Skip to content
2000
image of A Promising Druggable Target for Translational Therapy of Ovarian Cancer: A Molecular Profiling of Therapeutic Innovations, Extracellular Vesicle Acquired Resistance, and Signaling Pathways

Abstract

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it. Overcoming chemoresistance and metastasis requires a deep understanding of the associated progression mechanisms for innovative therapies. Extracellular vesicles (EVs), containing proteins, RNAs, DNAs, and metabolites, have surged in recent years, significantly impacting tumor progression, recurrence, immune evasion, and metastasis associated with the ovarian tumor microenvironment. Recent research unveils organ-specific metastatic patterns in OC, providing insights into tumor cell interactions and signaling crosstalk with stromal cells. The review explores the role of EVs behind OC cell metastasis and chemoresistance. Furthermore, the article delves into the role of EVs in the tumor microenvironment, immune evasion, and as biomarkers in context to OC, offering promising therapeutic strategies to enhance survival rates for OC patients. Lastly, the article focuses on an overview of PI3K/AKT/mTOR, MAPK/ERK, and VEGFR signaling pathways in the pathophysiology of ovarian cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331849240930140120
2025-01-14
2025-09-01
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Piechocki M. Koziołek W. Sroka D. Matrejek A. Miziołek P. Saiuk N. Sledzik M. Jaworska A. Bereza K. Pluta E. Banas T. Trends in incidence and mortality of gynecological and breast cancers in Poland (1980–2018). Clin. Epidemiol. 2022 14 95 114 10.2147/CLEP.S330081 35115839
    [Google Scholar]
  3. Brett M R. Brett M R. Jennifer B P. Thomas A S. Jennifer B P. Thomas A S. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017 14 1 9 32 10.20892/j.issn.2095‑3941.2016.0084 28443200
    [Google Scholar]
  4. Pfeiffer R.M. Park Y. Kreimer A.R. Lacey J.V. Jr Pee D. Greenlee R.T. Buys S.S. Hollenbeck A. Rosner B. Gail M.H. Hartge P. Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: Derivation and validation from population-based cohort studies. PLoS Med. 2013 10 7 e1001492 10.1371/journal.pmed.1001492 23935463
    [Google Scholar]
  5. Key statistics for ovarian cancer. 2024. Available from: https://www.cancer.org/cancer/types/ovarian-cancer/about/key-statistics.html
  6. Lino-Silva L.S. Ovarian carcinoma: Pathology review with an emphasis in their molecular characteristics. Chin. Clin. Oncol. 2020 9 4 45 10.21037/cco‑20‑31 32434347
    [Google Scholar]
  7. Berek J.S. Renz M. Friedlander M.L. Bast R.C. Jr Epithelial ovarian, fallopian tube, and peritoneal cancer. Holland-Frei Cancer Medicine Wiley 2024 1 23
    [Google Scholar]
  8. Yeung T.L. Leung C.S. Yip K.P. Au Yeung C.L. Wong S.T.C. Mok S.C. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: Cell and molecular processes in cancer metastasis. Am. J. Physiol. Cell Physiol. 2015 309 7 C444 C456 10.1152/ajpcell.00188.2015 26224579
    [Google Scholar]
  9. Leong E. Ong S.K. Jali F. Naing L. Incidence, mortality and survival analysis of epithelial ovarian cancer in brunei darussalam. Asian Pac. J. Cancer Prev. 2022 23 4 1415 1423 10.31557/APJCP.2022.23.4.1415 35485704
    [Google Scholar]
  10. Arora T. Mullangi S. Lekkala M.R. Ovarian cancer. StatPearls, StatPearls Publishing Copyright © 2024. StatPearls Publishing LLC 2024
    [Google Scholar]
  11. Cao W. Chen H.D. Yu Y.W. Li N. Chen W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021 134 7 783 791 10.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  12. Arend R. Martinez A. Szul T. Birrer M.J. Biomarkers in ovarian cancer: To be or not to be. Cancer 2019 125 S24 Suppl. 24 4563 4572 10.1002/cncr.32595 31967683
    [Google Scholar]
  13. Devouassoux-Shisheboran M. Genestie C. Pathobiology of ovarian carcinomas. Chin. J. Cancer 2015 34 1 50 55 10.5732/cjc.014.10273 25556618
    [Google Scholar]
  14. Ovarian cancer stages. 2018. Available from: https://www.cancer.org/cancer/types/ovarian-cancer/detection-diagnosis-staging/staging.html
  15. Prat J. FIGO Committee on Gynecologic Oncology FIGO’s staging classification for cancer of the ovary, fallopian tube, and peritoneum: Abridged republication. J. Gynecol. Oncol. 2015 26 2 87 89 10.3802/jgo.2015.26.2.87 25872889
    [Google Scholar]
  16. Berek J.S. Renz M. Kehoe S. Kumar L. Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int. J. Gynaecol. Obstet. 2021 155 S1 61 85 10.1002/ijgo.13878 34669199
    [Google Scholar]
  17. Crist S.B. Ghajar C.M. When a house is not a home: A survey of antimetastatic niches and potential mechanisms of disseminated tumor cell suppression. Annu. Rev. Pathol. 2021 16 1 409 432 10.1146/annurev‑pathmechdis‑012419‑032647 33276706
    [Google Scholar]
  18. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  19. Srivastava A. Rathore S. Munshi A. Ramesh R. Extracellular vesicles in oncology: From immune suppression to immunotherapy. AAPS J. 2021 23 2 30 10.1208/s12248‑021‑00554‑4 33586060
    [Google Scholar]
  20. Bradley J.A. Bolton E.M. Pedersen R.A. Stem cell medicine encounters the immune system. Nat. Rev. Immunol. 2002 2 11 859 871 10.1038/nri934 12415309
    [Google Scholar]
  21. Ledermann J.A. Raja F.A. Fotopoulou C. Gonzalez- Martin A. Colombo N. Sessa C. ESMO Guidelines Working Group Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013 24 Suppl. 6 vi24 vi32 10.1093/annonc/mdt333 24078660
    [Google Scholar]
  22. Armstrong D.K. Alvarez R.D. Bakkum-Gamez J.N. Barroilhet L. Behbakht K. Berchuck A. Berek J.S. Chen L. Cristea M. DeRosa M. ElNaggar A.C. Gershenson D.M. Gray H.J. Hakam A. Jain A. Johnston C. Leath C.A. III Liu J. Mahdi H. Matei D. McHale M. McLean K. O’Malley D.M. Penson R.T. Percac-Lima S. Ratner E. Remmenga S.W. Sabbatini P. Werner T.L. Zsiros E. Burns J.L. Engh A.M. NCCN guidelines insights: Ovarian cancer, version 1.2019. J. Natl. Compr. Canc. Netw. 2019 17 8 896 909 10.6004/jnccn.2019.0039 31390583
    [Google Scholar]
  23. Montemorano L. Lightfoot M. Bixel K. Role of olaparib as maintenance treatment for ovarian cancer: The evidence to date. OncoTargets Ther. 2019 12 11497 11506 10.2147/OTT.S195552 31920338
    [Google Scholar]
  24. Tewari K.S. Burger R.A. Enserro D. Norquist B.M. Swisher E.M. Brady M.F. Bookman M.A. Fleming G.F. Huang H. Homesley H.D. Fowler J.M. Greer B.E. Boente M. Liang S.X. Ye C. Bais C. Randall L.M. Chan J.K. Ferriss J.S. Coleman R.L. Aghajanian C. Herzog T.J. DiSaia P.J. Copeland L.J. Mannel R.S. Birrer M.J. Monk B.J. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J. Clin. Oncol. 2019 37 26 2317 2328 10.1200/JCO.19.01009 31216226
    [Google Scholar]
  25. Varier L. Sundaram S.M. Gamit N. Warrier S. An overview of ovarian cancer: The role of cancer stem cells in chemoresistance and a precision medicine approach targeting the wnt pathway with the antagonist sFRP4. Cancers 2023 15 4 1275 10.3390/cancers15041275 36831617
    [Google Scholar]
  26. Li G. Gong J. Cao S. Wu Z. Cheng D. Zhu J. Huang X. Tang J. Yuan Y. Cai W. Zhang H. The non-coding RNAs inducing drug resistance in ovarian cancer: A new perspective for understanding drug resistance. Front. Oncol. 2021 11 742149 10.3389/fonc.2021.742149 34660304
    [Google Scholar]
  27. Abdullah L.N. Chow E.K.H. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2013 2 1 e3 10.1186/2001‑1326‑2‑3 23369605
    [Google Scholar]
  28. Wang L. Li S. Zhu D. Qin Y. Wang X. Hong Z. Han Z. Effectiveness and safety of nab-paclitaxel and platinum as first-line chemotherapy for ovarian cancer: A retrospective study. J. Gynecol. Oncol. 2023 34 4 e44 10.3802/jgo.2023.34.e44 36807747
    [Google Scholar]
  29. Lisio M.A. Fu L. Goyeneche A. Gao Z. Telleria C. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci. 2019 20 4 952 10.3390/ijms20040952 30813239
    [Google Scholar]
  30. Torre L.A. Trabert B. DeSantis C.E. Miller K.D. Samimi G. Runowicz C.D. Gaudet M.M. Jemal A. Siegel R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018 68 4 284 296 10.3322/caac.21456 29809280
    [Google Scholar]
  31. Timmermans M. Sonke G.S. Van de Vijver K.K. van der Aa M.A. Kruitwagen R.F.P.M. No improvement in long-term survival for epithelial ovarian cancer patients: A population-based study between 1989 and 2014 in the Netherlands. Eur. J. Cancer 2018 88 31 37 10.1016/j.ejca.2017.10.030 29179135
    [Google Scholar]
  32. Musi A. Bongiovanni L. Extracellular vesicles in cancer drug resistance: Implications on melanoma therapy. Cancers 2023 15 4 1074 10.3390/cancers15041074 36831417
    [Google Scholar]
  33. Yang Q. Xu J. Gu J. Shi H. Zhang J. Zhang J. Chen Z.S. Fang X. Zhu T. Zhang X. Extracellular vesicles in cancer drug resistance: Roles, mechanisms, and implications. Adv. Sci. 2022 9 34 2201609 10.1002/advs.202201609 36253096
    [Google Scholar]
  34. Zhao L. Guo H. Chen X. Zhang W. He Q. Ding L. Yang B. Tackling drug resistance in ovarian cancer with epigenetic targeted drugs. Eur. J. Pharmacol. 2022 927 175071 10.1016/j.ejphar.2022.175071 35636522
    [Google Scholar]
  35. Safaei R. Larson B.J. Cheng T.C. Gibson M.A. Otani S. Naerdemann W. Howell S.B. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 2005 4 10 1595 1604 10.1158/1535‑7163.MCT‑05‑0102 16227410
    [Google Scholar]
  36. Picciolini S. Rodà F. Bedoni M. Gualerzi A. Advances in the field of micro- and nanotechnologies applied to extracellular vesicle research: Take-home message from ISEV2021. Micromachines 2021 12 12 1563 10.3390/mi12121563 34945413
    [Google Scholar]
  37. Palviainen M. Saraswat M. Varga Z. Kitka D. Neuvonen M. Puhka M. Joenväärä S. Renkonen R. Nieuwland R. Takatalo M. Siljander P.R.M. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—Implications for biomarker discovery. PLoS One 2020 15 8 e0236439 10.1371/journal.pone.0236439 32813744
    [Google Scholar]
  38. Ali Syeda Z. Langden S.S.S. Munkhzul C. Lee M. Song S.J. Regulatory mechanism of MicroRNA expression in cancer. Int. J. Mol. Sci. 2020 21 5 1723 10.3390/ijms21051723 32138313
    [Google Scholar]
  39. Samuel P. Mulcahy L. A. Furlong F. McCarthy H. O. Brooks S. A. Fabbri M. Pink R. C. Carter D. R. F. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018 373 1737 10.1098/rstb.2017.0065
    [Google Scholar]
  40. Asare-Werehene M. Communal L. Carmona E. Han Y. Song Y.S. Burger D. Mes-Masson A.M. Tsang B.K. Plasma gelsolin inhibits CD8+ T-cell function and regulates glutathione production to confer chemoresistance in ovarian cancer. Cancer Res. 2020 80 18 3959 3971 10.1158/0008‑5472.CAN‑20‑0788 32641415
    [Google Scholar]
  41. Zhang F. Zhu Y. Zhao Q. Yang D. Dong Y. Jiang L. Xing W. Li X. Xing H. Shi M. Chen Y. Bruce I.C. Jin J. Ma X. Microvesicles mediate transfer of P-glycoprotein to paclitaxel-sensitive A2780 human ovarian cancer cells, conferring paclitaxel-resistance. Eur. J. Pharmacol. 2014 738 83 90 10.1016/j.ejphar.2014.05.026 24877693
    [Google Scholar]
  42. Schweer D. McAtee A. Neupane K. Richards C. Ueland F. Kolesar J. Tumor-associated macrophages and ovarian cancer: Implications for therapy. Cancers 2022 14 9 2220 10.3390/cancers14092220 35565348
    [Google Scholar]
  43. Wang W. Han D. Song Y. S. Abstract 5081: Proteomic analysis of ascites- and cancer cell-derived EVs for identifying ovarian cancer diagnostic biomarkers. Cancer Research 2022 82 12_Supplement 5081 5081 10.1158/1538‑7445.AM2022‑5081
    [Google Scholar]
  44. Asare-Werehene M. Hunter R.A. Gerber E. Reunov A. Brine I. Chang C.Y. Chang C.C. Shieh D.B. Burger D. Anis H. Tsang B.K. The application of an extracellular vesicle-based biosensor in early diagnosis and prediction of chemoresponsiveness in ovarian cancer. Cancers 2023 15 9 2566 10.3390/cancers15092566 37174032
    [Google Scholar]
  45. Hosseinikhah S.M. Gheybi F. Moosavian S.A. Shahbazi M.A. Jaafari M.R. Sillanpää M. Kesharwani P. Alavizadeh S.H. Sahebkar A. Role of exosomes in tumour growth, chemoresistance and immunity: State-of-the-art. J. Drug Target. 2023 31 1 32 50 10.1080/1061186X.2022.2114000 35971773
    [Google Scholar]
  46. Guo Q. Wang H. Yan Y. Liu Y. Su C. Chen H. Yan Y. Adhikari R. Wu Q. Zhang J. The role of exosomal microrna in cancer drug resistance. Front. Oncol. 2020 10 472 10.3389/fonc.2020.00472 32318350
    [Google Scholar]
  47. Grixti J.M. Ayers D. Day P.J.R. An analysis of mechanisms for cellular uptake of mirnas to enhance drug delivery and efficacy in cancer chemoresistance. Noncoding RNA 2021 7 2 27 10.3390/ncrna7020027 33923485
    [Google Scholar]
  48. Alharbi M. Sharma S. Guanzon D. Lai A. Zuñiga F. Shiddiky M.J.A. Yamauchi Y. Salas-Burgos A. He Y. Pejovic T. Winters C. Morgan T. Perrin L. Hooper J.D. Salomon C. miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer. Nanomedicine 2020 28 102207 10.1016/j.nano.2020.102207 32334098
    [Google Scholar]
  49. Au Yeung C.L. Co N.N. Tsuruga T. Yeung T.L. Kwan S.Y. Leung C.S. Li Y. Lu E.S. Kwan K. Wong K.K. Schmandt R. Lu K.H. Mok S.C. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 2016 7 1 11150 10.1038/ncomms11150 27021436
    [Google Scholar]
  50. Guo H. Ha C. Dong H. Yang Z. Ma Y. Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int. 2019 19 1 347 10.1186/s12935‑019‑1051‑3 31889899
    [Google Scholar]
  51. Zhu X. Shen H. Yin X. Yang M. Wei H. Chen Q. Feng F. Liu Y. Xu W. Li Y. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J. Exp. Clin. Cancer Res. 2019 38 1 81 10.1186/s13046‑019‑1095‑1 30770776
    [Google Scholar]
  52. Kanlikilicer P. Bayraktar R. Denizli M. Rashed M.H. Ivan C. Aslan B. Mitra R. Karagoz K. Bayraktar E. Zhang X. Rodriguez-Aguayo C. El-Arabey A.A. Kahraman N. Baydogan S. Ozkayar O. Gatza M.L. Ozpolat B. Calin G.A. Sood A.K. Lopez-Berestein G. Corrigendum to ‘Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer’ [EBioMedicine 38 (2018) 100–112]. EBioMedicine 2020 52 102630 10.1016/j.ebiom.2020.102630 31972470
    [Google Scholar]
  53. Weiner-Gorzel K. Dempsey E. Milewska M. McGoldrick A. Toh V. Walsh A. Lindsay S. Gubbins L. Cannon A. Sharpe D. O’Sullivan J. Murphy M. Madden S.F. Kell M. McCann A. Furlong F. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 2015 4 5 745 758 10.1002/cam4.409 25684390
    [Google Scholar]
  54. Xie Z. Cao L. Zhang J. miR-21 modulates paclitaxel sensitivity and hypoxia-inducible factor-1α expression in human ovarian cancer cells. Oncol. Lett. 2013 6 3 795 800 10.3892/ol.2013.1432 24137413
    [Google Scholar]
  55. Davidson B. Tropé C.G. Reich R. The clinical and diagnostic role of microRNAs in ovarian carcinoma. Gynecol. Oncol. 2014 133 3 640 646 10.1016/j.ygyno.2014.03.575 24713546
    [Google Scholar]
  56. Wang Y. Bao W. Liu Y. Wang S. Xu S. Li X. Li Y. Wu S. miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis. 2018 9 5 447 10.1038/s41419‑018‑0390‑7 29670086
    [Google Scholar]
  57. Chen C. Wang H.J. Yang L.Y. Jia X.B. Xu P. Chen J. Liu Y. Expression of miR-130a in serum samples of patients with epithelial ovarian cancer and its association with platinum resistance. Sichuan Da Xue Xue Bao Yi Xue Ban 2016 47 1 60 63 27062783
    [Google Scholar]
  58. Pink R.C. Samuel P. Massa D. Caley D.P. Brooks S.A. Carter D.R.F. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol. Oncol. 2015 137 1 143 151 10.1016/j.ygyno.2014.12.042 25579119
    [Google Scholar]
  59. Jiang Y. Jiang J. Jia H. Qiao Z. Zhang J. Recovery of miR-139-5p in ovarian cancer reverses cisplatin resistance by targeting C-Jun. Cell. Physiol. Biochem. 2018 51 1 129 141 10.1159/000495169 30439707
    [Google Scholar]
  60. Yang C. Kim H.S. Park S.J. Lee E.J. Kim S.I. Song G. Lim W. Inhibition of miR-214-3p aids in preventing epithelial ovarian cancer malignancy by increasing the expression of LHX6. Cancers 2019 11 12 1917 10.3390/cancers11121917 31810245
    [Google Scholar]
  61. Yang H. Kong W. He L. Zhao J.J. O’Donnell J.D. Wang J. Wenham R.M. Coppola D. Kruk P.A. Nicosia S.V. Cheng J.Q. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008 68 2 425 433 10.1158/0008‑5472.CAN‑07‑2488 18199536
    [Google Scholar]
  62. Guo P. Xiong X. Zhang S. Peng D. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol. Rep. 2016 36 6 3552 3558 10.3892/or.2016.5140 27748936
    [Google Scholar]
  63. Li Z. Niu H. Qin Q. Yang S. Wang Q. Yu C. Wei Z. Jin Z. Wang X. Yang A. Chen X. lncRNA UCA1 mediates resistance to cisplatin by regulating the miR-143/FOSL2-signaling pathway in ovarian cancer. Mol. Ther. Nucleic Acids 2019 17 92 101 10.1016/j.omtn.2019.05.007 31234009
    [Google Scholar]
  64. Han X. Zhen S. Ye Z. Lu J. Wang L. Li P. Li J. Zheng X. Li H. Chen W. Zhao L. Li X. A feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell. Physiol. Biochem. 2017 41 3 973 986 10.1159/000460618 28222434
    [Google Scholar]
  65. a Aboutalebi H. Bahrami A. Soleimani A. Saeedi N. Rahmani F. Khazaei M. Fiuji H. Shafiee M. Ferns G. A. Avan A. The diagnostic, prognostic and therapeutic potential of circulating microRNAs in ovarian cancer. Int J Biochem Cell Biol 2020 124 105765 10.1016/j.biocel.2020.105765
    [Google Scholar]
  66. b Pan C. Stevic I. Müller V. Ni Q. Oliveira-Ferrer L. Pantel K. Schwarzenbach H. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol. Oncol. 2018 12 11 1935 1948 10.1002/1878‑0261.12371
    [Google Scholar]
  67. Zhang W. Su X. Li S. Liu Z. Wang Q. Zeng H. Low serum exosomal miR-484 expression predicts unfavorable prognosis in ovarian cancer. Cancer Biomark. 2020 27 4 485 491 10.3233/CBM‑191123 32065786
    [Google Scholar]
  68. Li S. Ma F. Jiang K. Shan H. Shi M. Chen B. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 promotes lung adenocarcinoma by directly interacting with specificity protein 1. Cancer Sci. 2018 109 5 1346 1356 10.1111/cas.13587 29575609
    [Google Scholar]
  69. Zhao M. Wang S. Li Q. Ji Q. Guo P. Liu X. MALAT1: A long non-coding RNA highly associated with human cancers (Review). Oncol. Lett. 2018 16 1 19 26 10.3892/ol.2018.8613 29928382
    [Google Scholar]
  70. Amodio N. Raimondi L. Juli G. Stamato M.A. Caracciolo D. Tagliaferri P. Tassone P. MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol. 2018 11 1 63 10.1186/s13045‑018‑0606‑4 29739426
    [Google Scholar]
  71. Wang H. Wang L. Zhang G. Lu C. Chu H. Yang R. Zhao G. MALAT1/miR-101-3p/MCL1 axis mediates cisplatin resistance in lung cancer. Oncotarget 2018 9 7 7501 7512 10.18632/oncotarget.23483 29484127
    [Google Scholar]
  72. Chen Q. Wei C. Wang Z. Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 2017 8 1 1925 1936 10.18632/oncotarget.12461 27713133
    [Google Scholar]
  73. Zhao Z. Ji M. Wang Q. He N. Li Y. RETRACTED: Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol. Ther. Nucleic Acids 2019 18 24 33 10.1016/j.omtn.2019.07.012 31479922
    [Google Scholar]
  74. Gerber E. Asare-Werehene M. Reunov A. Burger D. Le T. Carmona E. Mes-Masson A.M. Tsang B.K. Predicting chemoresponsiveness in epithelial ovarian cancer patients using circulating small extracellular vesicle-derived plasma gelsolin. J. Ovarian Res. 2023 16 1 14 10.1186/s13048‑022‑01086‑x 36642715
    [Google Scholar]
  75. Sharma S. Alharbi M. Kobayashi M. Lai A. Guanzon D. Zuñiga F. Ormazabal V. Palma C. Scholz-Romero K. Rice G.E. Hooper J.D. Salomon C. Proteomic analysis of exosomes reveals an association between cell invasiveness and exosomal bioactivity on endothelial and mesenchymal cell migration in vitro. Clin. Sci. 2018 132 18 2029 2044 10.1042/CS20180425 30219799
    [Google Scholar]
  76. Zhou W. Fong M.Y. Min Y. Somlo G. Liu L. Palomares M.R. Yu Y. Chow A. O’Connor S.T.F. Chin A.R. Yen Y. Wang Y. Marcusson E.G. Chu P. Wu J. Wu X. Li A.X. Li Z. Gao H. Ren X. Boldin M.P. Lin P.C. Wang S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014 25 4 501 515 10.1016/j.ccr.2014.03.007 24735924
    [Google Scholar]
  77. Kanlikilicer P. Rashed M.H. Bayraktar R. Mitra R. Ivan C. Aslan B. Zhang X. Filant J. Silva A.M. Rodriguez-Aguayo C. Bayraktar E. Pichler M. Ozpolat B. Calin G.A. Sood A.K. Lopez-Berestein G. Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 2016 76 24 7194 7207 10.1158/0008‑5472.CAN‑16‑0714 27742688
    [Google Scholar]
  78. Li X. Liu R. Wang Z. Wu M. Chang L. Yuan H. Zhuang F. Song Y. Liu Z. MicroRNA-7 regulates the proliferation and metastasis of human papillary carcinoma cells by targeting Bcl-2. Am. J. Transl. Res. 2020 12 9 5772 5780 33042456
    [Google Scholar]
  79. Reza A.M.M.T. Choi Y.J. Yasuda H. Kim J.H. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci. Rep. 2016 6 1 38498 10.1038/srep38498 27929108
    [Google Scholar]
  80. Giusti I. Di Francesco M. Poppa G. Esposito L. D’Ascenzo S. Dolo V. Tumor-derived extracellular vesicles activate normal human fibroblasts to a cancer-associated fibroblast-like phenotype, sustaining a pro-tumorigenic microenvironment. Front. Oncol. 2022 12 839880 10.3389/fonc.2022.839880 35280782
    [Google Scholar]
  81. Luo Y. Gui R. Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J. Gynecol. Oncol. 2020 31 5 e75 10.3802/jgo.2020.31.e75 32808501
    [Google Scholar]
  82. Barkal A.A. Brewer R.E. Markovic M. Kowarsky M. Barkal S.A. Zaro B.W. Krishnan V. Hatakeyama J. Dorigo O. Barkal L.J. Weissman I.L. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019 572 7769 392 396 10.1038/s41586‑019‑1456‑0 31367043
    [Google Scholar]
  83. Wang H. Liu B. Wei J. Beta2-microglobulin(B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett. 2021 517 96 104 10.1016/j.canlet.2021.06.008 34129878
    [Google Scholar]
  84. Wang Y. Xiang Y. Xin V.W. Wang X.W. Peng X.C. Liu X.Q. Wang D. Li N. Cheng J.T. Lyv Y.N. Cui S.Z. Ma Z. Zhang Q. Xin H.W. Dendritic cell biology and its role in tumor immunotherapy. J. Hematol. Oncol. 2020 13 1 107 10.1186/s13045‑020‑00939‑6 32746880
    [Google Scholar]
  85. Jiang H. Awuti G. Guo X. Construction of an immunophenoscore-related signature for evaluating prognosis and immunotherapy sensitivity in ovarian cancer. ACS Omega 2023 8 36 33017 33031 10.1021/acsomega.3c04856 37720747
    [Google Scholar]
  86. Wu F. Gu Y. Kang B. Heskia F. Pachot A. Bonneville M. Wei P. Liang J. PD-L1 detection on circulating tumor-derived extracellular vesicles (T-EVs) from patients with lung cancer. Transl. Lung Cancer Res. 2021 10 6 2441 2451 10.21037/tlcr‑20‑1277 34295653
    [Google Scholar]
  87. Han Y. Liu D. Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020 10 3 727 742 32266087
    [Google Scholar]
  88. Basak U. Sarkar T. Mukherjee S. Chakraborty S. Dutta A. Dutta S. Nayak D. Kaushik S. Das T. Sa G. Tumor-associated macrophages: An effective player of the tumor microenvironment. Front. Immunol. 2023 14 1295257 10.3389/fimmu.2023.1295257 38035101
    [Google Scholar]
  89. Chen X. Ying X. Wang X. Wu X. Zhu Q. Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol. Rep. 2017 38 1 522 528 10.3892/or.2017.5697 28586039
    [Google Scholar]
  90. Li H. Fan X. Houghton J. Tumor microenvironment: The role of the tumor stroma in cancer. J. Cell. Biochem. 2007 101 4 805 815 10.1002/jcb.21159 17226777
    [Google Scholar]
  91. Xu W.X. Wang D.D. Zhao Z.Q. Zhang H.D. Yang S.J. Zhang Q. Li L. Zhang J. Exosomal microRNAs shuttling between tumor cells and macrophages: Cellular interactions and novel therapeutic strategies. Cancer Cell Int. 2022 22 1 190 10.1186/s12935‑022‑02594‑y 35578228
    [Google Scholar]
  92. Tan S. Tang H. Wang Y. Xie P. Li H. Zhang Z. Zhou J. Tumor cell-derived exosomes regulate macrophage polarization: Emerging directions in the study of tumor genesis and development. Heliyon 2023 9 9 e19296 10.1016/j.heliyon.2023.e19296 37662730
    [Google Scholar]
  93. Zhou Y. Ren H. Dai B. Li J. Shang L. Huang J. Shi X. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J. Exp. Clin. Cancer Res. 2018 37 1 324 10.1186/s13046‑018‑0965‑2 30591064
    [Google Scholar]
  94. Federici C. Shahaj E. Cecchetti S. Camerini S. Casella M. Iessi E. Camisaschi C. Paolino G. Calvieri S. Ferro S. Natural-killer-derived extracellular vesicles: Immune sensors and interactors. Front Immunol. 2020 11 262 10.3389/fimmu.2020.00262
    [Google Scholar]
  95. Gorelik M. Frischmeyer-Guerrerio P.A. Innate and adaptive dendritic cell responses to immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2015 15 6 575 580 10.1097/ACI.0000000000000213 26509662
    [Google Scholar]
  96. Ding G. Zhou L. Qian Y. Fu M. Chen J. Chen J. Xiang J. Wu Z. Jiang G. Cao L. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015 6 30 29877 29888 10.18632/oncotarget.4924 26337469
    [Google Scholar]
  97. Lawrence M J.Y. Guo Y. Chen Z. Wang Y. Yang C. Dudas A. Du Z. Liu W. Zou Y. Szabo E. Lee S.C. Sims M. Gu W. Tillmanns T. Pfeffer L.M. Tigyi G. Yue J. miR-203 functions as a tumor suppressor by inhibiting epithelial to mesenchymal transition in ovarian cancer. J. Cancer Sci. Ther. 2015 7 2 34 43 10.4172/1948‑5956.1000322 26819680
    [Google Scholar]
  98. Shen Y. Guo D. Weng L. Wang S. Ma Z. Yang Y. Wang P. Wang J. Cai Z. Tumor-derived exosomes educate dendritic cells to promote tumor metastasis via HSP72/HSP105-TLR2/TLR4 pathway. OncoImmunology 2017 6 12 e1362527 10.1080/2162402X.2017.1362527 29209566
    [Google Scholar]
  99. Lane D. Matte I. Rancourt C. Piché A. The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer. J. Ovarian Res. 2010 3 1 1 10.1186/1757‑2215‑3‑1 20157422
    [Google Scholar]
  100. Czystowska-Kuzmicz M. Sosnowska A. Nowis D. Ramji K. Szajnik M. Chlebowska-Tuz J. Wolinska E. Gaj P. Grazul M. Pilch Z. Zerrouqi A. Graczyk- Jarzynka A. Soroczynska K. Cierniak S. Koktysz R. Elishaev E. Gruca S. Stefanowicz A. Blaszczyk R. Borek B. Gzik A. Whiteside T. Golab J. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 2019 10 1 3000 10.1038/s41467‑019‑10979‑3 31278254
    [Google Scholar]
  101. Taylor D.D. Gerçel-Taylor C. Lyons K.S. Stanson J. Whiteside T.L. T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin. Cancer Res. 2003 9 14 5113 5119 14613988
    [Google Scholar]
  102. Klinker M. W. Lizzio V. Reed T. J. Fox D. A. Lundy S. K. Human B cell-derived lymphoblastoid cell lines constitutively produce fas ligand and secrete MHCII(+)FasL(+) killer exosomes. Front Immunol. 2014 5 144 10.3389/fimmu.2014.00144
    [Google Scholar]
  103. Tkach M. Kowal J. Zucchetti A.E. Enserink L. Jouve M. Lankar D. Saitakis M. Martin-Jaular L. Théry C. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. 2017 36 20 3012 3028 10.15252/embj.201696003 28923825
    [Google Scholar]
  104. Liu C. Yu S. Zinn K. Wang J. Zhang L. Jia Y. Kappes J.C. Barnes S. Kimberly R.P. Grizzle W.E. Zhang H.G. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 2006 176 3 1375 1385 10.4049/jimmunol.176.3.1375 16424164
    [Google Scholar]
  105. Leary N. Walser S. He Y. Cousin N. Pereira P. Gallo A. Collado-Diaz V. Halin C. Garcia-Silva S. Peinado H. Dieterich L.C. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles 2022 11 2 e12197 10.1002/jev2.12197 35188342
    [Google Scholar]
  106. Shoae-Hassani A. Hamidieh A.A. Behfar M. Mohseni R. Mortazavi-Tabatabaei S.A. Asgharzadeh S. NK cell–derived exosomes from NK cells previously exposed to neuroblastoma cells augment the antitumor activity of cytokine-activated NK cells. J. Immunother. 2017 40 7 265 276 10.1097/CJI.0000000000000179 28622272
    [Google Scholar]
  107. Ahmed N. Stenvers K.L. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front. Oncol. 2013 3 256 10.3389/fonc.2013.00256 24093089
    [Google Scholar]
  108. Hosseini R. Sarvnaz H. Arabpour M. Ramshe S.M. Asef-Kabiri L. Yousefi H. Akbari M.E. Eskandari N. Cancer exosomes and natural killer cells dysfunction: Biological roles, clinical significance and implications for immunotherapy. Mol. Cancer 2022 21 1 15 10.1186/s12943‑021‑01492‑7 35031075
    [Google Scholar]
  109. Kriegeskorte A.K. Gebhardt F.E. Porcellini S. Schiemann M. Stemberger C. Franz T.J. Huster K.M. Carayannopoulos L.N. Yokoyama W.M. Colonna M. Siccardi A.G. Bauer S. Busch D.H. NKG2D-independent suppression of T cell proliferation by H60 and MICA. Proc. Natl. Acad. Sci. USA 2005 102 33 11805 11810 10.1073/pnas.0502026102 16091471
    [Google Scholar]
  110. Kondělková K. Vokurková D. Krejsek J. Borská L. Fiala Z. Andrýs C. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Med. 2010 53 2 73 77 10.14712/18059694.2016.63 20672742
    [Google Scholar]
  111. Tang D. Liu S. Shen H. Deng G. Zeng S. Extracellular vesicles promote the formation of pre-metastasis niche in gastric cancer. Front. Immunol. 2022 13 813015 10.3389/fimmu.2022.813015 35173726
    [Google Scholar]
  112. Xie F. Zhou X. Fang M. Li H. Su P. Tu Y. Zhang L. Zhou F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv. Sci. 2019 6 24 1901779 10.1002/advs.201901779 31871860
    [Google Scholar]
  113. Ye L. Zhang Q. Cheng Y. Chen X. Wang G. Shi M. Zhang T. Cao Y. Pan H. Zhang L. Wang G. Deng Y. Yang Y. Chen G. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J. Immunother. Cancer 2018 6 1 145 10.1186/s40425‑018‑0451‑6 30526680
    [Google Scholar]
  114. Chen G. Huang A.C. Zhang W. Zhang G. Wu M. Xu W. Yu Z. Yang J. Wang B. Sun H. Xia H. Man Q. Zhong W. Antelo L.F. Wu B. Xiong X. Liu X. Guan L. Li T. Liu S. Yang R. Lu Y. Dong L. McGettigan S. Somasundaram R. Radhakrishnan R. Mills G. Lu Y. Kim J. Chen Y.H. Dong H. Zhao Y. Karakousis G.C. Mitchell T.C. Schuchter L.M. Herlyn M. Wherry E.J. Xu X. Guo W. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018 560 7718 382 386 10.1038/s41586‑018‑0392‑8 30089911
    [Google Scholar]
  115. Shenoy G.N. Loyall J. Berenson C.S. Kelleher R.J. Jr Iyer V. Balu-Iyer S.V. Odunsi K. Bankert R.B. Sialic acid–dependent inhibition of T cells by exosomal ganglioside GD3 in ovarian tumor microenvironments. J. Immunol. 2018 201 12 3750 3758 10.4049/jimmunol.1801041 30446565
    [Google Scholar]
  116. Chen S.W. Zhu S.Q. Pei X. Qiu B.Q. Xiong D. Long X. Lin K. Lu F. Xu J.J. Wu Y.B. Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol. Cancer 2021 20 1 144 10.1186/s12943‑021‑01448‑x 34753486
    [Google Scholar]
  117. Li Y. Zhou J. Zhuo Q. Zhang J. Xie J. Han S. Zhao S. Malignant ascite-derived extracellular vesicles inhibit T cell activity by upregulating Siglec-10 expression. Cancer Manag. Res. 2019 11 7123 7134 10.2147/CMAR.S210568 31534365
    [Google Scholar]
  118. Wang H. Pan J. Barsky L. Jacob J.C. Zheng Y. Gao C. Wang S. Zhu W. Sun H. Lu L. Jia H. Zhao Y. Bruns C. Vago R. Dong Q. Qin L. Characteristics of pre-metastatic niche: The landscape of molecular and cellular pathways. Mol. Biomed. 2021 2 1 3 10.1186/s43556‑020‑00022‑z 35006432
    [Google Scholar]
  119. Liang B. Peng P. Chen S. Li L. Zhang M. Cao D. Yang J. Li H. Gui T. Li X. Shen K. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J. Proteomics 2013 80 171 182 10.1016/j.jprot.2012.12.029 23333927
    [Google Scholar]
  120. Todorova D. Simoncini S. Lacroix R. Sabatier F. Dignat-George F. Extracellular vesicles in angiogenesis. Circ. Res. 2017 120 10 1658 1673 10.1161/CIRCRESAHA.117.309681 28495996
    [Google Scholar]
  121. Liu S. Jiang M. Zhao Q. Li S. Peng Y. Zhang P. Han M. Vascular endothelial growth factor plays a critical role in the formation of the pre-metastatic niche via prostaglandin E2. Oncol. Rep. 2014 32 6 2477 2484 10.3892/or.2014.3516 25333935
    [Google Scholar]
  122. Thuault S. Ghossoub R. David G. Zimmermann P. A journey on extracellular vesicles for matrix metalloproteinases: A mechanistic perspective. Front. Cell Dev. Biol. 2022 10 886381 10.3389/fcell.2022.886381 35669514
    [Google Scholar]
  123. Giusti I. Poppa G. Di Fazio G. D’Ascenzo S. Dolo V. Metastatic dissemination: Role of tumor-derived extracellular vesicles and their use as clinical biomarkers. Int. J. Mol. Sci. 2023 24 11 9590 10.3390/ijms24119590 37298540
    [Google Scholar]
  124. Schmidt A. Oberle N. Krammer P.H. Molecular mechanisms of treg-mediated T cell suppression. Front. Immunol. 2012 3 51 10.3389/fimmu.2012.00051 22566933
    [Google Scholar]
  125. Rahman M.J. Regn D. Bashratyan R. Dai Y.D. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 2014 63 3 1008 1020 10.2337/db13‑0859 24170696
    [Google Scholar]
  126. Karnas E. Dudek P. Zuba-Surma E.K. Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Front. Immunol. 2023 14 1120175 10.3389/fimmu.2023.1120175 36761725
    [Google Scholar]
  127. Taichman R.S. Cooper C. Keller E.T. Pienta K.J. Taichman N.S. McCauley L.K. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002 62 6 1832 1837 11912162
    [Google Scholar]
  128. Shelke G.V. Yin Y. Jang S.C. Lässer C. Wennmalm S. Hoffmann H.J. Li L. Gho Y.S. Nilsson J.A. Lötvall J. Endosomal signalling via exosome surface TGFβ-1. J. Extracell. Vesicles 2019 8 1 1650458 10.1080/20013078.2019.1650458 31595182
    [Google Scholar]
  129. Gurunathan S. Kang M.H. Qasim M. Khan K. Kim J.H. Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles. Int. J. Nanomedicine 2021 16 3357 3383 10.2147/IJN.S310357 34040369
    [Google Scholar]
  130. Mohan A. Agarwal S. Clauss M. Britt N.S. Dhillon N.K. Extracellular vesicles: Novel communicators in lung diseases. Respir. Res. 2020 21 1 175 10.1186/s12931‑020‑01423‑y 32641036
    [Google Scholar]
  131. Gangadaran P. Madhyastha H. Madhyastha R. Rajendran R.L. Nakajima Y. Watanabe N. Velikkakath A.K.G. Hong C.M. Gopi R.V. Muthukalianan G.K. Valsala Gopalakrishnan A. Jeyaraman M. Ahn B-C. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front. Immunol. 2023 13 1085057 10.3389/fimmu.2022.1085057
    [Google Scholar]
  132. Jin Y. Ma L. Zhang W. Yang W. Feng Q. Wang H. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol. Res. 2022 55 1 35 10.1186/s40659‑022‑00405‑2 36435789
    [Google Scholar]
  133. Surman M. Stępień E. Hoja-Łukowicz D. Przybyło M. Deciphering the role of ectosomes in cancer development and progression: Focus on the proteome. Clin. Exp. Metastasis 2017 34 3-4 273 289 10.1007/s10585‑017‑9844‑z 28317069
    [Google Scholar]
  134. Jaiswal R. Sedger L.M. Intercellular vesicular transfer by exosomes, microparticles and oncosomes - Implications for cancer biology and treatments. Front. Oncol. 2019 9 125 10.3389/fonc.2019.00125 30895170
    [Google Scholar]
  135. Minciacchi V.R. You S. Spinelli C. Morley S. Zandian M. Aspuria P.J. Cavallini L. Ciardiello C. Sobreiro M.R. Morello M. Kharmate G. Jang S.C. Kim D.K. Hosseini-Beheshti E. Guns E.T. Gleave M. Gho Y.S. Mathivanan S. Yang W. Freeman M.R. Di Vizio D. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 2015 6 13 11327 11341 10.18632/oncotarget.3598 25857301
    [Google Scholar]
  136. Dixson A.C. Dawson T.R. Di Vizio D. Weaver A.M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 2023 24 7 454 476 10.1038/s41580‑023‑00576‑0 36765164
    [Google Scholar]
  137. Zou X. Lei Q. Luo X. Yin J. chen S. Hao C. Shiyu L. Ma D. Advances in biological functions and applications of apoptotic vesicles. Cell Commun. Signal. 2023 21 1 260 10.1186/s12964‑023‑01251‑9 37749626
    [Google Scholar]
  138. O’Brien K. Breyne K. Ughetto S. Laurent L.C. Breakefield X.O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020 21 10 585 606 10.1038/s41580‑020‑0251‑y 32457507
    [Google Scholar]
  139. Kato M. Natarajan R. MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy. Semin. Nephrol. 2012 32 3 253 260 10.1016/j.semnephrol.2012.04.004 22835456
    [Google Scholar]
  140. Pegtel D.M. Cosmopoulos K. Thorley-Lawson D.A. van Eijndhoven M.A.J. Hopmans E.S. Lindenberg J.L. de Gruijl T.D. Würdinger T. Middeldorp J.M. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA 2010 107 14 6328 6333 10.1073/pnas.0914843107 20304794
    [Google Scholar]
  141. Park S.M. Gaur A.B. Lengyel E. Peter M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008 22 7 894 907 10.1101/gad.1640608 18381893
    [Google Scholar]
  142. Haslehurst A.M. Koti M. Dharsee M. Nuin P. Evans K. Geraci J. Childs T. Chen J. Li J. Weberpals J. Davey S. Squire J. Park P.C. Feilotter H. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012 12 1 91 10.1186/1471‑2407‑12‑91 22429801
    [Google Scholar]
  143. Medici D. Hay E.D. Olsen B.R. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T- cell factor-4-dependent expression of transforming growth factor-beta3. Mol. Biol. Cell 2008 19 11 4875 4887 10.1091/mbc.e08‑05‑0506 18799618
    [Google Scholar]
  144. Becker A. Thakur B.K. Weiss J.M. Kim H.S. Peinado H. Lyden D. Extracellular vesicles in cancer: Cell-to- cell mediators of metastasis. Cancer Cell 2016 30 6 836 848 10.1016/j.ccell.2016.10.009 27960084
    [Google Scholar]
  145. Dedier M. Magne B. Nivet M. Banzet S. Trouillas M. Anti-inflammatory effect of interleukin-6 highly enriched in secretome of two clinically relevant sources of mesenchymal stromal cells. Front. Cell Dev. Biol. 2023 11 1244120 10.3389/fcell.2023.1244120 37745306
    [Google Scholar]
  146. Janowska-Wieczorek A. Wysoczynski M. Kijowski J. Marquez-Curtis L. Machalinski B. Ratajczak J. Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 2005 113 5 752 760 10.1002/ijc.20657 15499615
    [Google Scholar]
  147. Ferlizza E. Romaniello D. Borrelli F. Pagano F. Girone C. Gelfo V. Kuhre R.S. Morselli A. Mazzeschi M. Sgarzi M. Filippini D.M. D’Uva G. Lauriola M. Extracellular vesicles and epidermal growth factor receptor activation: Interplay of drivers in cancer progression. Cancers 2023 15 11 2970 10.3390/cancers15112970 37296932
    [Google Scholar]
  148. Xu Y. Feng K. Zhao H. Di L. Wang L. Wang R. Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment. Theranostics 2022 12 4 1683 1714 10.7150/thno.67775 35198064
    [Google Scholar]
  149. Zhou X. Yan T. Huang C. Xu Z. Wang L. Jiang E. Wang H. Chen Y. Liu K. Shao Z. Shang Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J. Exp. Clin. Cancer Res. 2018 37 1 242 10.1186/s13046‑018‑0911‑3 30285793
    [Google Scholar]
  150. Cai L. Zhang Q. Du L. Zheng F. Silencing of miR-1246 induces cell cycle arrest and apoptosis in cisplatin-resistant ovarian cancer cells by promoting ZNF23 transcription. Cytogenet. Genome Res. 2021 161 10-11 488 500 10.1159/000520069 34923485
    [Google Scholar]
  151. Wu L. Zhang X. Zhang B. Shi H. Yuan X. Sun Y. Pan Z. Qian H. Xu W. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumour Biol. 2016 37 9 12169 12180 10.1007/s13277‑016‑5071‑5 27220495
    [Google Scholar]
  152. Arkhypov I. Lasser S. Petrova V. Weber R. Groth C. Utikal J. Altevogt P. Umansky V. Myeloid cell modulation by tumor-derived extracellular vesicles. Int. J. Mol. Sci. 2020 21 17 6319 10.3390/ijms21176319 32878277
    [Google Scholar]
  153. Roefs M.T. Sluijter J.P.G. Vader P. Extracellular vesicle-associated proteins in tissue repair. Trends Cell Biol. 2020 30 12 990 1013 10.1016/j.tcb.2020.09.009 33069512
    [Google Scholar]
  154. Guo P. Hu B. Gu W. Xu L. Wang D. Huang H.J.S. Cavenee W.K. Cheng S.Y. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 2003 162 4 1083 1093 10.1016/S0002‑9440(10)63905‑3 12651601
    [Google Scholar]
  155. Kim H. Lee S. Shin E. Seong K.M. Jin Y.W. Youn H. Youn B. The emerging roles of exosomes as EMT regulators in cancer. Cells 2020 9 4 861 10.3390/cells9040861 32252322
    [Google Scholar]
  156. Wang J. Zhang C. Li C. Zhao D. Li S. Ma L. Cui Y. Wei X. Zhao Y. Gao Y. MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway. J. Cell. Mol. Med. 2019 23 5 3696 3710 10.1111/jcmm.14274 30907506
    [Google Scholar]
  157. Wu M. Wang M. Jia H. Wu P. Extracellular vesicles: Emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv. 2022 29 1 2513 2538 10.1080/10717544.2022.2104404 35915054
    [Google Scholar]
  158. Kim M.S. Haney M.J. Zhao Y. Mahajan V. Deygen I. Klyachko N.L. Inskoe E. Piroyan A. Sokolsky M. Okolie O. Hingtgen S.D. Kabanov A.V. Batrakova E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016 12 3 655 664 10.1016/j.nano.2015.10.012 26586551
    [Google Scholar]
  159. Trajkovic K. Hsu C. Chiantia S. Rajendran L. Wenzel D. Wieland F. Schwille P. Brügger B. Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008 319 5867 1244 1247 10.1126/science.1153124 18309083
    [Google Scholar]
  160. Zwicke G.L. Ali Mansoori G. Jeffery C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012 3 1 18496 10.3402/nano.v3i0.18496 23240070
    [Google Scholar]
  161. Fernández-Messina L. Rodríguez-Galán A. de Yébenes V.G. Gutiérrez-Vázquez C. Tenreiro S. Seabra M.C. Ramiro A.R. Sánchez-Madrid F. Transfer of extracellular vesicle-micro RNA controls germinal center reaction and antibody production. EMBO Rep. 2020 21 4 e48925 10.15252/embr.201948925 32073750
    [Google Scholar]
  162. Yim K.H.W. Al Hrout A. Borgoni S. Chahwan R. Extracellular vesicles orchestrate immune and tumor interaction networks. Cancers 2020 12 12 3696 10.3390/cancers12123696 33317058
    [Google Scholar]
  163. Wojtukiewicz M.Z. Rek M.M. Karpowicz K. Górska M. Polityńska B. Wojtukiewicz A.M. Moniuszko M. Radziwon P. Tucker S.C. Honn K.V. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021 40 3 949 982 10.1007/s10555‑021‑09976‑0 34236546
    [Google Scholar]
  164. Buchbinder E.I. Desai A. CTLA-4 and PD-1 pathways. Am. J. Clin. Oncol. 2016 39 1 98 106 10.1097/COC.0000000000000239 26558876
    [Google Scholar]
  165. Whiteside T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest. 2016 126 4 1216 1223 10.1172/JCI81136 26927673
    [Google Scholar]
  166. Robbins P.D. Morelli A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014 14 3 195 208 10.1038/nri3622 24566916
    [Google Scholar]
  167. Jiao S. Xia W. Yamaguchi H. Wei Y. Chen M.K. Hsu J.M. Hsu J.L. Yu W.H. Du Y. Lee H.H. Li C.W. Chou C.K. Lim S.O. Chang S.S. Litton J. Arun B. Hortobagyi G.N. Hung M.C. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 2017 23 14 3711 3720 10.1158/1078‑0432.CCR‑16‑3215 28167507
    [Google Scholar]
  168. Chen Y. Wang L. Zheng M. Zhu C. Wang G. Xia Y. Blumenthal E.J. Mao W. Wan Y. Engineered extracellular vesicles for concurrent Anti-PDL1 immunotherapy and chemotherapy. Bioact. Mater. 2022 9 251 265 10.1016/j.bioactmat.2021.07.012 34820569
    [Google Scholar]
  169. Giusti I. Francesco M.D. Ascenzo S.D. Palmerini M.G. Macchiarelli G. Carta G. Dolo V. Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biol. Ther. 2018 19 8 1 44 10.1080/15384047.2018.1451286 29580188
    [Google Scholar]
  170. Mo Y. Leung L.L. Mak C.S.L. Wang X. Chan W.S. Hui L.M.N. Tang H.W.M. Siu M.K.Y. Sharma R. Xu D. Tsui S.K.W. Ngan H.Y.S. Yung M.M.H. Chan K.K.L. Chan D.W. Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol. Cancer 2023 22 1 4 10.1186/s12943‑022‑01703‑9 36624516
    [Google Scholar]
  171. Cheaib B. Auguste A. Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: Therapeutic opportunities and challenges. Chin. J. Cancer 2015 34 1 4 16 10.5732/cjc.014.10289 25556614
    [Google Scholar]
  172. Tian W. Lei N. Zhou J. Chen M. Guo R. Qin B. Li Y. Chang L. Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis. 2022 13 1 64 10.1038/s41419‑022‑04510‑8 35042862
    [Google Scholar]
  173. Lemmon M.A. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010 141 7 1117 1134 10.1016/j.cell.2010.06.011 20602996
    [Google Scholar]
  174. Ghoneum A. Said N. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: Implications for targeted therapeutics. Cancers 2019 11 7 949 10.3390/cancers11070949 31284467
    [Google Scholar]
  175. Steelman L.S. Chappell W.H. Abrams S.L. Kempf C.R. Long J. Laidler P. Mijatovic S. Maksimovic-Ivanic D. Stivala F. Mazzarino M.C. Donia M. Fagone P. Malaponte G. Nicoletti F. Libra M. Milella M. Tafuri A. Bonati A. Bäsecke J. Cocco L. Evangelisti C. Martelli A.M. Montalto G. Cervello M. McCubrey J.A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 2011 3 3 192 222 10.18632/aging.100296 21422497
    [Google Scholar]
  176. Polchi A. Magini A. Meo D.D. Tancini B. Emiliani C. mTOR signaling and neural stem cells: The tuberous sclerosis complex model. Int. J. Mol. Sci. 2018 19 5 1474 10.3390/ijms19051474 29772672
    [Google Scholar]
  177. Romagnoli A. Maracci C. D’Agostino M. La Teana A. Di Marino D. Targeting mTOR and eIF4E: A feasible scenario in ovarian cancer therapy. Cancer Drug Resist. 2021 4 3 596 606 10.20517/cdr.2021.20 35582305
    [Google Scholar]
  178. Rozengurt E. Soares H.P. Sinnet-Smith J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: An unintended consequence leading to drug resistance. Mol. Cancer Ther. 2014 13 11 2477 2488 10.1158/1535‑7163.MCT‑14‑0330 25323681
    [Google Scholar]
  179. Xie Y. Lei X. Zhao G. Guo R. Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev. 2023 71-72 66 81 10.1016/j.cytogfr.2023.06.002 37380596
    [Google Scholar]
  180. Magaway C. Kim E. Jacinto E. Targeting mTOR and metabolism in cancer: Lessons and innovations. Cells 2019 8 12 1584 10.3390/cells8121584 31817676
    [Google Scholar]
  181. Rinne N. Christie E.L. Ardasheva A. Kwok C.H. Demchenko N. Low C. Tralau-Stewart C. Fotopoulou C. Cunnea P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. Cancer Drug Resist. 2021 4 3 573 595 10.20517/cdr.2021.05 35582310
    [Google Scholar]
  182. Hendrikse C.S.E. Theelen P.M.M. van der Ploeg P. Westgeest H.M. Boere I.A. Thijs A.M.J. Ottevanger P.B. van de Stolpe A. Lambrechts S. Bekkers R.L.M. Piek J.M.J. The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2023 171 83 94 10.1016/j.ygyno.2023.01.038 36841040
    [Google Scholar]
  183. Iqbal N. Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int. 2014 2014 1 9 10.1155/2014/852748 25276427
    [Google Scholar]
  184. Wei Y. Erfani S. Schweer D. de Gouvea R. Qadir J. Shi J. Cheng K. Wu D. Craven R. Wu Y. Olivier T. Baldwin L.A. Zhou B. Zhou Y. Zhao W. Yang B.B. Ueland F.R. Yang X.H. Targeting receptor tyrosine kinases in ovarian cancer: Genomic dysregulation, clinical evaluation of inhibitors, and potential for combinatorial therapies. Mol. Ther. Oncolytics 2023 28 293 306 10.1016/j.omto.2023.02.006 36911068
    [Google Scholar]
  185. Maruyama I. Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers. Cells 2014 3 2 304 330 10.3390/cells3020304 24758840
    [Google Scholar]
  186. Vigil D. Cherfils J. Rossman K.L. Der C.J. Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nat. Rev. Cancer 2010 10 12 842 857 10.1038/nrc2960 21102635
    [Google Scholar]
  187. Therachiyil L. Anand A. Azmi A. Bhat A. Korashy H.M. Uddin S. Role of RAS signaling in ovarian cancer. F1000 Res. 2022 11 1253 10.12688/f1000research.126337.1 36451660
    [Google Scholar]
  188. Santarpia L. Lippman S.M. El-Naggar A.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012 16 1 103 119 10.1517/14728222.2011.645805 22239440
    [Google Scholar]
  189. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  190. Lake D. Corrêa S.A.L. Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 2016 73 23 4397 4413 10.1007/s00018‑016‑2297‑8 27342992
    [Google Scholar]
  191. Zhou B. Sun C. Li N. Shan W. Lu H. Guo L. Guo E. Xia M. Weng D. Meng L. Hu J. Ma D. Chen G. Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways. Int. J. Oncol. 2016 48 5 2087 2097 10.3892/ijo.2016.3442 26983899
    [Google Scholar]
  192. Okkenhaug K. Graupera M. Vanhaesebroeck B. Targeting PI3K in cancer: Impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016 6 10 1090 1105 10.1158/2159‑8290.CD‑16‑0716 27655435
    [Google Scholar]
  193. Lima B. Abreu M.H. Sousa S. Bartosch C. Pereira D. Impressive and durable clinical responses obtained with dabrafenib and trametinib in low-grade serous ovarian cancer harbouring a BRAF V600E mutation. Gynecol. Oncol. Rep. 2022 40 100942 10.1016/j.gore.2022.100942 35242981
    [Google Scholar]
  194. Gershenson D.M. Miller A. Brady W.E. Paul J. Carty K. Rodgers W. Millan D. Coleman R.L. Moore K.N. Banerjee S. Connolly K. Secord A.A. O’Malley D.M. Dorigo O. Gaillard S. Gabra H. Slomovitz B. Hanjani P. Farley J. Churchman M. Ewing A. Hollis R.L. Herrington C.S. Huang H.Q. Wenzel L. Gourley C. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): An international, randomised, open-label, multicentre, phase 2/3 trial. Lancet 2022 399 10324 541 553 10.1016/S0140‑6736(21)02175‑9 35123694
    [Google Scholar]
  195. Lawal B. Lo W.C. Mokgautsi N. Sumitra M.R. Khedkar H. Wu A.T. Huang H.S. A preclinical report of a cobimetinib-inspired novel anticancer small-molecule scaffold of isoflavones, NSC777213, for targeting PI3K/AKT/mTOR/MEK in multiple cancers. Am. J. Cancer Res. 2021 11 6 2590 2617 34249417
    [Google Scholar]
  196. Zhu Y. Liu Y. Luo Y. Cai M. Shen P. Li J. Chen H. Bao W. Anti-angiogenic therapy in ovarian cancer: Current situation & prospects. Indian J. Med. Res. 2021 154 5 680 690 10.4103/ijmr.IJMR_1160_19 35532586
    [Google Scholar]
  197. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011 2 12 1097 1105 10.1177/1947601911423031 22866201
    [Google Scholar]
  198. Shibuya M. Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 2006 312 5 549 560 10.1016/j.yexcr.2005.11.012 16336962
    [Google Scholar]
  199. Koch S. Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012 2 7 a006502 10.1101/cshperspect.a006502 22762016
    [Google Scholar]
  200. Wang X. Bove A.M. Simone G. Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 2020 8 599281 10.3389/fcell.2020.599281 33304904
    [Google Scholar]
  201. Masoumi Moghaddam S. Amini A. Morris D.L. Pourgholami M.H. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012 31 1-2 143 162 10.1007/s10555‑011‑9337‑5 22101807
    [Google Scholar]
  202. Trifanescu O.G. Gales L.N. Tanase B.C. Marinescu S.A. Trifanescu R.A. Gruia I.M. Paun M.A. Rebegea L. Mitrica R. Serbanescu L. Prognostic role of vascular endothelial growth factor and correlation with oxidative stress markers in locally advanced and metastatic ovarian cancer patients. Diagnostics 2023 13 1 166
    [Google Scholar]
  203. Spannuth W.A. Nick A.M. Jennings N.B. Armaiz-Pena G.N. Mangala L.S. Danes C.G. Lin Y.G. Merritt W.M. Thaker P.H. Kamat A.A. Han L.Y. Tonra J.R. Coleman R.L. Ellis L.M. Sood A.K. Functional significance of VEGFR-2 on ovarian cancer cells. Int. J. Cancer 2009 124 5 1045 1053 10.1002/ijc.24028 19058181
    [Google Scholar]
  204. Choi H.J. Armaiz Pena G.N. Pradeep S. Cho M.S. Coleman R.L. Sood A.K. Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Rev. 2015 34 1 19 40 10.1007/s10555‑014‑9538‑9 25544368
    [Google Scholar]
  205. Murphy A.D. Morgan R.D. Clamp A.R. Jayson G.C. The role of vascular endothelial growth factor inhibitors in the treatment of epithelial ovarian cancer. Br. J. Cancer 2022 126 6 851 864 10.1038/s41416‑021‑01605‑5 34716396
    [Google Scholar]
  206. Garcia A. Singh H. Bevacizumab and ovarian cancer. Ther. Adv. Med. Oncol. 2013 5 2 133 141 10.1177/1758834012467661 23450196
    [Google Scholar]
  207. Mao C.L. Seow K.M. Chen K.H. The utilization of bevacizumab in patients with advanced ovarian cancer: A systematic review of the mechanisms and effects. Int. J. Mol. Sci. 2022 23 13 6911 10.3390/ijms23136911 35805914
    [Google Scholar]
  208. Perren T.J. Swart A.M. Pfisterer J. Ledermann J.A. Pujade-Lauraine E. Kristensen G. Carey M.S. Beale P. Cervantes A. Kurzeder C. Bois A. Sehouli J. Kimmig R. Stähle A. Collinson F. Essapen S. Gourley C. Lortholary A. Selle F. Mirza M.R. Leminen A. Plante M. Stark D. Qian W. Parmar M.K.B. Oza A.M. ICON7 Investigators A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 2011 365 26 2484 2496 10.1056/NEJMoa1103799 22204725
    [Google Scholar]
  209. Fruman D.A. Chiu H. Hopkins B.D. Bagrodia S. Cantley L.C. Abraham R.T. The PI3K pathway in human disease. Cell 2017 170 4 605 635 10.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  210. Rahman M. Nakayama K. Rahman M.T. Nakayama N. Ishikawa M. Katagiri A. Iida K. Nakayama S. Otsuki Y. Shih I.M. Miyazaki K. Clinicopathologic and biological analysis of PIK3CA mutation in ovarian clear cell carcinoma. Hum. Pathol. 2012 43 12 2197 2206 10.1016/j.humpath.2012.03.011 22705003
    [Google Scholar]
  211. Abe A. Minaguchi T. Ochi H. Onuki M. Okada S. Matsumoto K. Satoh T. Oki A. Yoshikawa H. PIK3CA overexpression is a possible prognostic factor for favorable survival in ovarian clear cell carcinoma. Hum. Pathol. 2013 44 2 199 207 10.1016/j.humpath.2012.05.005 22955107
    [Google Scholar]
  212. Yamamoto S. Tsuda H. Takano M. Iwaya K. Tamai S. Matsubara O. PIK3CA mutation is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma. J. Pathol. 2011 225 2 189 194 10.1002/path.2940 21735444
    [Google Scholar]
  213. Ye S. Yang J. You Y. Cao D. Huang H. Wu M. Chen J. Lang J. Shen K. Clinicopathologic significance of HNF-1β, AIRD1A, and PIK3CA expression in ovarian clear cell carcinoma. Medicine 2016 95 9 e3003 10.1097/MD.0000000000003003 26945423
    [Google Scholar]
  214. Li S.Y. Rong M. Grieu F. Iacopetta B. PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res. Treat. 2006 96 1 91 95 10.1007/s10549‑005‑9048‑0 16317585
    [Google Scholar]
  215. Itamochi H. Oishi T. Oumi N. Takeuchi S. Yoshihara K. Mikami M. Yaegashi N. Terao Y. Takehara K. Ushijima K. Watari H. Aoki D. Kimura T. Nakamura T. Yokoyama Y. Kigawa J. Sugiyama T. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br. J. Cancer 2017 117 5 717 724 10.1038/bjc.2017.228 28728166
    [Google Scholar]
  216. Wu Y.H. Huang Y.F. Chen C.C. Huang C.Y. Chou C.Y. Comparing PI3K/Akt inhibitors used in ovarian cancer treatment. Front. Pharmacol. 2020 11 206 10.3389/fphar.2020.00206 32194423
    [Google Scholar]
  217. Deng J. Bai X. Feng X. Ni J. Beretov J. Graham P. Li Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 2019 19 1 618 10.1186/s12885‑019‑5824‑9 31234823
    [Google Scholar]
  218. Juric D. Rodon J. Tabernero J. Janku F. Burris H.A. Schellens J.H.M. Middleton M.R. Berlin J. Schuler M. Gil-Martin M. Rugo H.S. Seggewiss-Bernhardt R. Huang A. Bootle D. Demanse D. Blumenstein L. Coughlin C. Quadt C. Baselga J. Phosphatidylinositol 3-kinase α–selective inhibition with alpelisib (BYL719) in PIK3CA -altered solid tumors: Results from the first-in-human study. J. Clin. Oncol. 2018 36 13 1291 1299 10.1200/JCO.2017.72.7107 29401002
    [Google Scholar]
  219. Sohn E.J. PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer 2022 22 1 708 10.1186/s12885‑022‑09807‑7 35761259
    [Google Scholar]
  220. Camblin A.J. Tan G. Curley M.D. Yannatos I. Iadevaia S. Rimkunas V. Mino-Kenudson M. Bloom T. Schoeberl B. Drummond D.C. Lugovskoy A.A. Louis C.U. Askoxylakis V. Dual targeting of IGF-1R and ErbB3 as a potential therapeutic regimen for ovarian cancer. Sci. Rep. 2019 9 1 16832 10.1038/s41598‑019‑53322‑y 31728045
    [Google Scholar]
  221. Song J.H. Padi S.K.R. Luevano L.A. Minden M.D. DeAngelo D.J. Hardiman G. Ball L.E. Warfel N.A. Kraft A.S. Insulin receptor substrate 1 is a substrate of the Pim protein kinases. Oncotarget 2016 7 15 20152 20165 10.18632/oncotarget.7918 26956053
    [Google Scholar]
  222. Darici S. Alkhaldi H. Horne G. Jørgensen H.G. Marmiroli S. Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and clinical evidence. J. Clin. Med. 2020 9 9 2934 10.3390/jcm9092934 32932888
    [Google Scholar]
  223. Xu D. Cobb M.G. Gavilano L. Witherspoon S.M. Williams D. White C.D. Taverna P. Bednarski B.K. Kim H.J. Baldwin A.S. Baines A.T. Inhibition of oncogenic Pim-3 kinase modulates transformed growth and chemosensitizes pancreatic cancer cells to gemcitabine. Cancer Biol. Ther. 2013 14 6 492 501 10.4161/cbt.24343 23760491
    [Google Scholar]
  224. Hanrahan A.J. Schultz N. Westfal M.L. Sakr R.A. Giri D.D. Scarperi S. Janikariman M. Olvera N. Stevens E.V. She Q.B. Aghajanian C. King T.A. de Stanchina E. Spriggs D.R. Heguy A. Taylor B.S. Sander C. Rosen N. Levine D.A. Solit D.B. Genomic complexity and AKT dependence in serous ovarian cancer. Cancer Discov. 2012 2 1 56 67 10.1158/2159‑8290.CD‑11‑0170 22328975
    [Google Scholar]
  225. Xu S. Fu G.B. Tao Z. OuYang J. Kong F. Jiang B.H. Wan X. Chen K. MiR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget 2015 6 28 26457 26471 10.18632/oncotarget.4762 26238185
    [Google Scholar]
  226. Wang Q. Tang Y. Yu H. Yin Q. Li M. Shi L. Zhang W. Li D. Li L. CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Mol. Carcinog. 2016 55 11 1688 1699 10.1002/mc.22419 26457987
    [Google Scholar]
  227. Chen Y. León-Letelier R.A. Abdel Sater A.H. Vykoukal J. Dennison J.B. Hanash S. Fahrmann J.F. c-MYC-driven polyamine metabolism in ovarian cancer: From pathogenesis to early detection and therapy. Cancers 2023 15 3 623 10.3390/cancers15030623 36765581
    [Google Scholar]
  228. Whillock A.L. Mambetsariev N. Lin W.W. Stunz L.L. Bishop G.A. TRAF3 regulates the oncogenic proteins Pim2 and c-Myc to restrain survival in normal and malignant B cells. Sci. Rep. 2019 9 1 12884 10.1038/s41598‑019‑49390‑9 31501481
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331849240930140120
Loading
/content/journals/cmc/10.2174/0109298673331849240930140120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test