Skip to content
2000
image of Advances in Discovery and Design of Anti-influenza Virus Peptides

Abstract

The influenza virus, a well-known pathogen that causes respiratory illness, remains an important global health threat because of the significant morbidity and mortality rates of people infected with the virus annually. The influenza virus undergoes frequent antigenic variation, and with the increasing frequency of resistant influenza strains against existing antiviral drugs, there is an urgent need for the development of new anti-influenza treatment strategies. Peptides have the potential to offer high potency, selectivity, and relatively low drug resistance. As such, the design and screening of novel anti-influenza virus peptides with high potency have become increasingly important in an effort to fight global influenza epidemics. Herein, we introduce three approaches to developing anti-influenza virus peptides: discovery from natural products, library construction for antiviral peptide screening, and rational design based on functional regions of influenza viral proteins. This review summarizes recent progress in the discovery and design of anti-influenza virus peptides over the past 20 years.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325318241004100506
2024-11-07
2025-01-18
Loading full text...

Full text loading...

References

  1. Javanian M. Barary M. Ghebrehewet S. Koppolu V. Vasigala V. Ebrahimpour S. A brief review of influenza virus infection. J. Med. Virol. 2021 93 8 4638 4646 10.1002/jmv.26990 33792930
    [Google Scholar]
  2. Nogales A. Aydillo T. Ávila-Pérez G. Escalera A. Chiem K. Cadagan R. DeDiego M.L. Li F. García-Sastre A. Martínez-Sobrido L. Functional characterization and direct comparison of influenza A, B, C, and D NS1 proteins in vitro and in vivo. Front. Microbiol. 2019 10 2862 10.3389/fmicb.2019.02862 31921042
    [Google Scholar]
  3. Liu R. Sheng Z. Huang C. Wang D. Li F. Influenza D virus. Curr. Opin. Virol. 2020 44 154 161 10.1016/j.coviro.2020.08.004 32932215
    [Google Scholar]
  4. Iwasaki A. Pillai P.S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 2014 14 5 315 328 10.1038/nri3665 24762827
    [Google Scholar]
  5. Long J.S. Mistry B. Haslam S.M. Barclay W.S. Host and viral determinants of influenza A virus species specificity (vol 17, pg 67, 2018). Nat. Rev. Microbiol. 2019 17 2 124 124 10.1038/s41579‑018‑0140‑y 30560932
    [Google Scholar]
  6. Tong S. Zhu X. Li Y. Shi M. Zhang J. Bourgeois M. Yang H. Chen X. Recuenco S. Gomez J. Chen L.M. Johnson A. Tao Y. Dreyfus C. Yu W. McBride R. Carney P.J. Gilbert A.T. Chang J. Guo Z. Davis C.T. Paulson J.C. Stevens J. Rupprecht C.E. Holmes E.C. Wilson I.A. Donis R.O. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013 9 10 e1003657 10.1371/journal.ppat.1003657 24130481
    [Google Scholar]
  7. Lamb R.A. Jackson D. Extinct 1918 virus comes alive. Nat. Med. 2005 11 11 1154 1156 10.1038/nm1105‑1154 16270067
    [Google Scholar]
  8. Belshe R.B. The origins of pandemic influenza--lessons from the 1918 virus. N. Engl. J. Med. 2005 353 21 2209 2211 10.1056/NEJMp058281 16306515
    [Google Scholar]
  9. Wilson C. Modern flu may be down to 1918 virus. New Sci. 2022 254 3387 22 10.1016/S0262‑4079(22)00883‑1 35615658
    [Google Scholar]
  10. Nelson R. Influenza A. Influenza A H2N2 saga remains unexplained. Lancet Infect. Dis. 2005 5 6 332 332 10.1016/S1473‑3099(05)70126‑2 15948311
    [Google Scholar]
  11. Kilbourne E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006 12 1 9 14 10.3201/eid1201.051254 16494710
    [Google Scholar]
  12. Phipps K.L. Marshall N. Tao H. Danzy S. Onuoha N. Steel J. Lowen A.C. Seasonal H3N2 and 2009 pandemic H1N1 influenza a viruses reassort efficiently but produce attenuated progeny. J. Virol. 2017 91 17 e00830-17 10.1128/JVI.00830‑17 28637755
    [Google Scholar]
  13. Liutov V.V. Rudakov IuV. Kharitonov M.A. Shishkin M.K. Sergeev S.M. Gribova L.N. Zasimov V.S. Krasikov E.K. Fatal course of virus-associated pneumonia in patient with influenza A(H1N1). Voen. Med. Zh. 2013 334 3 32 35 23808213
    [Google Scholar]
  14. Paules C.I. Fauci A.S. Influenza vaccines: Good, but we can do better. J. Infect. Dis. 2019 219 Suppl. 1 S1 S4 10.1093/infdis/jiy633 30715469
    [Google Scholar]
  15. Moscona A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 2009 360 10 953 956 10.1056/NEJMp0900648 19258250
    [Google Scholar]
  16. Hurt A.C. Hardie K. Wilson N.J. Deng Y.M. Studies M.O.B.N.G.D.L. Gehrig N. Kelso A. Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza. N. Engl. J. Med. 2011 365 26 2541 2542 10.1056/NEJMc1111078 22204735
    [Google Scholar]
  17. Plosker G.L. Brogden R.N. Leuprorelin. Drugs 1994 48 6 930 967 10.2165/00003495‑199448060‑00008 7533699
    [Google Scholar]
  18. Krambovitis E. Porichis F. Spandidos D.A. HIV entry inhibitors: A new generation of antiretroviral drugs. Acta Pharmacol. Sin. 2005 26 10 1165 1173 10.1111/j.1745‑7254.2005.00193.x 16174430
    [Google Scholar]
  19. Lundgren J.R. Janus C. Jensen S.B.K. Juhl C.R. Olsen L.M. Christensen R.M. Svane M.S. Bandholm T. Bojsen-Møller K.N. Blond M.B. Jensen J.E.B. Stallknecht B.M. Holst J.J. Madsbad S. Torekov S.S. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 2021 384 18 1719 1730 10.1056/NEJMoa2028198 33951361
    [Google Scholar]
  20. Muttenthaler M. King G.F. Adams D.J. Alewood P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021 20 4 309 325 10.1038/s41573‑020‑00135‑8 33536635
    [Google Scholar]
  21. Murugan N.A. Raja K.M.P. Saraswathi N.T. Antiviral Drug Discovery and Development. Liu X. Zhan P. Menéndez-Arias L. Poongavanam V. Singapore Springer Singapore 2021 261 284 10.1007/978‑981‑16‑0267‑2_10
    [Google Scholar]
  22. Wang L. Wang N. Zhang W. Cheng X. Yan Z. Shao G. Wang X. Wang R. Fu C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  23. Gomes B. Augusto M.T. Felício M.R. Hollmann A. Franco O.L. Gonçalves S. Santos N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv. 2018 36 2 415 429 10.1016/j.biotechadv.2018.01.004 29330093
    [Google Scholar]
  24. Skalickova S. Heger Z. Krejcova L. Pekarik V. Bastl K. Janda J. Kostolansky F. Vareckova E. Zitka O. Adam V. Kizek R. Perspective of use of antiviral peptides against influenza virus. Viruses 2015 7 10 5428 5442 10.3390/v7102883 26492266
    [Google Scholar]
  25. Agamennone M. Fantacuzzi M. Vivenzio G. Scala M.C. Campiglia P. Superti F. Sala M. Antiviral peptides as anti-influenza agents. Int. J. Mol. Sci. 2022 23 19 11433 10.3390/ijms231911433 36232735
    [Google Scholar]
  26. Sims E.K. Carr A.L.J. Oram R.A. DiMeglio L.A. Evans-Molina C. 100 years of insulin: Celebrating the past, present and future of diabetes therapy. Nat. Med. 2021 27 7 1154 1164 10.1038/s41591‑021‑01418‑2 34267380
    [Google Scholar]
  27. Craik D.J. Fairlie D.P. Liras S. Price D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013 81 1 136 147 10.1111/cbdd.12055 23253135
    [Google Scholar]
  28. Mousavi Maleki M.S. Sardari S. Ghandehari Alavijeh A. Madanchi H. Recent patents and FDA-approved drugs based on antiviral peptides and other peptide-related antivirals. Int. J. Pept. Res. Ther. 2022 29 1 5 10.1007/s10989‑022‑10477‑z 36466430
    [Google Scholar]
  29. Martyna A. Bahsoun B. Badham M.D. Srinivasan S. Howard M.J. Rossman J.S. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Sci. Rep. 2017 7 44695
    [Google Scholar]
  30. Jung Y. Kong B. Moon S. Yu S.H. Chung J. Ban C. Chung W.J. Kim S.G. Kweon D.H. Envelope-deforming antiviral peptide derived from influenza virus M2 protein. Biochem. Biophys. Res. Commun. 2019 517 3 507 512 10.1016/j.bbrc.2019.07.088 31375212
    [Google Scholar]
  31. Matusevich O.V. Egorov V.V. Gluzdikov I.A. Titov M.I. Zarubaev V.V. Shtro A.A. Slita A.V. Dukov M.I. Shurygina A.P.S. Smirnova T.D. Kudryavtsev I.V. Vasin A.V. Kiselev O.I. Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments. Antiviral Res. 2015 113 4 10 10.1016/j.antiviral.2014.10.015 25446335
    [Google Scholar]
  32. Chen Q. Guo Y. Influenza viral hemagglutinin peptide inhibits influenza viral entry by shielding the host receptor. ACS Infect. Dis. 2016 2 3 187 193 10.1021/acsinfecdis.5b00139 27623031
    [Google Scholar]
  33. Wu W. Lin D. Shen X. Li F. Fang Y. Li K. Xun T. Yang G. Yang J. Liu S. He J. New influenza A virus entry inhibitors derived from the viral fusion peptides. PLoS One 2015 10 9 e0138426 10.1371/journal.pone.0138426 26382764
    [Google Scholar]
  34. Saito M. Itoh Y. Yasui F. Munakata T. Yamane D. Ozawa M. Ito R. Katoh T. Ishigaki H. Nakayama M. Shichinohe S. Yamaji K. Yamamoto N. Ikejiri A. Honda T. Sanada T. Sakoda Y. Kida H. Le T.Q.M. Kawaoka Y. Ogasawara K. Tsukiyama-Kohara K. Suga H. Kohara M. Macrocyclic peptides exhibit antiviral effects against influenza virus HA and prevent pneumonia in animal models. Nat. Commun. 2021 12 1 2654 10.1038/s41467‑021‑22964‑w 33976181
    [Google Scholar]
  35. Hoffmann J. Schneider C. Heinbockel L. Brandenburg K. Reimer R. Gabriel G. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antiviral Res. 2014 104 23 33 10.1016/j.antiviral.2014.01.015 24486207
    [Google Scholar]
  36. Li J. Chen Y. Yuan N. Zeng M. Zhao Y. Yu R. Liu Z. Wu H. Dong S. A novel natural influenza A H1N1 virus neuraminidase inhibitory peptide derived from cod skin hydrolysates and its antiviral mechanism. Mar. Drugs 2018 16 10 377 10.3390/md16100377 30308963
    [Google Scholar]
  37. D’Agostino I. Giacchello I. Nannetti G. Fallacara A.L. Deodato D. Musumeci F. Grossi G. Palù G. Cau Y. Trist I.M. Loregian A. Schenone S. Botta M. Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction. Eur. J. Med. Chem. 2018 157 743 758 10.1016/j.ejmech.2018.08.032 30142611
    [Google Scholar]
  38. Zagotto G. Bortoli M. Drug design: Where we are and future prospects. Molecules 2021 26 22 7061 10.3390/molecules26227061 34834152
    [Google Scholar]
  39. Doytchinova I. Drug design—past, present, future. Molecules 2022 27 5 1496 10.3390/molecules27051496 35268598
    [Google Scholar]
  40. Liu M.Z. Yang Y. Zhang S.X. Tang L. Wang H.M. Chen C.J. Shen Z.F. Cheng K.D. Kong J.Q. Wang W. A cyclotide against influenza A H1N1 virus from Viola yedoensis. Yao Xue Xue Bao 2014 49 6 905 912 25212039
    [Google Scholar]
  41. Xu J. Chen S. Jin J. Ma L. Guo M. Zhou C. Dou J. Inhibition of peptide BF-30 on influenza A virus infection in vitro/vivo by causing virion membrane fusion. Peptides 2019 112 14 22 10.1016/j.peptides.2018.10.004 30447229
    [Google Scholar]
  42. He F. Bao J. Zhang X.Y. Tu Z.C. Shi Y.M. Qi S.H. Asperterrestide A. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod. 2013 76 6 1182 1186 10.1021/np300897v 23806112
    [Google Scholar]
  43. Chernysh S. Kim S.I. Bekker G. Pleskach V.A. Filatova N.A. Anikin V.B. Platonov V.G. Bulet P. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. USA 2002 99 20 12628 12632 10.1073/pnas.192301899 12235362
    [Google Scholar]
  44. K Madden S. Peptide library screening as a tool to derive potent therapeutics: current approaches and future strategies. Future Med. Chem. 2021 13 2 95 98 10.4155/fmc‑2020‑0324 33275071
    [Google Scholar]
  45. Boggiano C. Reixach N. Pinilla C. Blondelle S.E. Successful identification of novel agents to control infectious diseases from screening mixture‐based peptide combinatorial libraries in complex cell‐based bioassays. Biopolymers 2003 71 2 103 116 10.1002/bip.10398 12767113
    [Google Scholar]
  46. Castel G. Chtéoui M. Heyd B. Tordo N. Phage display of combinatorial peptide libraries: Application to antiviral research. Molecules 2011 16 5 3499 3518 10.3390/molecules16053499 21522083
    [Google Scholar]
  47. Liu R. Li X. Xiao W. Lam K.S. Tumor-targeting peptides from combinatorial libraries. Adv. Drug Deliv. Rev. 2017 110-111 13 37 10.1016/j.addr.2016.05.009 27210583
    [Google Scholar]
  48. Foster A.D. Ingram J.D. Leitch E.K. Lennard K.R. Osher E.L. Tavassoli A. Methods for the creation of cyclic Peptide libraries for use in lead discovery. SLAS Discov. 2015 20 5 563 576 10.1177/1087057114566803 25586497
    [Google Scholar]
  49. Monti A. Vitagliano L. Caporale A. Ruvo M. Doti N. Targeting protein–protein interfaces with peptides: The contribution of chemical combinatorial peptide library approaches. Int. J. Mol. Sci. 2023 24 9 7842 10.3390/ijms24097842 37175549
    [Google Scholar]
  50. Sandomenico A. Caporale A. Doti N. Cross S. Cruciani G. Chambery A. De Falco S. Ruvo M. Synthetic peptide libraries: From random mixtures to in vivo testing. Curr. Med. Chem. 2020 27 6 997 1016 10.2174/0929867325666180716110833 30009695
    [Google Scholar]
  51. Dotter H. Boll M. Eder M. Eder A.C. Library and post-translational modifications of peptide-based display systems. Biotechnol. Adv. 2021 47 107699 10.1016/j.biotechadv.2021.107699 33513435
    [Google Scholar]
  52. Furka Á. Sebestyén F. Asgedom M. Dibó G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 1991 37 6 487 493 10.1111/j.1399‑3011.1991.tb00765.x 1917305
    [Google Scholar]
  53. Liu R. Marik J. Lam K.S. A novel peptide-based encoding system for “one-bead one-compound” peptidomimetic and small molecule combinatorial libraries. J. Am. Chem. Soc. 2002 124 26 7678 7680 10.1021/ja026421t 12083920
    [Google Scholar]
  54. Lam K.S. Salmon S.E. Hersh E.M. Hruby V.J. Kazmierski W.M. Knapp R.J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991 354 6348 82 84 10.1038/354082a0 1944576
    [Google Scholar]
  55. Maguire J.J. Kuc R.E. Davenport A.P. Radioligand binding assays and their analysis. Methods Mol. Biol. 2012 897 31 77 10.1007/978‑1‑61779‑909‑9_3 22674160
    [Google Scholar]
  56. Houghten R.A. General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 1985 82 15 5131 5135 10.1073/pnas.82.15.5131 2410914
    [Google Scholar]
  57. Pinilla C. Appel J.R. Borràs E. Houghten R.A. Advances in the use of synthetic combinatorial chemistry: Mixture-based libraries. Nat. Med. 2003 9 1 118 122 10.1038/nm0103‑118 12514724
    [Google Scholar]
  58. Very large scale immobilized peptide synthesis. Patent WO1990015070A1, 1990
  59. Falciani C. Lozzi L. Pini A. Bracci L. Bioactive peptides from libraries. Chem. Biol. 2005 12 4 417 426 10.1016/j.chembiol.2005.02.009 15850978
    [Google Scholar]
  60. Zalevsky A.O. Zlobin A.S. Gedzun V.R. Reshetnikov R.V. Lovat M.L. Malyshev A.V. Doronin I.I. Babkin G.A. Golovin A.V. PeptoGrid—rescoring function for autodock vina to identify new bioactive molecules from short peptide libraries. Molecules 2019 24 2 277 10.3390/molecules24020277 30642123
    [Google Scholar]
  61. Sharma K. Sharma K.K. Sharma A. Jain R. Peptide-based drug discovery: Current status and recent advances. Drug Discov. Today 2023 28 2 103464 10.1016/j.drudis.2022.103464 36481586
    [Google Scholar]
  62. Omidfar K. Daneshpour M. Advances in phage display technology for drug discovery. Expert Opin. Drug Discov. 2015 10 6 651 669 10.1517/17460441.2015.1037738 25910798
    [Google Scholar]
  63. Sokullu E. Gauthier M.S. Coulombe B. Discovery of antivirals using phage display. Viruses 2021 13 6
    [Google Scholar]
  64. Hamzeh-Mivehroud M. Alizadeh A.A. Morris M.B. Bret Church W. Dastmalchi S. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov. Today 2013 18 23-24 1144 1157 10.1016/j.drudis.2013.09.001 24051398
    [Google Scholar]
  65. Uchiyama F. Tanaka Y. Minari Y. Tokui N. Designing scaffolds of peptides for phage display libraries. J. Biosci. Bioeng. 2005 99 5 448 456 10.1263/jbb.99.448 16233816
    [Google Scholar]
  66. Matsubara T. Sumi M. Kubota H. Taki T. Okahata Y. Sato T. Inhibition of influenza virus infections by sialylgalactose-binding peptides selected from a phage library. J. Med. Chem. 2009 52 14 4247 4256 10.1021/jm801570y 19558186
    [Google Scholar]
  67. Rajik M. Omar A.R. Ideris A. Hassan S.S. Yusoff K. A novel peptide inhibits the influenza virus replication by preventing the viral attachment to the host cells. Int. J. Biol. Sci. 2009 5 6 543 548 10.7150/ijbs.5.543 19680476
    [Google Scholar]
  68. Kumar U. Goyal P. Madni Z.K. Kamble K. Gaur V. Rajala M.S. Salunke D.M. A structure and knowledge-based combinatorial approach to engineering universal scFv antibodies against influenza M2 protein. J. Biomed. Sci. 2023 30 1 56 10.1186/s12929‑023‑00950‑2 37491224
    [Google Scholar]
  69. Yan X. Xu Z. Ribosome-display technology: Applications for directed evolution of functional proteins. Drug Discov. Today 2006 11 19-20 911 916 10.1016/j.drudis.2006.08.012 16997141
    [Google Scholar]
  70. Kamalinia G. Grindel B.J. Takahashi T.T. Millward S.W. Roberts R.W. Directing evolution of novel ligands by mRNA display. Chem. Soc. Rev. 2021 50 16 9055 9103 10.1039/D1CS00160D 34165126
    [Google Scholar]
  71. Michnick S.W. Ear P.H. Manderson E.N. Remy I. Stefan E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 2007 6 7 569 582 10.1038/nrd2311 17599086
    [Google Scholar]
  72. Hurwitz N. Zaidman D. Wolfson H.J. Pep–Whisperer: Inhibitory peptide design. Proteins 2022 90 11 1886 1895 10.1002/prot.26384 35598299
    [Google Scholar]
  73. Wu N.C. Wilson I.A. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harb. Perspect. Med. 2019 10 8 e038778 31871236
    [Google Scholar]
  74. Tambunan U.S.F. Parikesit A.A. Dephinto Y. Sipahutar F.R.P. Computational design of drug candidates for influenza A virus subtype H1N1 by inhibiting the viral neuraminidase-1 enzyme. Acta Pharm. 2014 64 2 157 172 10.2478/acph‑2014‑0015 24914717
    [Google Scholar]
  75. Luo M. Influenza virus entry. Adv. Exp. Med. Biol. 2012 726 201 221 10.1007/978‑1‑4614‑0980‑9_9 22297515
    [Google Scholar]
  76. Jones J.C. Turpin E.A. Bultmann H. Brandt C.R. Schultz-Cherry S. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J. Virol. 2006 80 24 11960 11967 10.1128/JVI.01678‑06 17005658
    [Google Scholar]
  77. Kadam R.U. Juraszek J. Brandenburg B. Buyck C. Schepens W.B.G. Kesteleyn B. Stoops B. Vreeken R.J. Vermond J. Goutier W. Tang C. Vogels R. Friesen R.H.E. Goudsmit J. van Dongen M.J.P. Wilson I.A. Potent peptidic fusion inhibitors of influenza virus. Science 2017 358 6362 496 502 10.1126/science.aan0516 28971971
    [Google Scholar]
  78. Zhao H. Meng X. Peng Z. Lam H. Zhang C. Zhou X. Chan J.F.W. Kao R.Y.T. To K.K.W. Yuen K.Y. Fusion-inhibition peptide broadly inhibits influenza virus and SARS-CoV-2, including Delta and Omicron variants. Emerg. Microbes Infect. 2022 11 1 926 937 10.1080/22221751.2022.2051753 35259078
    [Google Scholar]
  79. Vagner J. Qu H. Hruby V.J. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol. 2008 12 3 292 296 10.1016/j.cbpa.2008.03.009 18423417
    [Google Scholar]
  80. Scala M.C. Marchetti M. Superti F. Agamennone M. Campiglia P. Sala M. Rational design of novel peptidomimetics against influenza a virus: Biological and computational studies. Int. J. Mol. Sci. 2023 24 18 14268 10.3390/ijms241814268 37762571
    [Google Scholar]
  81. Mtambo S.E. Amoako D.G. Somboro A.M. Agoni C. Lawal M.M. Gumede N.S. Khan R.B. Kumalo H.M. Influenza viruses: Harnessing the crucial role of the M2 ion-channel and neuraminidase toward inhibitor design. Molecules 2021 26 4 880 10.3390/molecules26040880 33562349
    [Google Scholar]
  82. Shen Z. Lou K. Wang W. New small-molecule drug design strategies for fighting resistant influenza A. Acta Pharm. Sin. B 2015 5 5 419 430 10.1016/j.apsb.2015.07.006 26579472
    [Google Scholar]
  83. Chen J. Feng S. Xu Y. Huang X. Zhang J. Chen J. An X. Zhang Y. Ning X. Discovery and characterization of a novel peptide inhibitor against influenza neuraminidase. RSC Medicinal Chemistry 2020 11 1 148 154 10.1039/C9MD00473D 33479615
    [Google Scholar]
  84. Schnell J.R. Chou J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008 451 7178 591 595 10.1038/nature06531 18235503
    [Google Scholar]
  85. Mao H. Cao L. Xu T. Xia X. Ren P. Han P. Li C. Hui X. Lin X. Huang K. Jin M. YWHAG inhibits influenza a virus replication by suppressing the release of viral M2 protein. Front. Microbiol. 2022 13 951009 10.3389/fmicb.2022.951009 35928168
    [Google Scholar]
  86. Aledavood E. Selmi B. Estarellas C. Masetti M. Luque F.J. From acid activation mechanisms of proton conduction to design of inhibitors of the M2 proton channel of influenza A virus. Front. Mol. Biosci. 2022 8 796229 10.3389/fmolb.2021.796229 35096969
    [Google Scholar]
  87. Kumar R. Mishra S. Shreya Maurya S.K. Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses. RSC Medicinal Chemistry 2021 12 3 306 320 10.1039/D0MD00318B 34046618
    [Google Scholar]
  88. Massari S. Desantis J. Nizi M.G. Cecchetti V. Tabarrini O. Inhibition of influenza virus polymerase by interfering with its protein–protein interactions. ACS Infect. Dis. 2021 7 6 1332 1350 10.1021/acsinfecdis.0c00552 33044059
    [Google Scholar]
  89. Walker A.P. Fodor E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 2019 27 5 398 407 10.1016/j.tim.2018.12.013 30642766
    [Google Scholar]
  90. Pathania S. Rawal R.K. Singh P.K. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases. J. Mol. Struct. 2022 1250 131756 10.1016/j.molstruc.2021.131756 34690363
    [Google Scholar]
  91. Zhou Z. Liu T. Zhang J. Zhan P. Liu X. Influenza A virus polymerase: An attractive target for next-generation anti-influenza therapeutics. Drug Discov. Today 2018 23 3 503 518 10.1016/j.drudis.2018.01.028 29339107
    [Google Scholar]
  92. Zhang Y. Xu W.F. Yu Y. Zhang Q. Huang L. Hao C. Shao C.L. Wang W. Inhibition of influenza A virus replication by a marine derived quinolone alkaloid targeting virus nucleoprotein. J. Med. Virol. 2023 95 2 e28499 10.1002/jmv.28499 36653877
    [Google Scholar]
  93. White K.M. Abreu P. Jr Wang H. De Jesus P.D. Manicassamy B. García-Sastre A. Chanda S.K. DeVita R.J. Shaw M.L. Broad spectrum inhibitor of influenza A and B viruses targeting the viral nucleoprotein. ACS Infect. Dis. 2018 4 2 146 157 10.1021/acsinfecdis.7b00120 29268608
    [Google Scholar]
  94. Zabrodskaya Y.A. Lebedev D.V. Egorova M.A. Shaldzhyan A.A. Shvetsov A.V. Kuklin A.I. Vinogradova D.S. Klopov N.V. Matusevich O.V. Cheremnykh T.A. Dattani R. Egorov V.V. The amyloidogenicity of the influenza virus PB1-derived peptide sheds light on its antiviral activity. Biophys. Chem. 2018 234 16 23 10.1016/j.bpc.2018.01.001 29328990
    [Google Scholar]
  95. Ghanem A. Mayer D. Chase G. Tegge W. Frank R. Kochs G. García-Sastre A. Schwemmle M. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 2007 81 14 7801 7804 10.1128/JVI.00724‑07 17494067
    [Google Scholar]
  96. Vidic J. Noiray M. Bagchi A. Slama-Schwok A. Identification of a novel complex between the nucleoprotein and PA(1–27) of influenza a virus polymerase. Biochemistry 2016 55 31 4259 4262 10.1021/acs.biochem.6b00514 27431776
    [Google Scholar]
  97. Jiang H. Xu Y. Li L. Weng L. Wang Q. Zhang S. Jia B. Hu H. He Y. Jacob Y. Toyoda T. Inhibition of influenza virus replication by constrained peptides targeting nucleoprotein. Antivir. Chem. Chemother. 2011 22 3 119 130 10.3851/IMP1902 22095520
    [Google Scholar]
  98. Zhao H.J. Zhou J. Zhang K. Chu H. Liu D.B. Poon V.K.M. Chan C.C.S. Leung H.C. Fai N. Lin Y.P. Zhang A.J.X. Jin D.Y. Yuen K.Y. Zheng B.J. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci. Rep. 2016 6 22008
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325318241004100506
Loading
/content/journals/cmc/10.2174/0109298673325318241004100506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test