Skip to content
2000
image of Ginsenoside Rg3 in Cancer Research: Current Trends and Future Prospects - A Review

Abstract

Cancer is one of the most devastating illnesses in the world, impacting millions of individuals every year. Despite various therapies, the final effect is unsatisfactory. Chemotherapy currently dominates as the primary option of treatment. However, its severe adverse effects, limited efficacy, and resistance to drugs undermine its potential. Growing evidence suggests that ginsenoside Rg3, a natural compound obtained from the ginseng plant (), holds significant promise in cancer therapy. Its proposed mechanisms primarily involve the enhancement of immunity, retardation of cancer cellular proliferation and metastasis, triggering apoptosis, angiogenesis, epigenetic modification, and Regulation of transition of epithelial mesenchyma (EMT) and miRNAs/lncRNA. Furthermore, Rg3-ginsenoside potentiates the effectiveness of conventional treatments of cancer and reduces the adverse effects through synergistic interactions. Ginsenoside Rg3's present status in cancer research is thoroughly reviewed in this article, shedding light on its intricate mechanisms and potential to revolutionize cancer therapy through combinatorial and nano-based targeted therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333781240924024342
2025-01-14
2025-04-22
Loading full text...

Full text loading...

References

  1. Cancer. 2022 Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  2. Chakraborty S. Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012 6 ed16 10.3332/ecancer.2012.ed16 24883085
    [Google Scholar]
  3. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 p. 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  4. Zargar A. Chang S. Kothari A. Snijders A.M. Mao J.H. Wang J. Hernández A.C. Keasling J.D. Bivona T.G. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy. Chronic Dis. Transl. Med. 2019 5 4 258 266 10.1016/j.cdtm.2019.11.001 32055785
    [Google Scholar]
  5. Wang Y. Li G. Chen T. Wu W. Yan Z. Li X. Anticancer effect and molecular mechanism of ginsenoside Rg3 in various cancer types. Intelligent Pharmacy 2023 1 2 52 63 10.1016/j.ipha.2023.04.012
    [Google Scholar]
  6. Miao X.S. Metcalfe C.D. Hao C. March R.E. Electrospray ionization mass spectrometry of ginsenosides. J. Mass Spectrom. 2002 37 5 495 506 10.1002/jms.309 12112755
    [Google Scholar]
  7. Hou M. Wang R. Zhao S. Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021 11 7 1813 1834 10.1016/j.apsb.2020.12.017 34386322
    [Google Scholar]
  8. Leung K. Wong A. Pharmacology of ginsenosides: A literature review. Chin. Med. 2010 5 1 20 10.1186/1749‑8546‑5‑20 20537195
    [Google Scholar]
  9. Nakhjavani M. Palethorpe H.M. Tomita Y. Smith E. Price T.J. Yool A.J. Pei J.V. Townsend A.R. Hardingham J.E. Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharmaceuticals (Basel) 2019 12 3 117 10.3390/ph12030117
    [Google Scholar]
  10. Nakhjavani M. Hardingham J.E. Palethorpe H.M. Tomita Y. Smith E. Price T.J. Townsend A.R. Ginsenoside Rg3: Potential molecular targets and therapeutic indication in metastatic breast cancer. Medicines (Basel) 2019 6 1 17 10.3390/medicines6010017 30678106
    [Google Scholar]
  11. Lelu J.K. Liu Q. Alolga R.N. Fan Y. Xiao W.L. Qi L.W. Li P. A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng . J. Pharm. Biomed. Anal. 2016 125 355 359 10.1016/j.jpba.2016.04.019 27107214
    [Google Scholar]
  12. Jo S.K. Kim I.S. Yoon K.S. Yoon H.H. Yoo H.H. Preparation of ginsenosides Rg3, Rk1, and Rg5-selectively enriched ginsengs by a simple steaming process. Eur. Food Res. Technol. 2015 240 1 251 256 10.1007/s00217‑014‑2370‑1
    [Google Scholar]
  13. Liu L. Zhu X.M. Wang Q.J. Zhang D.L. Fang Z.M. Wang C.Y. Wang Z. Sun B.S. Wu H. Sung C.K. Enzymatic preparation of 20(S, R)-protopanaxadiol by transformation of 20(S, R)-Rg3 from black ginseng. Phytochemistry 2010 71 13 1514 1520 10.1016/j.phytochem.2010.05.007 20576280
    [Google Scholar]
  14. Fan J. Zhang M. Ai Z. Huang J. Wang Y. Xiao S. Wang Y. Highly regioselective hydrolysis of the glycosidic bonds in ginsenosides catalyzed by snailase. Process Biochem. 2021 103 114 122 10.1016/j.procbio.2021.02.013
    [Google Scholar]
  15. Cheng L.Q. Na J.R. Bang M.H. Kim M.K. Yang D.C. Conversion of major ginsenoside Rb1 to 20(S)- ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 2008 69 1 218 224 10.1016/j.phytochem.2007.06.035 17764709
    [Google Scholar]
  16. Xu J. Yang T.J. Hu H. The Ginseng Genome (Compendium of Plant Genomes) 2021
    [Google Scholar]
  17. Li G. Zhang X. Lin L. Liu X. Ma C. Li J. Wang C. Preparation of ginsenoside Rg3 and protection against H2O2 -Induced oxidative stress in human neuroblastoma SK-N-SH cells. J. Chem. 2014 2014 1 6 10.1155/2014/848571
    [Google Scholar]
  18. Nakhjavani M. Smith E. Yeo K. Palethorpe H.M. Tomita Y. Price T.J. Townsend A.R. Hardingham J.E. Anti-angiogenic properties of ginsenoside Rg3 epimers: In vitro assessment of single and combination treatments. Cancers (Basel) 2021 13 9 2223 10.3390/cancers13092223 34066403
    [Google Scholar]
  19. Sorice M. Crosstalk of autophagy and apoptosis. Cells 2022 11 9 1479 10.3390/cells11091479 35563785
    [Google Scholar]
  20. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  21. Li Y. Lu J. Bai F. Xiao Y. Guo Y. Dong Z. Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/4306579 29750154
    [Google Scholar]
  22. Hwang S.K. Jeong Y.J. Cho H.J. Park Y.Y. Song K.H. Chang Y.C. Rg3-enriched red ginseng extract promotes lung cancer cell apoptosis and mitophagy by ROS production. J. Ginseng Res. 2022 46 1 138 146 10.1016/j.jgr.2021.05.005 35058730
    [Google Scholar]
  23. Zhang F. Li M. Wu X. Hu Y. Cao Y. Wang X. Xiang S. Li H. Jiang L. Tan Z. Lu W. Weng H. Shu Y. Gong W. Wang X. Zhang Y. Shi W. Dong P. Gu J. Liu Y. 20(S)-Ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway [Corrigendum]. Drug Des. Devel. Ther. 2019 13 3527 3528 10.2147/DDDT.S230835 31631976
    [Google Scholar]
  24. Bian S. Zhao Y. Li F. Lu S. Wang S. Bai X. Liu M. Zhao D. Wang J. Guo D. 20(S)-Ginsenoside Rg3 promotes hela cell apoptosis by regulating autophagy. Molecules 2019 24 20 3655 10.3390/molecules24203655
    [Google Scholar]
  25. Kim B.M. Kim D.H. Park J.H. Surh Y.J. Na H.K. Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets. J. Cancer Prev. 2014 19 1 23 30 10.15430/JCP.2014.19.1.23 25337569
    [Google Scholar]
  26. Wu K. Huang J. Li N. Xu T. Cai W. Ye Z. Antitumor effect of ginsenoside Rg3 on gallbladder cancer by inducing endoplasmic reticulum stress-mediated apoptosis in-vitro and in-vivo. Oncol. Lett. 2018 16 5 5687 5696 10.3892/ol.2018.9331 30344724
    [Google Scholar]
  27. Aziz F. Wang X. Liu J. Yan Q. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol. In Vitro 2016 31 158 166 10.1016/j.tiv.2015.09.025 26427350
    [Google Scholar]
  28. Platini F. Pérez-Tomás R. Ambrosio S. Tessitore L. Understanding autophagy in cell death control. Curr. Pharm. Des. 2010 16 1 101 113 10.2174/138161210789941810 20214621
    [Google Scholar]
  29. Zheng X. Chen W. Hou H. Li J. Li H. Sun X. Zhao L. Li X. Ginsenoside 20(S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed. Pharmacother. 2017 85 620 626 10.1016/j.biopha.2016.11.072 27899249
    [Google Scholar]
  30. Chen Q.-F. Qiu Y. Wang L. Liu B.-L. Zhao M. Ginsenosides Rh2 and Rg3 exert their anti-cancer effects on non-small cell lung cancer by regulating cell autophagy and choline-phosphatidylcholine metabolism. Europe PMC 2023 10.21203/rs.3.rs‑3128429/v1
    [Google Scholar]
  31. Feitelson M.A. Arzumanyan A. Kulathinal R.J. Blain S.W. Holcombe R.F. Mahajna J. Marino M. Martinez-Chantar M.L. Nawroth R. Sanchez-Garcia I. Sharma D. Saxena N.K. Singh N. Vlachostergios P.J. Guo S. Honoki K. Fujii H. Georgakilas A.G. Bilsland A. Amedei A. Niccolai E. Amin A. Ashraf S.S. Boosani C.S. Guha G. Ciriolo M.R. Aquilano K. Chen S. Mohammed S.I. Azmi A.S. Bhakta D. Halicka D. Keith W.N. Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015 35 S25 S54 10.1016/j.semcancer.2015.02.006 25892662
    [Google Scholar]
  32. Liu H. Xie T. Liu Y. Ginsenoside Rg3 inhibits the malignant progression of cervical cancer cell by regulating AKT2 expression. Heliyon 2023 9 8 e19045 10.1016/j.heliyon.2023.e19045 37664735
    [Google Scholar]
  33. Zhang W. Wang Q. Du H. Jiang S. CRISPR/Cas9-mediated overexpression of long non-coding RNA SRY-box transcription factor 21 antisense divergent transcript 1 regulates the proliferation of osteosarcoma by increasing the expression of mechanistic target of rapamycin kinase and Kruppel-like factor 4. Bioengineered 2022 13 3 6677 6686 10.1080/21655979.2021.1995106 34696664
    [Google Scholar]
  34. Pu Z. Ge F. Wang Y. Jiang Z. Zhu S. Qin S. Dai Q. Liu H. Hua H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered 2021 12 1 2398 2409 10.1080/21655979.2021.1932211 34130594
    [Google Scholar]
  35. Mao X. Jin Y. Feng T. Wang H. Liu D. Zhou Z. Yan Q. Yang H. Yang J. Yang J. Ye Y. Su Y. Zuo G. Ginsenoside Rg3 inhibits the growth of osteosarcoma and attenuates metastasis through the Wnt/ β -Catenin and EMT signaling pathway. Evid. Based Complement. Alternat. Med. 2020 2020 1 6065124 10.1155/2020/6065124 32733585
    [Google Scholar]
  36. Liang Y. Zhang T. Jing S. Zuo P. Li T. Wang Y. Xing S. Zhang J. Wei Z. 20(S)-Ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK pathway. Am. J. Chin. Med. 2021 49 3 753 765 10.1142/S0192415X2150035X 33641655
    [Google Scholar]
  37. Beroukhim R. Mermel C.H. Porter D. Wei G. Raychaudhuri S. Donovan J. Barretina J. Boehm J.S. Dobson J. Urashima M. Mc Henry K.T. Pinchback R.M. Ligon A.H. Cho Y.J. Haery L. Greulich H. Reich M. Winckler W. Lawrence M.S. Weir B.A. Tanaka K.E. Chiang D.Y. Bass A.J. Loo A. Hoffman C. Prensner J. Liefeld T. Gao Q. Yecies D. Signoretti S. Maher E. Kaye F.J. Sasaki H. Tepper J.E. Fletcher J.A. Tabernero J. Baselga J. Tsao M.S. Demichelis F. Rubin M.A. Janne P.A. Daly M.J. Nucera C. Levine R.L. Ebert B.L. Gabriel S. Rustgi A.K. Antonescu C.R. Ladanyi M. Letai A. Garraway L.A. Loda M. Beer D.G. True L.D. Okamoto A. Pomeroy S.L. Singer S. Golub T.R. Lander E.S. Getz G. Sellers W.R. Meyerson M. The landscape of somatic copy-number alteration across human cancers. Nature 2010 463 7283 899 905 10.1038/nature08822 20164920
    [Google Scholar]
  38. Kalkat M. De Melo J. Hickman K. Lourenco C. Redel C. Resetca D. Tamachi A. Tu W. Penn L. MYC deregulation in primary human cancers. Genes (Basel) 2017 8 6 151 10.3390/genes8060151 28587062
    [Google Scholar]
  39. Ning J.Y. Zhang Z.H. Zhang J. Liu Y.M. Li G.C. Wang A.M. Li Y. Shan X. Wang J.H. Zhang X. Zhao Y. Ginsenoside Rg3 decreases breast cancer stem- like phenotypes through impairing MYC mRNA stability. Am. J. Cancer Res. 2024 14 2 601 615 10.62347/GYXE7741 38455405
    [Google Scholar]
  40. Ansari M.J. Bokov D. Markov A. Jalil A.T. Shalaby M.N. Suksatan W. Chupradit S. AL-Ghamdi H.S. Shomali N. Zamani A. Mohammadi A. Dadashpour M. Cancer combination therapies by angiogenesis inhibitors; A comprehensive review. Cell Commun. Signal. 2022 20 1 49 10.1186/s12964‑022‑00838‑y 35392964
    [Google Scholar]
  41. Lv Q. Xia Z. Huang Y. Ruan Z. Wang J. Huang Z. Ginsenoside Rg3 alleviates the migration, invasion, and angiogenesis of lung cancer cells by inhibiting the expressions of cyclooxygenase-2 and vascular endothelial growth factor. Chem. Biol. Drug Des. 2023 101 4 937 951 10.1111/cbdd.14203 36593682
    [Google Scholar]
  42. Zeng Z. Nian Q. Chen N. Zhao M. Zheng Q. Zhang G. Zhao Z. Chen Y. Wang J. Zeng J. Gong D. Tang J. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4. Biomed. Pharmacother. 2022 145 112086 10.1016/j.biopha.2021.112086 34799220
    [Google Scholar]
  43. Tang Y.C. Zhang Y. Zhou J. Zhi Q. Wu M.Y. Gong F.R. Shen M. Liu L. Tao M. Shen B. Gu D-M. Yu J. Xu M-D. Gao Y. Li W. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo . Int. J. Oncol. 2017 10.3892/ijo.2017.4183 29115601
    [Google Scholar]
  44. Ma Z. Zuo Y. Wang W. Ginsenoside Rg3 inhibits renal cell carcinoma cell migration, invasion, colony formation, and tube formation and enhances apoptosis through promoting the DNA demethylation and histone acetylation. J. Pharm. Pharmacol. 2023 75 1 76 86 10.1093/jpp/rgac072 36264186
    [Google Scholar]
  45. Wang T. Zhang C. Wang S. Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner. J. Orthop. Surg. Res. 2021 16 1 724 10.1186/s13018‑021‑02868‑7 34930332
    [Google Scholar]
  46. Lee S.G. Kang Y.J. Nam J.O. Anti-metastasis effects of ginsenoside Rg3 in B16F10 cells. J. Microbiol. Biotechnol. 2015 25 12 1997 2006 10.4014/jmb.1506.06002 26370799
    [Google Scholar]
  47. Sun M.Y. Song Y.N. Zhang M. Zhang C.Y. Zhang L.J. Zhang H. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol. Lett. 2018 17 1 965 973 10.3892/ol.2018.9701 30655855
    [Google Scholar]
  48. Song J.H. Eum D.Y. Park S.Y. Jin Y.H. Shim J.W. Park S.J. Kim M.Y. Park S.J. Heo K. Choi Y.J. Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS One 2020 15 10 e0240533 10.1371/journal.pone.0240533 33091036
    [Google Scholar]
  49. Nakhjavani M. Smith E. Palethorpe H.M. Tomita Y. Yeo K. Price T.J. Townsend A.R. Hardingham J.E. Anti-cancer effects of an optimised combination of ginsenoside Rg3 epimers on triple negative breast cancer models. Pharmaceuticals (Basel) 2021 14 7 633 10.3390/ph14070633 34208799
    [Google Scholar]
  50. Yang Q. Cai N. Che D. Chen X. Wang D. Ginsenoside Rg3 inhibits the biological activity of SGC-7901. Food Sci. Nutr. 2020 8 8 4151 4158 10.1002/fsn3.1707 32884696
    [Google Scholar]
  51. Lv S. Chen X. Chen Y. Gong D. Mao G. Shen C. Xia T. Cheng J. Luo Z. Cheng Y. Li W. Zeng J. Ginsenoside Rg3 induces apoptosis and inhibits proliferation by down-regulating TIGAR in rats with gastric precancerous lesions. BMC Complement Med Ther 2022 22 1 188 10.1186/s12906‑022‑03669‑z 35840932
    [Google Scholar]
  52. Wang D. Wu C. Liu D. Zhang L. Long G. Hu G. Sun W. Ginsenoside Rg3 inhibits migration and invasion of nasopharyngeal carcinoma cells and suppresses epithelial mesenchymal transition. BioMed Res. Int. 2019 2019 1 11 10.1155/2019/8407683 30915362
    [Google Scholar]
  53. Petroni G. Buqué A. Zitvogel L. Kroemer G. Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021 39 3 310 345 10.1016/j.ccell.2020.11.009 33338426
    [Google Scholar]
  54. Ferreira S.S. Passos C.P. Madureira P. Vilanova M. Coimbra M.A. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015 132 378 396 10.1016/j.carbpol.2015.05.079 26256362
    [Google Scholar]
  55. Valdés-González J.A. Sánchez M. Moratilla-Rivera I. Iglesias I. Gómez-Serranillos M.P. Immunomodulatory, anti-inflammatory, and anti-cancer properties of Ginseng: A pharmacological update. Molecules 2023 28 9 3863 10.3390/molecules28093863 37175273
    [Google Scholar]
  56. Lee Y. Park A. Park Y.J. Jung H. Kim T.D. Noh J.Y. Choi I. Lee S. Ran Yoon S. Ginsenoside 20(R)-Rg3 enhances natural killer cell activity by increasing activating receptor expression through the MAPK/ERK signaling pathway. Int. Immunopharmacol. 2022 107 108618 10.1016/j.intimp.2022.108618 35219164
    [Google Scholar]
  57. Wu R. Ru Q. Chen L. Ma B. Li C. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J. Food Sci. 2014 79 7 H1430 H1435 10.1111/1750‑3841.12518 25041540
    [Google Scholar]
  58. Xia J. Ma S. Zhu X. Chen C. Zhang R. Cao Z. Chen X. Zhang L. Zhu Y. Zhang S. Li S. Gu G. Wei X. Yu K. Wang J. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci. Adv. 2022 8 6 eabj1262 10.1126/sciadv.abj1262 35148178
    [Google Scholar]
  59. Serrano-Gomez S.J. Maziveyi M. Alahari S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 2016 15 1 18 10.1186/s12943‑016‑0502‑x 26905733
    [Google Scholar]
  60. Li X. Liu W. Geng C. Li T. Li Y. Guo Y. Wang C. Ginsenoside Rg3 suppresses epithelial-mesenchymal transition via downregulating notch-Hes1 signaling in colon cancer cells. Am. J. Chin. Med. 2021 49 1 217 235 10.1142/S0192415X21500129 33371813
    [Google Scholar]
  61. Zeng X. Liu S. Yang H. Jia M. Liu W. Zhu W. Synergistic anti-tumour activity of ginsenoside Rg3 and doxorubicin on proliferation, metastasis and angiogenesis in osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling pathways. J. Pharm. Pharmacol. 2023 75 11 1405 1417 10.1093/jpp/rgad070 37498992
    [Google Scholar]
  62. Hu G. Luo N. Guo Q. Wang D. Peng P. Liu D. Liu S. Zhang L. Long G. Sun W. Ginsenoside Rg3 sensitizes nasopharyngeal carcinoma cells to radiation by suppressing epithelial mesenchymal transition. Radiat. Res. 2023 199 5 460 467 10.1667/RADE‑22‑00183.1 36946792
    [Google Scholar]
  63. Deng X. Wang J. Lu C. Zhou Y. Shen L. Ge A. Fan H. Liu L. Updating the therapeutic role of ginsenosides in breast cancer: A bibliometrics study to an in-depth review. Front. Pharmacol. 2023 14 1226629 10.3389/fphar.2023.1226629 37818185
    [Google Scholar]
  64. Kim H. Ji H.W. Kim H.W. Yun S.H. Park J.E. Kim S.J. Ginsenoside Rg3 prevents oncogenic long noncoding RNA ATXN8OS from inhibiting tumor-suppressive microRNA-424-5p in breast cancer cells. Biomolecules 2021 11 1 118 10.3390/biom11010118 33477683
    [Google Scholar]
  65. Jun Wang Zhao L. Gao X. Ginsenoside Rg3 induces low expression of lncRNA ATXN8OS to inhibit colon cancer metastasis. Russ. J. Bioorganic Chem. 2023 49 3 562 570 10.1134/S106816202303024X
    [Google Scholar]
  66. Schnekenburger M. Florean C. Dicato M. Diederich M. Epigenetic alterations as a universal feature of cancer hallmarks and a promising target for personalized treatments. Curr. Top. Med. Chem. 2015 16 7 745 776 10.2174/1568026615666150825141330 26303418
    [Google Scholar]
  67. Ham J. Lee S. Lee H. Jeong D. Park S. Kim S.J. Genome-wide methylation analysis identifies NOX4 and KDM5A as key regulators in inhibiting breast cancer cell proliferation by ginsenoside Rg3. Am. J. Chin. Med. 2018 46 6 1333 1355 10.1142/S0192415X18500702 30149757
    [Google Scholar]
  68. Wang L. Han X. Zheng X. Zhou Y. Hou H. Chen W. Li X. Zhao L. Ginsenoside 20(S)-Rg3 upregulates tumor suppressor VHL gene expression by suppressing DNMT3A-mediated promoter methylation in ovarian cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 2021 41 1 100 106 10.12122/j.issn.1673‑4254.2021.01.14 33509760
    [Google Scholar]
  69. Ham J. Jeong D. Park S. Kim H.W. Kim H. Kim S.J. Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1. J. Ginseng Res. 2019 43 4 625 634 10.1016/j.jgr.2019.02.004 31700260
    [Google Scholar]
  70. Liu W. Zhang S.X. Ai B. Pan H.F. Zhang D. Jiang Y. Hu L.H. Sun L.L. Chen Z.S. Lin L.Z. Ginsenoside Rg3 promotes cell growth through activation of mTORC1. Front. Cell Dev. Biol. 2021 9 730309 10.3389/fcell.2021.730309 34589493
    [Google Scholar]
  71. Sun M. Ye Y. Xiao L. Duan X. Zhang Y. Zhang H. Anticancer effects of ginsenoside Rg3 (Review). Int. J. Mol. Med. 2017 39 3 507 518 10.3892/ijmm.2017.2857 28098857
    [Google Scholar]
  72. Paek I.B. Moon Y. Kim J. Ji H.Y. Kim S.A. Sohn D.H. Kim J.B. Lee H.S. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm. Drug Dispos. 2006 27 1 39 45 10.1002/bdd.481 16302287
    [Google Scholar]
  73. Xiong J. Yuan H. Fei S. Yang S. You M. Liu L. The preventive role of the red gingeng ginsenoside Rg3 in the treatment of lung tumorigenesis induced by benzo(a)pyrene. Sci. Rep. 2023 13 1 4528 10.1038/s41598‑023‑31710‑9 36941308
    [Google Scholar]
  74. Bae S.H. Park J.B. Zheng Y.F. Jang M.J. Kim S.O. Kim J.Y. Yoo Y.H. Yoon K.D. Oh E. Bae S.K. Pharmacokinetics and tissue distribution of ginsenoside Rh2 and Rg3 epimers after oral administration of BST204, a purified ginseng dry extract, in rats. Xenobiotica 2014 44 12 1099 1107 10.3109/00498254.2014.929192 24933530
    [Google Scholar]
  75. Li K. Chen X. Xu J. Li X. Zhong D. Liquid chromatography/tandem mass spectrometry for pharmacokinetic studies of 20( R )-ginsenoside Rg3 in dog. Rapid Commun. Mass Spectrom. 2005 19 6 813 817 10.1002/rcm.1862 15714599
    [Google Scholar]
  76. Cai Z. Qian T. Wong R.N.S. Jiang Z.H. Liquid chromatography–electrospray ionization mass spectrometry for metabolism and pharmacokinetic studies of ginsenoside Rg3. Anal. Chim. Acta 2003 492 1-2 283 293 10.1016/S0003‑2670(03)00719‑0
    [Google Scholar]
  77. Kebede L. Masoomi Dezfooli S. Seyfoddin A. Medicinal cannabis pharmacokinetics and potential methods of delivery. Pharm. Dev. Technol. 2022 27 2 202 214 10.1080/10837450.2022.2035748 35084279
    [Google Scholar]
  78. Hasanpoor A. Akaberi M. Kesharwani P. Sobhani Z. Sahebkar A. Drug interactions with Cannabis sativa : Mechanisms and clinical implication. Toxicologie Analytique et Clinique 2024 36 2 131 144 10.1016/j.toxac.2023.10.004
    [Google Scholar]
  79. Palrasu M. Wright L. Patel M. Leech L. Branch S. Harrelson S. Khan S. Perspectives on challenges in Cannabis drug delivery systems: Where are we? Med. Cannabis Cannabinoids 2022 5 1 102 119 10.1159/000525629 36467783
    [Google Scholar]
  80. Yu S.E. Mwesige B. Yi Y.S. Yoo B.C. Ginsenosides: the need to move forward from bench to clinical trials. J. Ginseng Res. 2019 43 3 361 367 10.1016/j.jgr.2018.09.001 31308807
    [Google Scholar]
  81. Li Y. Wang Y. Niu K. Chen X. Xia L. Lu D. Kong R. Chen Z. Duan Y. Sun J. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation. Oncotarget 2016 7 43 70535 70545 10.18632/oncotarget.12059 27655708
    [Google Scholar]
  82. Huang J.Y. Sun Y. Fan Q.X. Zhang Y.Q. Efficacy of Shenyi Capsule combined with gemcitabine plus cisplatin in treatment of advanced esophageal cancer: A randomized controlled trial. J. Chin. Integr. Med. 2009 7 11 1047 1051 10.3736/jcim20091105 19912736
    [Google Scholar]
  83. Chen Z-J. Cheng J. Huang Y-P. Han S-L. Liu N-X. Zhu G-B. Yao J-G. Effect of adjuvant chemotherapy of ginsenoside Rg3 combined with mitomycin C and tegafur in advanced gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi 2007 10 1 64 66 17253178
    [Google Scholar]
  84. Zhou B. Yan Z. Liu R. Shi P. Qian S. Qu X. Zhu L. Zhang W. Wang J. Prospective study of Transcatheter Arterial Chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology 2016 280 2 630 639 10.1148/radiol.2016150719 26885681
    [Google Scholar]
  85. Xiaoge K. Dongliang L. Xiaorui L. Observation of treating advanced breast cancer with ginsenoside Rg3 combining with capecitabine. Zhongliu Fangzhi Yanjiu 2011
    [Google Scholar]
  86. Hayes C. Cellular immunotherapies for cancer. Ir. J. Med. Sci. 2021 190 1 41 57 10.1007/s11845‑020‑02264‑w 32607912
    [Google Scholar]
  87. Won H.J. Kim H.I. Park T. Kim H. Jo K. Jeon H. Ha S.J. Hyun J.M. Jeong A. Kim J.S. Park Y.J. Eo Y.H. Lee J. Non-clinical pharmacokinetic behavior of ginsenosides. J. Ginseng Res. 2019 43 3 354 360 10.1016/j.jgr.2018.06.001 31308806
    [Google Scholar]
  88. Zhao J. Duan Z. Ma X. Liu Y. Fan D. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers. Chin. J. Chem. Eng. 2021 30 291 300 10.1016/j.cjche.2020.11.012
    [Google Scholar]
  89. Wang H. Zheng Y. Sun Q. Zhang Z. Zhao M. Peng C. Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J. Nanobiotechnology 2021 19 1 322 10.1186/s12951‑021‑01062‑5 34654430
    [Google Scholar]
  90. Ashique S. Upadhyay A. Kumar S. Mishra N. Garg A. Rai S. Altamimi M.A. Hussain A. Rihan M. Advancement of nanocarriers-based therapeutics for effective management of colorectal cancer. Curr Indian Sci 2023 1 e240223214003 10.2174/2210299X01666230224095321
    [Google Scholar]
  91. Liu P. Chen G. Zhang J. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  92. Yu H. Teng L. Meng Q. Li Y. Sun X. Lu J. J Lee R. Teng L. Development of liposomal Ginsenoside Rg3: formulation optimization and evaluation of its anticancer effects. Int. J. Pharm. 2013 450 1-2 250 258 10.1016/j.ijpharm.2013.04.065 23628402
    [Google Scholar]
  93. Rahimi S. van Leeuwen D. Roshanzamir F. Pandit S. Shi L. Sasanian N. Nielsen J. Esbjörner E.K. Mijakovic I. Ginsenoside Rg3 reduces the toxicity of graphene oxide used for pH-responsive delivery of doxorubicin to liver and breast cancer cells. Pharmaceutics 2023 15 2 391 10.3390/pharmaceutics15020391 36839713
    [Google Scholar]
  94. Miao L. Ma H. Dong T. Zhao C. Gao T. Wu T. Xu H. Zhang J. Ginsenoside Rg3 liposomes regulate tumor microenvironment for the treatment of triple negative breast cancer. Drug Dev. Ind. Pharm. 2023 49 1 139 148 10.1080/03639045.2023.2188078 36881020
    [Google Scholar]
  95. Xia J. Zhang S. Zhang R. Wang A. Zhu Y. Dong M. Ma S. Hong C. Liu S. Wang D. Wang J. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. J. Nanobiotechnology 2022 20 1 414 10.1186/s12951‑022‑01623‑2 36109762
    [Google Scholar]
  96. Liu Z. Xiang Y. Zheng Y. Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front. Immunol. 2022 13 1027124 10.3389/fimmu.2022.1027124 36341334
    [Google Scholar]
  97. Sun D. Zou Y. Song L. Han S. Yang H. Chu D. Dai Y. Ma J. O’Driscoll C.M. Yu Z. Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm. Sin. B 2022 12 1 378 393 10.1016/j.apsb.2021.06.005 35127393
    [Google Scholar]
  98. Tang L. Zhang M. Liu C. Advances in nanotechnology-based immunotherapy for glioblastoma. Front. Immunol. 2022 13 882257 10.3389/fimmu.2022.882257 35651605
    [Google Scholar]
  99. Li J. Wang X. Guo Y. Zhang Y. Zhu A. Zeng W. Di L. Wang R. Ginsenoside Rg3-engineered exosomes as effective delivery platform for potentiated chemotherapy and photoimmunotherapy of glioblastoma. Chem. Eng. J. 2023 471 144692 10.1016/j.cej.2023.144692
    [Google Scholar]
  100. Zhao X. Wu J. Zhang K. Guo D. Hong L. Chen X. Wang B. Song Y. The synthesis of a nanodrug using metal-based nanozymes conjugated with ginsenoside Rg3 for pancreatic cancer therapy. Nanoscale Adv. 2021 4 1 190 199 10.1039/D1NA00697E 36132964
    [Google Scholar]
  101. Zuo S. Wang J. An X. Wang Z. Zheng X. Zhang Y. Fabrication of ginsenoside-based nanodrugs for enhanced antitumor efficacy on triple-negative breast cancer. Front. Bioeng. Biotechnol. 2022 10 945472 10.3389/fbioe.2022.945472 36032706
    [Google Scholar]
  102. Huang L. Zhao S. Fang F. Xu T. Lan M. Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021 268 120557 10.1016/j.biomaterials.2020.120557 33260095
    [Google Scholar]
  103. Wu H. Wei G. Luo L. Li L. Gao Y. Tan X. Wang S. Chang H. Liu Y. Wei Y. Song J. Zhang Z. Huo J. Ginsenoside Rg3 nanoparticles with permeation enhancing based chitosan derivatives were encapsulated with doxorubicin by thermosensitive hydrogel and anti-cancer evaluation of peritumoral hydrogel injection combined with PD-L1 antibody. Biomater. Res. 2022 26 1 77 10.1186/s40824‑022‑00329‑8 36494759
    [Google Scholar]
  104. Narayan R.S. Molenaar P. Teng J. Cornelissen F.M.G. Roelofs I. Menezes R. Dik R. Lagerweij T. Broersma Y. Petersen N. Marin Soto J.A. Brands E. van Kuiken P. Lecca M.C. Lenos K.J. In ’t Veld S.G.J.G. van Wieringen W. Lang F.F. Sulman E. Verhaak R. Baumert B.G. Stalpers L.J.A. Vermeulen L. Watts C. Bailey D. Slotman B.J. Versteeg R. Noske D. Sminia P. Tannous B.A. Wurdinger T. Koster J. Westerman B.A. A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities. Nat. Commun. 2020 11 1 2935 10.1038/s41467‑020‑16735‑2 32523045
    [Google Scholar]
  105. Johannessen C.M. Boehm J.S. Kim S.Y. Thomas S.R. Wardwell L. Johnson L.A. Emery C.M. Stransky N. Cogdill A.P. Barretina J. Caponigro G. Hieronymus H. Murray R.R. Salehi-Ashtiani K. Hill D.E. Vidal M. Zhao J.J. Yang X. Alkan O. Kim S. Harris J.L. Wilson C.J. Myer V.E. Finan P.M. Root D.E. Roberts T.M. Golub T. Flaherty K.T. Dummer R. Weber B.L. Sellers W.R. Schlegel R. Wargo J.A. Hahn W.C. Garraway L.A. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010 468 7326 968 972 10.1038/nature09627 21107320
    [Google Scholar]
  106. Gayvert K.M. Aly O. Platt J. Bosenberg M.W. Stern D.F. Elemento O. A computational approach for identifying synergistic drug combinations. PLOS Comput. Biol. 2017 13 1 e1005308 10.1371/journal.pcbi.1005308 28085880
    [Google Scholar]
  107. Jaaks P. Coker E.A. Vis D.J. Edwards O. Carpenter E.F. Leto S.M. Dwane L. Sassi F. Lightfoot H. Barthorpe S. van der Meer D. Yang W. Beck A. Mironenko T. Hall C. Hall J. Mali I. Richardson L. Tolley C. Morris J. Thomas F. Lleshi E. Aben N. Benes C.H. Bertotti A. Trusolino L. Wessels L. Garnett M.J. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022 603 7899 166 173 10.1038/s41586‑022‑04437‑2 35197630
    [Google Scholar]
  108. Sun W. Sanderson P.E. Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today 2016 21 7 1189 1195 10.1016/j.drudis.2016.05.015 27240777
    [Google Scholar]
  109. Li J. Yang B. Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell. Dev. Biol. Anim. 2023 59 1 19 30 10.1007/s11626‑023‑00749‑3 36790693
    [Google Scholar]
  110. Wei Q. Ren Y. Zheng X. Yang S. Lu T. Ji H. Hua H. Shan K. Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered 2022 13 5 13919 13928 10.1080/21655979.2022.2074616 35719058
    [Google Scholar]
  111. Yin Y. Li Q. Zhang Y. Ginsenoside Rg3 regulates sensitization effect of superoxide dismutase on thyroid cancer photodynamic therapy via antioxidant response element signaling pathway. Materials Express 2023 13 9 1555 1562 10.1166/mex.2023.2491
    [Google Scholar]
  112. Ding M. Chen H. Wang T. Wu L. Shao K. Han L. Kong X. Shi J. “Cocktail” anti-tumor strategy through enhanced antigen exposure with photothermal/chemodynamic therapy. Chem. Eng. J. 2023 456 141091 10.1016/j.cej.2022.141091
    [Google Scholar]
  113. Hong K.T. Kang Y.J. Choi J.Y. Yun Y.J. Chang I.M. Shin H.Y. Kang H.J. Lee W.W. Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients. J. Ginseng Res. 2024 48 1 68 76 10.1016/j.jgr.2023.09.001 38223820
    [Google Scholar]
  114. Lu S.L. Wang Y.H. Liu G.F. Wang L. Li Y. Guo Z.Y. Cheng C. Graphene oxide nanoparticle–loaded ginsenoside rg3 improves photodynamic therapy in inhibiting malignant progression and stemness of osteosarcoma. Front. Mol. Biosci. 2021 8 663089 10.3389/fmolb.2021.663089 33968991
    [Google Scholar]
  115. Peng Z. Wu W.W. Yi P. The efficacy of ginsenoside Rg3 combined with first-line chemotherapy in the treatment of advanced non-small cell lung cancer in China: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol. 2021 11 630825 10.3389/fphar.2020.630825 33815097
    [Google Scholar]
  116. Xia D. Wang S. Wu K. Li N. Fan W. Ginsenosides and tumors: A Comprehensive and visualized analysis of research hotspots and antitumor mechanisms. J. Cancer 2024 15 3 671 684 10.7150/jca.88783 38213735
    [Google Scholar]
  117. Wu Q. Wang Q. Fu J. Ren R. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: A review of the mechanisms. Food Funct. 2019 10 5 2330 2339 10.1039/C8FO02375A 31049523
    [Google Scholar]
  118. Jiang R. Fang Z. Zhang H. Xu J. Zhu J. Chen K. Wang W. Jiang X. Wang X. Ginsenosides: Changing the basic hallmarks of cancer cells to achieve the purpose of treating breast cancer. Chin. Med. 2023 18 1 125 10.1186/s13020‑023‑00822‑9 37749560
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333781240924024342
Loading
/content/journals/cmc/10.2174/0109298673333781240924024342
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: toxicity ; chemotherapy ; Ginsenoside Rg3 ; combinatorial therapy ; sensitivity ; ginseng
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test