Skip to content
2000
image of RNA Modification and Digestive Tract Tumors: A Review

Abstract

Gastrointestinal tumors, including colorectal and liver cancer, are among the most prevalent and lethal solid tumors. These malignancies are characterized by worsening prognoses and increasing incidence rates. Traditional therapeutic approaches often prove ineffective. Recent advancements in high-throughput sequencing and sophisticated RNA modification detection technologies have uncovered numerous RNA chemical alterations significantly associated with the pathogenesis of various diseases, notably cancer. These discoveries have opened new avenues for therapeutic intervention. This article delves into epigenetic modifications, with a particular emphasis on RNA alterations such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), 1-methyladenosine (m1A), 7-methylguanosine (m7G), and N4-acetylcysteine (ac4C). It examines the functions and mechanisms of action of regulatory entities known as “Writers,” “Readers,” and “Erasers” to these modifications. Additionally, it outlines various methodologies for detecting these RNA modifications. Conventional techniques include radioactive isotope incorporation, two-dimensional thin-layer chromatography (2D-TLC), mass spectrometry, and immunological detection methods. Specialized methods such as bisulfite sequencing and reverse transcription stops are also discussed. Furthermore, the article underscores the significance of these modifications in the development, progression, and therapeutic targeting of gastrointestinal tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancers. This exploration provides foundational insights for enhancing diagnostic accuracy, treatment efficacy, and prognostic assessment in gastrointestinal oncology.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673350007241031025153
2025-01-08
2025-05-29
Loading full text...

Full text loading...

References

  1. BouliasK. GreerE.L. Biological roles of adenine methylation in RNA.Nat. Rev. Genet.202324314316010.1038/s41576‑022‑00534‑036261710
    [Google Scholar]
  2. WangX. ZhaoB.S. RoundtreeI.A. LuZ. HanD. MaH. WengX. ChenK. ShiH. HeC. N6-methyladenosine modulates messenger rna translation efficiency.Cell201516161388139910.1016/j.cell.2015.05.01426046440
    [Google Scholar]
  3. MeyerK.D. PatilD.P. ZhouJ. ZinovievA. SkabkinM.A. ElementoO. PestovaT.V. QianS.B. JaffreyS.R. 5′ UTR m6A promotes cap-independent translation.Cell20151634999101010.1016/j.cell.2015.10.01226593424
    [Google Scholar]
  4. LiJ. ChenK. DongX. XuY. SunQ. WangH. ChenZ. LiuC. LiuR. YangZ. MeiX. ZhangR. ChangL. TianZ. ChenJ. LiangK. HeC. LuoM. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation.Cell Prolif.2022551e1315710.1111/cpr.1315734821414
    [Google Scholar]
  5. HuangC.S. ZhuY.Q. XuQ.C. ChenS. HuangY. ZhaoG. NiX. LiuB. ZhaoW. YinX.Y. YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation.Clin. Transl. Med.2022126e84810.1002/ctm2.84835696608
    [Google Scholar]
  6. HouG. ZhaoX. LiL. YangQ. LiuX. HuangC. LuR. ChenR. WangY. JiangB. YuJ. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A- modified mRNAs.Nucleic Acids Res.20214952859287710.1093/nar/gkab06533577677
    [Google Scholar]
  7. ChaiR.C. ChangY.Z. ChangX. PangB. AnS.Y. ZhangK.N. ChangY.H. JiangT. WangY.Z. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m6A modification to activate NF-κB and promote the malignant progression of glioma.J. Hematol. Oncol.202114110910.1186/s13045‑021‑01124‑z34246306
    [Google Scholar]
  8. SchwartzT.B. A view from out there.JAMA1989262192730273110.1001/jama.1989.034301901140422810607
    [Google Scholar]
  9. XiaoW. AdhikariS. DahalU. ChenY.S. HaoY.J. SunB.F. SunH.Y. LiA. PingX.L. LaiW.Y. WangX. MaH.L. HuangC.M. YangY. HuangN. JiangG.B. WangH.L. ZhouQ. WangX.J. ZhaoY.L. YangY.G. Nuclear m6A Reader YTHDC1 Regulates mRNA Splicing.Mol. Cell201661450751910.1016/j.molcel.2016.01.01226876937
    [Google Scholar]
  10. LiQ. NiY. ZhangL. JiangR. XuJ. YangH. HuY. QiuJ. PuL. TangJ. WangX. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation.Signal Transduct. Target. Ther.2021617610.1038/s41392‑020‑00453‑833619246
    [Google Scholar]
  11. NeuH.C. ChinN.X. NeuN.M. In vitro activity and beta-lactamase stability of a new penem, CGP 31608.Antimicrob. Agents Chemother.198731455856910.1128/AAC.31.4.5583496845
    [Google Scholar]
  12. SaballusM.K. LakeK.D. WagerG.P. Immunizing the pregnant woman. Risks versus benefitsPostgrad. Med.1987818103113, 11310.1080/00325481.1987.116998623588455
    [Google Scholar]
  13. HuL. YuY. ShenY. HuangH. LinD. WangK. YuY. LiK. CaoY. WangQ. SunX. QiuZ. WeiD. ShenB. ChenJ. FultonD. JiY. WangJ. ChenF. Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages.Redox Biol.20236110263810.1016/j.redox.2023.10263836801705
    [Google Scholar]
  14. ChangG. ShiL. YeY. ShiH. ZengL. TiwaryS. HuseJ.T. HuoL. MaL. MaY. ZhangS. ZhuJ. XieV. LiP. HanL. HeC. HuangS. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis.Cancer Cell2020386857871.e710.1016/j.ccell.2020.10.00433125861
    [Google Scholar]
  15. ShiH. WangX. LuZ. ZhaoB.S. MaH. HsuP.J. LiuC. HeC. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA.Cell Res.201727331532810.1038/cr.2017.1528106072
    [Google Scholar]
  16. HuB. GaoJ. ShiJ. WenP. GuoW. ZhangS. m6A reader YTHDF3 triggers the progression of hepatocellular carcinoma through the YTHDF3/m6A-EGFR/STAT3 axis and EMT.Mol. Carcinog.202362101599161410.1002/mc.2360237449789
    [Google Scholar]
  17. XuY. HeX. WangS. SunB. JiaR. ChaiP. LiF. YangY. GeS. JiaR. YangY.G. FanX. The m6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation.Oncogene20224191281129710.1038/s41388‑021‑02146‑035110680
    [Google Scholar]
  18. WangQ. GuoX. LiL. GaoZ. SuX. JiM. LiuJ. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification.Cell Death Dis.2020111091110.1038/s41419‑020‑03071‑y33099572
    [Google Scholar]
  19. SunY. DongD. XiaY. HaoL. WangW. ZhaoC. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance.Cell Death Dis.202213323010.1038/s41419‑022‑04672‑535279688
    [Google Scholar]
  20. LiX. ZhangK. HuY. LuoN. YTHDF2 regulates cell growth and cycle by facilitating KDM1A mRNA stability.Am. J. Pathol.2023193444245510.1016/j.ajpath.2022.12.01036681189
    [Google Scholar]
  21. CaiY. YuR. ZhangZ. LiD. YiB. FengZ. XuQ. Mettl3/Ythdf2 regulate macrophage inflammation and ROS generation by controlling Pyk2 mRNA stability.Immunol. Lett.2023264647310.1016/j.imlet.2023.11.00437952687
    [Google Scholar]
  22. LinY. JinX. NieQ. ChenM. GuoW. ChenL. LiY. ChenX. ZhangW. ChenH. JiangM. XiaoH. ZhangJ. FuF. WangC. YTHDF3 facilitates triple-negative breast cancer progression and metastasis by stabilizing ZEB1 mRNA in an m6A-dependent manner.Ann. Transl. Med.20221028310.21037/atm‑21‑685735282088
    [Google Scholar]
  23. MapperleyC. van de LagemaatL.N. LawsonH. TavosanisA. ParisJ. CamposJ. WotherspoonD. DurkoJ. SarapuuA. ChoeJ. IvanovaI. KrauseD.S. von KriegsheimA. MuchC. MorganM. GregoryR.I. MeadA.J. O’CarrollD. KrancK.R. The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function.J. Exp. Med.20212183e2020082910.1084/jem.2020082933156926
    [Google Scholar]
  24. DixitD. PragerB.C. GimpleR.C. PohH.X. WangY. WuQ. QiuZ. KidwellR.L. KimL.J.Y. XieQ. Vitting-SeerupK. BhargavaS. DongZ. JiangL. ZhuZ. HamerlikP. JaffreyS.R. ZhaoJ.C. WangX. RichJ.N. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells.Cancer Discov.202111248049910.1158/2159‑8290.CD‑20‑033133023892
    [Google Scholar]
  25. ChenY. FanB. YasenA. ZhuJ. WangM. ShenX. YTHDF3 is involved in the diapause process of bivoltine Bombyx mori strains by regulating the expression of Cyp307a1 and Cyp18a1 genes in the ecdysone synthesis pathway.Biomolecules2022128112710.3390/biom1208112736009021
    [Google Scholar]
  26. ZhengG. DahlJ.A. NiuY. FedorcsakP. HuangC.M. LiC.J. VågbøC.B. ShiY. WangW.L. SongS.H. LuZ. BosmansR.P.G. DaiQ. HaoY.J. YangX. ZhaoW.M. TongW.M. WangX.J. BogdanF. FuruK. FuY. JiaG. ZhaoX. LiuJ. KrokanH.E. KlunglandA. YangY.G. HeC. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility.Mol. Cell2013491182910.1016/j.molcel.2012.10.01523177736
    [Google Scholar]
  27. LiuN. DaiQ. ZhengG. HeC. ParisienM. PanT. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions.Nature2015518754056056410.1038/nature1423425719671
    [Google Scholar]
  28. ZhouK.I. ShiH. LyuR. WylderA.C. MatuszekŻ. PanJ.N. HeC. ParisienM. PanT. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG.Mol. Cell20197617081.e910.1016/j.molcel.2019.07.00531445886
    [Google Scholar]
  29. CienikováZ. DambergerF.F. HallJ. AllainF.H.T. MarisC. Structural and mechanistic insights into poly(uridine) tract recognition by the hnRNP C RNA recognition motif.J. Am. Chem. Soc.201413641145361454410.1021/ja507690d25216038
    [Google Scholar]
  30. KönigJ. ZarnackK. RotG. CurkT. KayikciM. ZupanB. TurnerD.J. LuscombeN.M. UleJ. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution.Nat. Struct. Mol. Biol.201017790991510.1038/nsmb.183820601959
    [Google Scholar]
  31. WuY. LiA. ChenC. FangZ. ChenL. ZhengX. Biological function and research progress of N 6-methyladenosine binding protein heterogeneous nuclear ribonucleoprotein A2B1 in human cancers.Front. Oncol.202313122916810.3389/fonc.2023.122916837546413
    [Google Scholar]
  32. ZhouH. SunQ. FengM. GaoZ. JiaS. CaoL. YuX. GaoS. WuH. LiK. Regulatory mechanisms and therapeutic implications of insulin-like growth factor 2 mRNA-binding proteins, the emerging crucial m6A regulators of tumors.Theranostics202313124247426510.7150/thno.8652837554271
    [Google Scholar]
  33. ZaccaraS. RiesR.J. JaffreyS.R. Reading, writing and erasing mRNA methylation.Nat. Rev. Mol. Cell Biol.2019201060862410.1038/s41580‑019‑0168‑531520073
    [Google Scholar]
  34. ShiQ. ChuQ. ZengY. YuanX. WangJ. ZhangY. XueC. LiL. Non-coding RNA methylation modifications in hepatocellular carcinoma: Interactions and potential implications.Cell Commun. Signal.202321135910.1186/s12964‑023‑01357‑038111040
    [Google Scholar]
  35. ZhangL. DuanH.C. PaduchM. HuJ. ZhangC. MuY. LinH. HeC. KossiakoffA.A. JiaG. ZhangL. The molecular basis of human ALKBH3 mediated RNA N1-methyladenosine (m1 A) demethylation.Angew. Chem. Int. Ed.2024637e20231390010.1002/anie.20231390038158383
    [Google Scholar]
  36. DominissiniD. NachtergaeleS. Moshitch-MoshkovitzS. PeerE. KolN. Ben-HaimM.S. DaiQ. Di SegniA. Salmon-DivonM. ClarkW.C. ZhengG. PanT. SolomonO. EyalE. HershkovitzV. HanD. DoréL.C. AmariglioN. RechaviG. HeC. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA.Nature2016530759144144610.1038/nature1699826863196
    [Google Scholar]
  37. LiJ. ZhangH. WangH. N1-methyladenosine modification in cancer biology: Current status and future perspectives.Comput. Struct. Biotechnol. J.2022206578658510.1016/j.csbj.2022.11.04536467585
    [Google Scholar]
  38. QiZ. ZhangC. JianH. HouM. LouY. KangY. WangW. LvY. ShangS. WangC. LiX. FengS. ZhouH. N1-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction.Cell Death Discov.20239115910.1038/s41420‑023‑01458‑237173310
    [Google Scholar]
  39. SafraM. Sas-ChenA. NirR. WinklerR. NachshonA. Bar-YaacovD. ErlacherM. RossmanithW. Stern-GinossarN. SchwartzS. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution.Nature2017551767925125510.1038/nature2445629072297
    [Google Scholar]
  40. WangB. NiuL. WangZ. ZhaoZ. RNA m1A methyltransferase TRMT6 predicts poorer prognosis and promotes malignant behavior in glioma.Front. Mol. Biosci.2021869213010.3389/fmolb.2021.69213034631793
    [Google Scholar]
  41. HeH. WangY. ZhangX. LiX. LiuC. YanD. DengH. SunW. YiC. WangJ. Age-related noncanonical TRMT6–TRMT61A signaling impairs hematopoietic stem cells.Nat. Aging20244221323010.1038/s43587‑023‑00556‑138233630
    [Google Scholar]
  42. KuangW. JinH. YangF. ChenX. LiuJ. LiT. ChangY. LiuM. XuZ. HuoC. YanX. YangY. LiuW. ShuQ. XieS. ZhouT. ALKBH3-dependent m1A demethylation of Aurora A mRNA inhibits ciliogenesis.Cell Discov.2022812510.1038/s41421‑022‑00385‑335277482
    [Google Scholar]
  43. WooH.H. ChambersS.K. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells.Biochim. Biophys. Acta. Gene Regul. Mech.201918621354610.1016/j.bbagrm.2018.10.00830342176
    [Google Scholar]
  44. LiuY. ZhangS. GaoX. RuY. GuX. HuX. Research progress of N1-methyladenosine RNA modification in cancer.Cell Commun. Signal.20242217910.1186/s12964‑023‑01401‑z38291517
    [Google Scholar]
  45. FagreC. GilbertW. Beyond reader proteins: RNA binding proteins and RNA modifications in conversation to regulate gene expression.Wiley Interdiscip. Rev. RNA2024152e183410.1002/wrna.183438444048
    [Google Scholar]
  46. SeoK.W. KleinerR.E. YTHDF2 recognition of N1-methyladenosine (m1 A)-modified rna is associated with transcript destabilization.ACS Chem. Biol.202015113213910.1021/acschembio.9b0065531815430
    [Google Scholar]
  47. ZhengQ. GanH. YangF. YaoY. HaoF. HongL. JinL. Cytoplasmic m1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m1A-methylated IGF1R.Cell Discov.2020611210.1038/s41421‑020‑0144‑432194978
    [Google Scholar]
  48. TangQ. LiL. WangY. WuP. HouX. OuyangJ. FanC. LiZ. WangF. GuoC. ZhouM. LiaoQ. WangH. XiangB. JiangW. LiG. ZengZ. XiongW. RNA modifications in cancer.Br. J. Cancer2023129220422110.1038/s41416‑023‑02275‑137095185
    [Google Scholar]
  49. OerumS. DégutC. BarraudP. TisnéC. m1A post-transcriptional modification in tRNAs.Biomolecules2017712010.3390/biom701002028230814
    [Google Scholar]
  50. ChenY.S. YangW.L. ZhaoY.L. YangY.G. Dynamic transcriptomic m5 C and its regulatory role in RNA processing.Wiley Interdiscip. Rev. RNA2021124e163910.1002/wrna.163933438329
    [Google Scholar]
  51. BohnsackK.E. HöbartnerC. BohnsackM.T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: Mechanisms, cellular functions, and links to disease.Genes (Basel)201910210210.3390/genes1002010230704115
    [Google Scholar]
  52. GuoG. PanK. FangS. YeL. TongX. WangZ. XueX. ZhangH. Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance.Mol. Ther. Nucleic Acids20212657559310.1016/j.omtn.2021.08.02034631286
    [Google Scholar]
  53. GuX. MaX. ChenC. GuanJ. WangJ. WuS. ZhuH. Vital roles of m5C RNA modification in cancer and immune cell biology.Front. Immunol.202314120737110.3389/fimmu.2023.120737137325635
    [Google Scholar]
  54. ZhangX. ZhuW.Y. ShenS.Y. ShenJ.H. ChenX.D. Biological roles of RNA m7G modification and its implications in cancer.Biol. Direct20231815810.1186/s13062‑023‑00414‑537710294
    [Google Scholar]
  55. ZhangY. LeiY. DongY. ChenS. SunS. ZhouF. ZhaoZ. ChenB. WeiL. ChenJ. MengZ. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases.Pharmacol. Ther.202425310857610.1016/j.pharmthera.2023.10857638065232
    [Google Scholar]
  56. LuoJ. CaoJ. ChenC. XieH. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges.Biochem. Pharmacol.202321311562810.1016/j.bcp.2023.11562837247745
    [Google Scholar]
  57. MonganN.P. EmesR.D. ArcherN. Detection and analysis of RNA methylation.F1000 Res.2019855910.12688/f1000research.17956.131069058
    [Google Scholar]
  58. LuL. ZhangX. ZhouY. ShiZ. XieX. ZhangX. GaoL. FuA. LiuC. HeB. XiongX. YinY. WangQ. YiC. LiX. Base-resolution m5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach.Mol. Cell2024841529843000.e810.1016/j.molcel.2024.06.02139002544
    [Google Scholar]
  59. SongH. ZhangJ. LiuB. XuJ. CaiB. YangH. StraubeJ. YuX. MaT. Biological roles of RNA m5C modification and its implications in cancer immunotherapy.Biomark. Res.20221011510.1186/s40364‑022‑00362‑835365216
    [Google Scholar]
  60. EnrothC. PoulsenL.D. IversenS. KirpekarF. AlbrechtsenA. VintherJ. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing.Nucleic Acids Res.20194720e12610.1093/nar/gkz73631504776
    [Google Scholar]
  61. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  62. HanH. YangC. MaJ. ZhangS. ZhengS. LingR. SunK. GuoS. HuangB. LiangY. WangL. ChenS. WangZ. WeiW. HuangY. PengH. JiangY.Z. ChoeJ. LinS. N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis.Nat. Commun.2022131147810.1038/s41467‑022‑29125‑735304469
    [Google Scholar]
  63. HanH. ZhengS. LinS. N7 -methylguanosine (m7 G) tRNA modification: A novel autophagy modulator in cancer.Autophagy202319136036210.1080/15548627.2022.207755135574843
    [Google Scholar]
  64. WangW. ShaoF. YangX. WangJ. ZhuR. YangY. ZhaoG. GuoD. SunY. WangJ. XueQ. GaoS. GaoY. HeJ. LuZ. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding.Nat. Commun.2021121380310.1038/s41467‑021‑23501‑534155197
    [Google Scholar]
  65. ZhaoY. LiY. ZhuR. FengR. CuiH. YuX. HuangF. ZhangR. ChenX. LiL. ChenY. LiuY. WangJ. DuG. LiuZ. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m6A modification.Signal Transduct. Target. Ther.20238122410.1038/s41392‑023‑01428‑137264021
    [Google Scholar]
  66. QiaoZ. LiY. ChengY. LiS. LiuS. SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc.Cell Biosci.202313120310.1186/s13578‑023‑01148‑737932821
    [Google Scholar]
  67. CaoW. LeeH. WuW. ZamanA. McCorkleS. YanM. ChenJ. XingQ. Sinnott-ArmstrongN. XuH. SailaniM.R. TangW. CuiY. liuJ. GuanH. LvP. SunX. SunL. HanP. LouY. ChangJ. WangJ. GaoY. GuoJ. SchenkG. ShainA.H. BiddleF.G. CollissonE. SnyderM. BivonaT.G. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma.Nat. Commun.2020111367510.1038/s41467‑020‑17227‑z32699215
    [Google Scholar]
  68. HanH. YangC. ZhangS. ChengM. GuoS. ZhuY. MaJ. LiangY. WangL. ZhengS. WangZ. ChenD. JiangY.Z. LinS. METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway.Mol. Ther. Nucleic Acids20212633334610.1016/j.omtn.2021.07.00734513313
    [Google Scholar]
  69. GeF. LiZ. HuJ. PuY. ZhaoF. KongL. METTL3/m6A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma.Front. Pharmacol.202213100256510.3389/fphar.2022.100256536386128
    [Google Scholar]
  70. CuiY. ZhangC. MaS. LiZ. WangW. LiY. MaY. FangJ. WangY. CaoW. GuanF. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma.J. Exp. Clin. Cancer Res.202140129410.1186/s13046‑021‑02096‑134544449
    [Google Scholar]
  71. SuJ. WuG. YeY. ZhangJ. ZengL. HuangX. ZhengY. BaiR. ZhuangL. LiM. PanL. DengJ. LiR. DengS. ZhangS. ZuoZ. LiuZ. LinJ. LinD. ZhengJ. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization.Oncogene202140395814582810.1038/s41388‑021‑01978‑034345012
    [Google Scholar]
  72. WeiW. ZhangS. HanH. WangX. ZhengS. WangZ. YangC. WangL. MaJ. GuoS. WangJ. LiuL. ChoeJ. LinS. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer.Cell Rep.202342711281010.1016/j.celrep.2023.11281037463108
    [Google Scholar]
  73. HuY. GongC. LiZ. LiuJ. ChenY. HuangY. LuoQ. WangS. HouY. YangS. XiaoY. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification.Mol. Cancer20222113410.1186/s12943‑022‑01522‑y35114989
    [Google Scholar]
  74. XieR. LiuL. LuX. HeC. YaoH. LiG. N6-methyladenosine modification of OIP5-AS1 promotes glycolysis, tumorigenesis, and metastasis of gastric cancer by inhibiting Trim21-mediated hnRNPA1 ubiquitination and degradation.Gastric Cancer2714971202410.1007/s10120‑023‑01437‑737897508
    [Google Scholar]
  75. JiR. WuC. YaoJ. XuJ. LinJ. GuH. FuM. ZhangX. LiY. ZhangX. IGF2BP2-meidated m6A modification of CSF2 reprograms MSC to promote gastric cancer progression.Cell Death Dis.2023141069310.1038/s41419‑023‑06163‑737865637
    [Google Scholar]
  76. LiuD. XiaA.D. WuL.P. LiS. ZhangK. ChenD. IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway.Cell. Signal.20229411031310.1016/j.cellsig.2022.11031335306138
    [Google Scholar]
  77. PiJ. WangW. JiM. WangX. WeiX. JinJ. LiuT. QiangJ. QiZ. LiF. LiuY. MaY. SiY. HuoY. GaoY. ChenY. DongL. SuR. ChenJ. RaoS. YiP. YuS. WangF. YuJ. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7.Cancer Res.202181102651266510.1158/0008‑5472.CAN‑20‑006632788173
    [Google Scholar]
  78. WangQ. ChenC. DingQ. ZhaoY. WangZ. ChenJ. JiangZ. ZhangY. XuG. ZhangJ. ZhouJ. SunB. ZouX. WangS. METTL3-mediated m6 A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance.Gut20206971193120510.1136/gutjnl‑2019‑31963931582403
    [Google Scholar]
  79. JiaY. YanQ. ZhengY. LiL. ZhangB. ChangZ. WangZ. TangH. QinY. GuanX.Y. Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer.J. Exp. Clin. Cancer Res.202241128710.1186/s13046‑022‑02449‑436171622
    [Google Scholar]
  80. YueB. SongC. YangL. CuiR. ChengX. ZhangZ. ZhaoG. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer.Mol. Cancer201918114210.1186/s12943‑019‑1065‑431607270
    [Google Scholar]
  81. LiuY. ZhaiE. ChenJ. QianY. ZhaoR. MaY. LiuJ. HuangZ. CaiS. ChenJ. m6A-mediated regulation of PBX1-GCH1 axis promotes gastric cancer proliferation and metastasis by elevating tetrahydrobiopterin levels.Cancer Commun. (Lond.)202242432734410.1002/cac2.1228135261206
    [Google Scholar]
  82. FanH.N. ChenZ.Y. ChenX.Y. ChenM. YiY.C. ZhuJ.S. ZhangJ. METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis.Mol. Cancer20222115110.1186/s12943‑022‑01521‑z35164771
    [Google Scholar]
  83. NieK. ZhengZ. LiJ. ChangY. DengZ. HuangW. LiX. AGAP2-AS1 promotes the assembly of m6A methyltransferases and activation of the IL6/STAT3 pathway by binding with WTAP in the carcinogenesis of gastric cancer.FASEB J.20233712e2330210.1096/fj.202301249R37983949
    [Google Scholar]
  84. ZhouY. WangQ. DengH. XuB. ZhouY. LiuJ. LiuY. ShiY. ZhengX. JiangJ. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics.Cell Death Dis.20221317210.1038/s41419‑022‑04503‑735064107
    [Google Scholar]
  85. LiuK. XuP. LvJ. GeH. YanZ. HuangS. LiB. XuH. YangL. XuZ. ZhangD. Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification.Oncogene202342241980199310.1038/s41388‑023‑02707‑537130916
    [Google Scholar]
  86. LiY. XiaY. JiangT. ChenZ. ShenY. LinJ. XieL. GuC. LvJ. LuC. ZhangD. XuH. YangL. XuZ. WangL. Long noncoding RNA DIAPH2-AS1 promotes neural invasion of gastric cancer via stabilizing NSUN2 to enhance the m5C modification of NTN1.Cell Death Dis.202314426010.1038/s41419‑023‑05781‑537037818
    [Google Scholar]
  87. YanJ. LiuJ. HuangZ. HuangW. LvJ. FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells.Hum. Cell20213461755176410.1007/s13577‑021‑00583‑334324140
    [Google Scholar]
  88. DengM. ZhangL. ZhengW. ChenJ. DuN. LiM. ChenW. HuangY. ZengN. SongY. ChenY. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression.J. Exp. Clin. Cancer Res.2023421910.1186/s13046‑022‑02586‑w36609449
    [Google Scholar]
  89. YangQ. LeiX. HeJ. PengY. ZhangY. LingR. WuC. ZhangG. ZhengB. ChenX. ZouB. FuZ. ZhaoL. LiuH. HuY. YuJ. LiF. YeG. LiG. N4-acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1 α positive feedback loop.Adv. Sci. (Weinh.)20231023230089810.1002/advs.20230089837328448
    [Google Scholar]
  90. LiuD. YangX. WangX. Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2.Cell. Signal.202411611101410.1016/j.cellsig.2023.11101438110168
    [Google Scholar]
  91. ChenH. GaoS. LiuW. WongC.C. WuJ. WuJ. LiuD. GouH. KangW. ZhaiJ. LiC. SuH. WangS. SoaresF. HanJ. HeH.H. YuJ. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target.Gastroenterology2021160412841300.e1610.1053/j.gastro.2020.11.01333217448
    [Google Scholar]
  92. LiuX. HeH. ZhangF. HuX. BiF. LiK. YuH. ZhaoY. TengX. LiJ. WangL. ZhangY. WuQ. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling.Cell Death Dis.202213548310.1038/s41419‑022‑04950‑235595748
    [Google Scholar]
  93. HouP. MengS. LiM. LinT. ChuS. LiZ. ZhengJ. GuY. BaiJ. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification.J. Exp. Clin. Cancer Res.20214015210.1186/s13046‑021‑01857‑233526059
    [Google Scholar]
  94. NiW. YaoS. ZhouY. LiuY. HuangP. ZhouA. LiuJ. CheL. LiJ. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3.Mol. Cancer201918114310.1186/s12943‑019‑1079‑y31619268
    [Google Scholar]
  95. ChenX. XuM. XuX. ZengK. LiuX. PanB. LiC. SunL. QinJ. XuT. HeB. PanY. SunH. WangS. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer.Mol. Cancer202019110610.1186/s12943‑020‑01220‑732552762
    [Google Scholar]
  96. WangS. GaoS. ZengY. ZhuL. MoY. WongC.C. BaoY. SuP. ZhaiJ. WangL. SoaresF. XuX. ChenH. HezavehK. CiX. HeA. McGahaT. O’BrienC. RottapelR. KangW. WuJ. ZhengG. CaiZ. YuJ. HeH.H. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer.Gastroenterology202216241183119610.1053/j.gastro.2021.12.26934968454
    [Google Scholar]
  97. ZhaiJ. ChenH. WongC.C. PengY. GouH. ZhangJ. PanY. ChenD. LinY. WangS. KangW. ToK.F. ChenZ. NieY. HeH.H. SungJ.J.Y. YuJ. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy.Gastroenterology2023165244546210.1053/j.gastro.2023.04.03237169182
    [Google Scholar]
  98. ChenW. WangH. MiS. ShaoL. XuZ. XueM. ALKBH1-mediated m1 A demethylation of METTL3 mRNA promotes the metastasis of colorectal cancer by downregulating SMAD7 expression.Mol. Oncol.202317234436410.1002/1878‑0261.1336636550779
    [Google Scholar]
  99. XueM. MiS. ZhangZ. WangH. ChenW. WeiW. LouG. MFAP2, upregulated by m1A methylation, promotes colorectal cancer invasiveness via CLK3.Cancer Med.20231278403841410.1002/cam4.556136583532
    [Google Scholar]
  100. HouC. LiuJ. LiuJ. YaoD. LiangF. QinC. MaZ. 5-methylcytosine-mediated upregulation of circular RNA 0102913 augments malignant properties of colorectal cancer cells through a microRNA-571/Rac family small GTPase 2 axis.Gene202490114816210.1016/j.gene.2024.14816238224924
    [Google Scholar]
  101. ZouS. HuangY. YangZ. ZhangJ. MengM. ZhangY. FengJ. SunR. LiW. WangW. LópezJ.G.F. FangL. NSUN2 promotes colorectal cancer progression by enhancing SKIL mRNA stabilization.Clin. Transl. Med.2024143e162110.1002/ctm2.162138468490
    [Google Scholar]
  102. MiS. CaiS. XueM. WuW. HIF-1α/METTL1/m7G axis is involved in CRC response to hypoxia.Biochem. Biophys. Res. Commun.202469314938510.1016/j.bbrc.2023.14938538118310
    [Google Scholar]
  103. JinC. WangT. ZhangD. YangP. ZhangC. PengW. JinK. WangL. ZhouJ. PengC. TanY. JiJ. ChenZ. SunQ. YangS. TangJ. FengY. SunY. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA.J. Exp. Clin. Cancer Res.202241134510.1186/s13046‑022‑02551‑736522719
    [Google Scholar]
  104. ZhengX. WangQ. ZhouY. ZhangD. GengY. HuW. WuC. ShiY. JiangJ. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA.Cancer Commun. (Lond.)202242121347136610.1002/cac2.1236336209353
    [Google Scholar]
  105. ShiQ. XueC. YuanX. HeY. YuZ. Gene signatures and prognostic values of m1A-related regulatory genes in hepatocellular carcinoma.Sci. Rep.20201011508310.1038/s41598‑020‑72178‑132934298
    [Google Scholar]
  106. ChenM. WeiL. LawC.T. TsangF.H.C. ShenJ. ChengC.L.H. TsangL.H. HoD.W.H. ChiuD.K.C. LeeJ.M.F. WongC.C.L. NgI.O.L. WongC.M. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2.Hepatology20186762254227010.1002/hep.2968329171881
    [Google Scholar]
  107. DuA. LiS. ZhouY. DisomaC. LiaoY. ZhangY. ChenZ. YangQ. LiuP. LiuS. DongZ. RazzaqA. TaoS. ChenX. LiuY. XuL. ZhangQ. LiS. PengJ. XiaZ. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma.Mol. Cancer202221110910.1186/s12943‑022‑01575‑z35524319
    [Google Scholar]
  108. LiuL. GuM. MaJ. WangY. LiM. WangH. YinX. LiX. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma.Mol. Cancer202221114910.1186/s12943‑022‑01619‑435858900
    [Google Scholar]
  109. ChenY. PengC. ChenJ. ChenD. YangB. HeB. HuW. ZhangY. LiuH. DaiL. XieH. ZhouL. WuJ. ZhengS. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1.Mol. Cancer201918112710.1186/s12943‑019‑1053‑831438961
    [Google Scholar]
  110. ChenY. ZhaoY. ChenJ. PengC. ZhangY. TongR. ChengQ. YangB. FengX. LuY. XieH. ZhouL. WuJ. ZhengS. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1.Mol. Cancer202019112310.1186/s12943‑020‑01239‑w32772918
    [Google Scholar]
  111. YouY. WenD. ZengL. LuJ. XiaoX. ChenY. SongH. LiuZ. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression.Int. J. Biol. Sci.202218135001501810.7150/ijbs.7014935982895
    [Google Scholar]
  112. HouJ. ZhangH. LiuJ. ZhaoZ. WangJ. LuZ. HuB. ZhouJ. ZhaoZ. FengM. ZhangH. ShenB. HuangX. SunB. HeC. XiaQ. XiaQ. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma.Mol. Cancer201918116310.1186/s12943‑019‑1082‑331735169
    [Google Scholar]
  113. NulaliJ. ZhangK. LongM. WanY. LiuY. ZhangQ. YangL. HaoJ. YangL. SongH. ALYREF-mediated RNA 5-methylcytosine modification promotes hepatocellular carcinoma progression via stabilizing EGFR mRNA and pSTAT3 activation.Int. J. Biol. Sci.202420133134610.7150/ijbs.8231638164181
    [Google Scholar]
  114. SunZ. XueS. ZhangM. XuH. HuX. ChenS. LiuY. GuoM. CuiH. Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma.Oncogene202039456906691910.1038/s41388‑020‑01475‑w32978516
    [Google Scholar]
  115. SongD. AnK. ZhaiW. FengL. XuY. SunR. WangY. YangY.G. KanQ. TianX. NSUN2-mediated mRNA m5 C modification regulates the progression of hepatocellular carcinoma.Genomics Proteomics Bioinformatics202321482383310.1016/j.gpb.2022.09.00736183976
    [Google Scholar]
  116. ZhengQ. YuX. ZhangQ. HeY. GuoW. Genetic characteristics and prognostic implications of m1A regulators in pancreatic cancer.Biosci. Rep.2021414BSR2021033710.1042/BSR2021033733779693
    [Google Scholar]
  117. YangR. LiangX. WangH. GuoM. ShenH. ShiY. LiuQ. SunY. YangL. ZhanM. The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation.EBioMedicine20216310319510.1016/j.ebiom.2020.10319533418496
    [Google Scholar]
  118. YuX. ZhangQ. GaoF. ZhangM. ZhengQ. HeY. GuoW. Predictive value of m5C regulatory gene expression in pancreatic adenocarcinoma.Sci. Rep.20211111752910.1038/s41598‑021‑96470‑w34471186
    [Google Scholar]
  119. ZongG. WangX. GuoX. ZhaoQ. WangC. ShenS. XiaoW. YangQ. JiangW. ShenJ. WanR. NAT10-mediated AXL mRNA N4-acetylcytidine modification promotes pancreatic carcinoma progression.Exp. Cell Res.2023428211362010.1016/j.yexcr.2023.11362037156457
    [Google Scholar]
  120. GuoX. LiK. JiangW. HuY. XiaoW. HuangY. FengY. PanQ. WanR. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner.Mol. Cancer20201919110.1186/s12943‑020‑01158‑w32429928
    [Google Scholar]
  121. ZhangY. LiuX. WangY. LaiS. WangZ. YangY. LiuW. WangH. TangB. The m6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway.Mol. Cancer202221117410.1186/s12943‑022‑01647‑036056355
    [Google Scholar]
  122. WangM. LiuJ. ZhaoY. HeR. XuX. GuoX. LiX. XuS. MiaoJ. GuoJ. ZhangH. GongJ. ZhuF. TianR. ShiC. PengF. FengY. YuS. XieY. JiangJ. LiM. WeiW. HeC. QinR. Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer.Mol. Cancer202019113010.1186/s12943‑020‑01249‑832843065
    [Google Scholar]
  123. ChenJ. ZhangH. XiuC. GaoC. WuS. BaiJ. ShenQ. YinT. METTL3 promotes pancreatic cancer proliferation and stemness by increasing stability of ID2 mRNA in a m6A-dependent manner.Cancer Lett.202356521622210.1016/j.canlet.2023.21622237196908
    [Google Scholar]
  124. HouY. ZhangQ. PangW. HouL. LiangY. HanX. LuoX. WangP. ZhangX. LiL. MengX. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect.Cell Death Differ.202128113105312410.1038/s41418‑021‑00804‑034021267
    [Google Scholar]
  125. CaoP. WuY. SunD. ZhangW. QiuJ. TangZ. XueX. QinL. IGF2BP2 promotes pancreatic carcinoma progression by enhancing the stability of B3GNT6 mRNA via m6A methylation.Cancer Med.20231244405442010.1002/cam4.509635908253
    [Google Scholar]
  126. LiuX. FengM. HaoX. GaoZ. WuZ. WangY. DuL. WangC. m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop.Oncogene202342252047206010.1038/s41388‑023‑02704‑837149664
    [Google Scholar]
  127. PengS. XiaoW. JuD. SunB. HouN. LiuQ. WangY. ZhaoH. GaoC. ZhangS. CaoR. LiP. HuangH. MaY. WangY. LaiW. MaZ. ZhangW. HuangS. WangH. ZhangZ. ZhaoL. CaiT. ZhaoY.L. WangF. NieY. ZhiG. YangY.G. ZhangE.E. HuangN. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1.Sci. Transl. Med.201911488eaau711610.1126/scitranslmed.aau711630996080
    [Google Scholar]
  128. ZhuangH. YuB. TaoD. XuX. XuY. WangJ. JiaoY. WangL. The role of m6A methylation in therapy resistance in cancer.Mol. Cancer20232219110.1186/s12943‑023‑01782‑237264402
    [Google Scholar]
  129. HuangM. LongJ. YaoZ. ZhaoY. ZhaoY. LiaoJ. LeiK. XiaoH. DaiZ. PengS. LinS. XuL. KuangM. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma.Cancer Res.20238318910210.1158/0008‑5472.CAN‑22‑096336102722
    [Google Scholar]
  130. WangY. WangJ. LiX. XiongX. WangJ. ZhouZ. ZhuX. GuY. DominissiniD. HeL. TianY. YiC. FanZ. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism.Nat. Commun.2021121631410.1038/s41467‑021‑26718‑634728628
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673350007241031025153
Loading
/content/journals/cmc/10.2174/0109298673350007241031025153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test