z. YangY. ZhangS.X. TangL. WangH.M. ChenC.J. ShenZ.F. ChengK.D. KongJ.Q. WangW. A cyclotide against influenza A H1N1 virus from Viola yedoensis.Yao Xue Xue Bao201449690591225212039
    [Google Scholar]
  41. XuJ. ChenS. JinJ. MaL. GuoM. ZhouC. DouJ. Inhibition of peptide BF-30 on influenza A virus infection in vitro/vivo by causing virion membrane fusion.Peptides2019112142210.1016/j.peptides.2018.10.00430447229
    [Google Scholar]
  42. HeF. BaoJ. ZhangX.Y. TuZ.C. ShiY.M. QiS.H. AsperterrestideA. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162.J. Nat. Prod.20137661182118610.1021/np300897v23806112
    [Google Scholar]
  43. ChernyshS. KimS.I. BekkerG. PleskachV.A. FilatovaN.A. AnikinV.B. PlatonovV.G. BuletP. Antiviral and antitumor peptides from insects.Proc. Natl. Acad. Sci. USA20029920126281263210.1073/pnas.19230189912235362
    [Google Scholar]
  44. K MaddenS. Peptide library screening as a tool to derive potent therapeutics: current approaches and future strategies.Future Med. Chem.2021132959810.4155/fmc‑2020‑032433275071
    [Google Scholar]
  45. BoggianoC. ReixachN. PinillaC. BlondelleS.E. Successful identification of novel agents to control infectious diseases from screening mixture-based peptide combinatorial libraries in complex cell-based bioassays.Biopolymers200371210311610.1002/bip.1039812767113
    [Google Scholar]
  46. CastelG. ChtéouiM. HeydB. TordoN. Phage display of combinatorial peptide libraries: Application to antiviral research.Molecules20111653499351810.3390/molecules1605349921522083
    [Google Scholar]
  47. LiuR. LiX. XiaoW. LamK.S. Tumor-targeting peptides from combinatorial libraries.Adv. Drug Deliv. Rev.2017110-111133710.1016/j.addr.2016.05.00927210583
    [Google Scholar]
  48. FosterA.D. IngramJ.D. LeitchE.K. LennardK.R. OsherE.L. TavassoliA. Methods for the creation of cyclic Peptide libraries for use in lead discovery.SLAS Discov.201520556357610.1177/108705711456680325586497
    [Google Scholar]
  49. MontiA. VitaglianoL. CaporaleA. RuvoM. DotiN. Targeting protein–protein interfaces with peptides: The contribution of chemical combinatorial peptide library approaches.Int. J. Mol. Sci.2023249784210.3390/ijms2409784237175549
    [Google Scholar]
  50. SandomenicoA. CaporaleA. DotiN. CrossS. CrucianiG. ChamberyA. De FalcoS. RuvoM. Synthetic peptide libraries: From random mixtures to in vivo testing.Curr. Med. Chem.2020276997101610.2174/092986732566618071611083330009695
    [Google Scholar]
  51. DotterH. BollM. EderM. EderA.C. Library and post-translational modifications of peptide-based display systems.Biotechnol. Adv.20214710769910.1016/j.biotechadv.2021.10769933513435
    [Google Scholar]
  52. FurkaÁ. SebestyénF. AsgedomM. DibóG. General method for rapid synthesis of multicomponent peptide mixtures.Int. J. Pept. Protein Res.199137648749310.1111/j.1399‑3011.1991.tb00765.x1917305
    [Google Scholar]
  53. LiuR. MarikJ. LamK.S. A novel peptide-based encoding system for “one-bead one-compound” peptidomimetic and small molecule combinatorial libraries.J. Am. Chem. Soc.2002124267678768010.1021/ja026421t12083920
    [Google Scholar]
  54. LamK.S. SalmonS.E. HershE.M. HrubyV.J. KazmierskiW.M. KnappR.J. A new type of synthetic peptide library for identifying ligand-binding activity.Nature19913546348828410.1038/354082a01944576
    [Google Scholar]
  55. MaguireJ.J. KucR.E. DavenportA.P. Radioligand binding assays and their analysis.Methods Mol. Biol.2012897317710.1007/978‑1‑61779‑909‑9_322674160
    [Google Scholar]
  56. HoughtenR.A. General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids.Proc. Natl. Acad. Sci. USA198582155131513510.1073/pnas.82.15.51312410914
    [Google Scholar]
  57. PinillaC. AppelJ.R. BorràsE. HoughtenR.A. Advances in the use of synthetic combinatorial chemistry: Mixture-based libraries.Nat. Med.20039111812210.1038/nm0103‑11812514724
    [Google Scholar]
  58. Pirrung, M.C.; Read, L.J.; P.A Fodors, S.; Styer, L. Very large scale immobilized peptide synthesis.Patent WO1990015070A11990
  59. FalcianiC. LozziL. PiniA. BracciL. Bioactive peptides from libraries.Chem. Biol.200512441742610.1016/j.chembiol.2005.02.00915850978
    [Google Scholar]
  60. ZalevskyA.O. ZlobinA.S. GedzunV.R. ReshetnikovR.V. LovatM.L. MalyshevA.V. DoroninI.I. BabkinG.A. GolovinA.V. PeptoGrid-rescoring function for autodock vina to identify new bioactive molecules from short peptide libraries.Molecules201924227710.3390/molecules2402027730642123
    [Google Scholar]
  61. SharmaK. SharmaK.K. SharmaA. JainR. Peptide-based drug discovery: Current status and recent advances.Drug Discov. Today202328210346410.1016/j.drudis.2022.10346436481586
    [Google Scholar]
  62. OmidfarK. DaneshpourM. Advances in phage display technology for drug discovery.Expert Opin. Drug Discov.201510665166910.1517/17460441.2015.103773825910798
    [Google Scholar]
  63. SokulluE. GauthierM.S. CoulombeB. Discovery of antivirals using phage display.Viruses20211361120
    [Google Scholar]
  64. Hamzeh-MivehroudM. AlizadehA.A. MorrisM.B. Bret ChurchW. DastmalchiS. Phage display as a technology delivering on the promise of peptide drug discovery.Drug Discov. Today20131823-241144115710.1016/j.drudis.2013.09.00124051398
    [Google Scholar]
  65. UchiyamaF. TanakaY. MinariY. TokuiN. Designing scaffolds of peptides for phage display libraries.J. Biosci. Bioeng.200599544845610.1263/jbb.99.44816233816
    [Google Scholar]
  66. MatsubaraT. SumiM. KubotaH. TakiT. OkahataY. SatoT. Inhibition of influenza virus infections by sialylgalactose-binding peptides selected from a phage library.J. Med. Chem.200952144247425610.1021/jm801570y19558186
    [Google Scholar]
  67. RajikM. OmarA.R. IderisA. HassanS.S. YusoffK. A novel peptide inhibits the influenza virus replication by preventing the viral attachment to the host cells.Int. J. Biol. Sci.20095654354810.7150/ijbs.5.54319680476
    [Google Scholar]
  68. KumarU. GoyalP. MadniZ.K. KambleK. GaurV. RajalaM.S. SalunkeD.M. A structure and knowledge-based combinatorial approach to engineering universal scFv antibodies against influenza M2 protein.J. Biomed. Sci.20233015610.1186/s12929‑023‑00950‑237491224
    [Google Scholar]
  69. YanX. XuZ. Ribosome-display technology: Applications for directed evolution of functional proteins.Drug Discov. Today20061119-2091191610.1016/j.drudis.2006.08.01216997141
    [Google Scholar]
  70. KamaliniaG. GrindelB.J. TakahashiT.T. MillwardS.W. RobertsR.W. Directing evolution of novel ligands by mRNA display.Chem. Soc. Rev.202150169055910310.1039/D1CS00160D34165126
    [Google Scholar]
  71. MichnickS.W. EarP.H. MandersonE.N. RemyI. StefanE. Universal strategies in research and drug discovery based on protein-fragment complementation assays.Nat. Rev. Drug Discov.20076756958210.1038/nrd231117599086
    [Google Scholar]
  72. HurwitzN. ZaidmanD. WolfsonH.J. Pep–Whisperer: Inhibitory peptide design.Proteins202290111886189510.1002/prot.2638435598299
    [Google Scholar]
  73. WuN.C. WilsonI.A. Influenza hemagglutinin structures and antibody recognition.Cold Spring Harb. Perspect. Med.2019108a03877831871236
    [Google Scholar]
  74. TambunanU.S.F. ParikesitA.A. DephintoY. SipahutarF.R.P. Computational design of drug candidates for influenza A virus subtype H1N1 by inhibiting the viral neuraminidase-1 enzyme.Acta Pharm.201464215717210.2478/acph‑2014‑001524914717
    [Google Scholar]
  75. LuoM. Influenza virus entry.Adv. Exp. Med. Biol.201272620122110.1007/978‑1‑4614‑0980‑9_922297515
    [Google Scholar]
  76. JonesJ.C. TurpinE.A. BultmannH. BrandtC.R. Schultz-CherryS. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells.J. Virol.20068024119601196710.1128/JVI.01678‑0617005658
    [Google Scholar]
  77. KadamR.U. JuraszekJ. BrandenburgB. BuyckC. SchepensW.B.G. KesteleynB. StoopsB. VreekenR.J. VermondJ. GoutierW. TangC. VogelsR. FriesenR.H.E. GoudsmitJ. van DongenM.J.P. WilsonI.A. Potent peptidic fusion inhibitors of influenza virus.Science2017358636249650210.1126/science.aan051628971971
    [Google Scholar]
  78. ZhaoH. MengX. PengZ. LamH. ZhangC. ZhouX. ChanJ.F.W. KaoR.Y.T. ToK.K.W. YuenK.Y. Fusion-inhibition peptide broadly inhibits influenza virus and SARS-CoV-2, including Delta and Omicron variants.Emerg. Microbes Infect.202211192693710.1080/22221751.2022.205175335259078
    [Google Scholar]
  79. VagnerJ. QuH. HrubyV.J. Peptidomimetics, a synthetic tool of drug discovery.Curr. Opin. Chem. Biol.200812329229610.1016/j.cbpa.2008.03.00918423417
    [Google Scholar]
  80. ScalaM.C. MarchettiM. SupertiF. AgamennoneM. CampigliaP. SalaM. Rational design of novel peptidomimetics against influenza a virus: Biological and computational studies.Int. J. Mol. Sci.202324181426810.3390/ijms24181426837762571
    [Google Scholar]
  81. MtamboS.E. AmoakoD.G. SomboroA.M. AgoniC. LawalM.M. GumedeN.S. KhanR.B. KumaloH.M. Influenza viruses: Harnessing the crucial role of the M2 ion-channel and neuraminidase toward inhibitor design.Molecules202126488010.3390/molecules2604088033562349
    [Google Scholar]
  82. ShenZ. LouK. WangW. New small-molecule drug design strategies for fighting resistant influenza A.Acta Pharm. Sin. B20155541943010.1016/j.apsb.2015.07.00626579472
    [Google Scholar]
  83. ChenJ. FengS. XuY. HuangX. ZhangJ. ChenJ. AnX. ZhangY. NingX. Discovery and characterization of a novel peptide inhibitor against influenza neuraminidase.RSC Med. Chem.202011114815410.1039/C9MD00473D33479615
    [Google Scholar]
  84. SchnellJ.R. ChouJ.J. Structure and mechanism of the M2 proton channel of influenza A virus.Nature2008451717859159510.1038/nature0653118235503
    [Google Scholar]
  85. MaoH. CaoL. XuT. XiaX. RenP. HanP. LiC. HuiX. LinX. HuangK. JinM. YWHAG inhibits influenza a virus replication by suppressing the release of viral M2 protein.Front. Microbiol.20221395100910.3389/fmicb.2022.95100935928168
    [Google Scholar]
  86. AledavoodE. SelmiB. EstarellasC. MasettiM. LuqueF.J. From acid activation mechanisms of proton conduction to design of inhibitors of the M2 proton channel of influenza A virus.Front. Mol. Biosci.2022879622910.3389/fmolb.2021.79622935096969
    [Google Scholar]
  87. KumarR. MishraS. Shreya MauryaS.K. Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses.RSC Med. Chem.202112330632010.1039/D0MD00318B34046618
    [Google Scholar]
  88. MassariS. DesantisJ. NiziM.G. CecchettiV. TabarriniO. Inhibition of influenza virus polymerase by interfering with its protein–protein interactions.ACS Infect. Dis.2021761332135010.1021/acsinfecdis.0c0055233044059
    [Google Scholar]
  89. WalkerA.P. FodorE. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery.Trends Microbiol.201927539840710.1016/j.tim.2018.12.01330642766
    [Google Scholar]
  90. PathaniaS. RawalR.K. SinghP.K. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases.J. Mol. Struct.2022125013175610.1016/j.molstruc.2021.13175634690363
    [Google Scholar]
  91. ZhouZ. LiuT. ZhangJ. ZhanP. LiuX. Influenza A virus polymerase: An attractive target for next-generation anti-influenza therapeutics.Drug Discov. Today201823350351810.1016/j.drudis.2018.01.02829339107
    [Google Scholar]
  92. ZhangY. XuW.F. YuY. ZhangQ. HuangL. HaoC. ShaoC.L. WangW. Inhibition of influenza A virus replication by a marine derived quinolone alkaloid targeting virus nucleoprotein.J. Med. Virol.2023952e2849910.1002/jmv.2849936653877
    [Google Scholar]
  93. WhiteK.M. AbreuP.Jr WangH. De JesusP.D. ManicassamyB. García-SastreA. ChandaS.K. DeVitaR.J. ShawM.L. Broad spectrum inhibitor of influenza A and B viruses targeting the viral nucleoprotein.ACS Infect. Dis.20184214615710.1021/acsinfecdis.7b0012029268608
    [Google Scholar]
  94. ZabrodskayaY.A. LebedevD.V. EgorovaM.A. ShaldzhyanA.A. ShvetsovA.V. KuklinA.I. VinogradovaD.S. KlopovN.V. MatusevichO.V. CheremnykhT.A. DattaniR. EgorovV.V. The amyloidogenicity of the influenza virus PB1-derived peptide sheds light on its antiviral activity.Biophys. Chem.2018234162310.1016/j.bpc.2018.01.00129328990
    [Google Scholar]
  95. GhanemA. MayerD. ChaseG. TeggeW. FrankR. KochsG. García-SastreA. SchwemmleM. Peptide-mediated interference with influenza A virus polymerase.J. Virol.200781147801780410.1128/JVI.00724‑0717494067
    [Google Scholar]
  96. VidicJ. NoirayM. BagchiA. Slama-SchwokA. Identification of a novel complex between the nucleoprotein and PA(1–27) of influenza a virus polymerase.Biochemistry201655314259426210.1021/acs.biochem.6b0051427431776
    [Google Scholar]
  97. JiangH. XuY. LiL. WengL. WangQ. ZhangS. JiaB. HuH. HeY. JacobY. ToyodaT. Inhibition of influenza virus replication by constrained peptides targeting nucleoprotein.Antivir. Chem. Chemother.201122311913010.3851/IMP190222095520
    [Google Scholar]
  98. ZhaoH.J. ZhouJ. ZhangK. ChuH. LiuD.B. PoonV.K.M. ChanC.C.S. LeungH.C. FaiN. LinY.P. ZhangA.J.X. JinD.Y. YuenK.Y. ZhengB.J. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses.Sci. Rep.2016622008
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325318241004100506
Loading
/content/journals/cmc/10.2174/0109298673325318241004100506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test