Skip to content
2000
image of An Updated Review Deciphering Apigenin Nanostructures as Promising Therapeutic Efficiency in Human Carcinomas

Abstract

Apigenin (APG) is being investigated for its potential in treating different forms of cancer. It can regulate many cellular processes, such as cell proliferation, apoptosis, cell cycle arrest, invasion, metastasis, and autophagy, controlling multiple cellular signaling pathways. In addition, this chemical demonstrates a significant preference for cancer cells over healthy cells. This is a crucial factor when compared to other treatments for cancer. However, apigenin is distinguished by its limited ability to dissolve in water, sluggish absorption when taken orally, rapid metabolism, and strong affinity for binding to plasma proteins. Therefore, oral dosing generally results in low plasma concentrations. Nanotechnology is being developed to address the constraints of pharmacokinetics and physicochemical properties. It offers a precise and regulated method for delivering drugs, enhancing oral absorption, improving their solubility in water, and reducing side effects. The mechanism of action of apigenin has persuaded the scientific community to acknowledge it as an anticancer drug, hence supporting the utility of apigenin nano formulations as a contemporary therapeutic tool. Nonetheless, diverse nanocarriers for apigenin have effectively addressed inadequate water solubility and non-specificity towards target tissues. This review summarizes diverse biological aspects of apigenin and elaborates on the issues associated with using apigenin nanocarriers to enhance its efficacy in human carcinomas. Subsequent tests showed its capacity to decrease tumor size, prompting further experimentation with human subjects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673339611241031031946
2024-12-16
2025-01-18
Loading full text...

Full text loading...

References

  1. Singh A. Singh J. Parween G. Khator R. Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit. Rev. Food Sci. Nutr. 2024 2024 1 37 10.1080/10408398.2024.2390550 39154213
    [Google Scholar]
  2. Nunes Cunha I.V. Campos A.M. Caon T. Nano-based apigenin delivery systems for cancer applications. J. Drug Deliv. Sci. Technol. 2024 92 105334 10.1016/j.jddst.2024.105334
    [Google Scholar]
  3. Yoon J.H. Kim M.Y. Cho J.Y. Apigenin: A therapeutic agent for treatment of skin inflammatory diseases and cancer. Int. J. Mol. Sci. 2023 24 2 1498 10.3390/ijms24021498 36675015
    [Google Scholar]
  4. Mohammad Nabavi S. Habtemariam S. Daglia M. Fazel Nabavi S. Apigenin and breast cancers: From chemistry to medicine. Anticancer Agents Med Chem 2015 15 6 728 35
    [Google Scholar]
  5. Ganai S.A. Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed. Pharmacother. 2017 85 47 56 10.1016/j.biopha.2016.11.130 27930986
    [Google Scholar]
  6. Pandey P. Khan F. Upadhyay T.K. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chem. Biol. Drug Des. 2023 101 6 1446 1458 10.1111/cbdd.14206 36746671
    [Google Scholar]
  7. Sardarabadi H. Darvishi M.H. Zohrab F. Javadi H. Nanophytomedicine: A promising practical approach in phytotherapy. Phytother. Res. 2024 38 7 3607 3644 10.1002/ptr.8230 38725270
    [Google Scholar]
  8. Salehi B. Venditti A. Sharifi-Rad M. Kręgiel D. Sharifi-Rad J. Durazzo A. Lucarini M. Santini A. Souto E.B. Novellino E. Antolak H. Azzini E. Setzer W.N. Martins N. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  9. Tang D. Chen K. Huang L. Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017 13 3 323 330 10.1080/17425255.2017.1251903 27766890
    [Google Scholar]
  10. Hassani S. Maghsoudi H. Fattahi F. Malekinejad F. Hajmalek N. Sheikhnia F. Kheradmand F. Fahimirad S. Ghorbanpour M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int. J. Biol. Macromol. 2023 241 124508 10.1016/j.ijbiomac.2023.124508 37085076
    [Google Scholar]
  11. Khan H. Ullah H. Martorell M. Valdes S.E. Belwal T. Tejada S. Sureda A. Kamal M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol. 2021 69 200 211 10.1016/j.semcancer.2019.07.023 31374244
    [Google Scholar]
  12. Aiello P. Consalvi S. Poce G. Raguzzini A. Toti E. Palmery M. Biava M. Bernardi M. Kamal M.A. Perry G. Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin. Cancer Biol. 2021 69 150 165 10.1016/j.semcancer.2019.08.029 31454670
    [Google Scholar]
  13. Sindhu R.K. Verma R. Salgotra T. Rahman M.H. Shah M. Akter R. Murad W. Mubin S. Bibi P. Qusti S. Alshammari E.M. Batiha G.E.S. Tomczyk M. Al-kuraishy H.M. Impacting the remedial potential of nano delivery-based flavonoids for breast cancer treatment. Molecules 2021 26 17 5163 10.3390/molecules26175163 34500597
    [Google Scholar]
  14. Kumar G. Jain P. Virmani T. Sharma A. Akhtar M.S. Aldosari S.A. Khan M.F. Duarte S.O.D. Fonte P. Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin. Ther. Deliv. 2024 15 9 717 735 10.1080/20415990.2024.2386928 39259258
    [Google Scholar]
  15. Patel P. Garala K. Singh S. Prajapati B.G. Chittasupho C. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals 2024 17 3 329 10.3390/ph17030329 38543115
    [Google Scholar]
  16. Zhou Y. Yu Y. Lv H. Zhang H. Liang T. Zhou G. Huang L. Tian Y. Liang W. Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem. Toxicol. 2022 168 113385 10.1016/j.fct.2022.113385 36007853
    [Google Scholar]
  17. Mehta N. Mehta K. Saini R. Current status of commercial anticancer phytochemicals and their derivatives: Natural anticancer bioactive compounds. Handbook of Research on Advanced Phytochemicals and Plant-based Drug Discovery. IGI Global 2022 141 162 10.4018/978‑1‑6684‑5129‑8.ch008
    [Google Scholar]
  18. Adel M. Zahmatkeshan M. Akbarzadeh A. Rabiee N. Ahmadi S. Keyhanvar P. Rezayat S.M. Seifalian A.M. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnol. Rep. 2022 34 e00730 10.1016/j.btre.2022.e00730 35686000
    [Google Scholar]
  19. George A. Shah P.A. Shrivastav P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019 561 244 264 10.1016/j.ijpharm.2019.03.011 30851391
    [Google Scholar]
  20. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  21. Masarudin M.J. Cutts S.M. Evison B.J. Phillips D.R. Pigram P.J. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol. Sci. Appl. 2015 8 67 80 10.2147/NSA.S91785 26715842
    [Google Scholar]
  22. Ilinskaya A.N. Dobrovolskaia M.A. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future. Toxicol. Appl. Pharmacol. 2016 299 70 77 10.1016/j.taap.2016.01.005 26773813
    [Google Scholar]
  23. Bukhari S.N.A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics 2022 14 4 866 10.3390/pharmaceutics14040866 35456698
    [Google Scholar]
  24. Fobian S.F. Cheng Z. ten Hagen T.L.M. Smart lipid-based nanosystems for therapeutic immune induction against cancers: Perspectives and outlooks. Pharmaceutics 2021 14 1 26 10.3390/pharmaceutics14010026 35056922
    [Google Scholar]
  25. Tripathi S. Gupta U. Ujjwal R.R. Yadav A.K. Nano-lipidic formulation and therapeutic strategies for Alzheimer’s disease via intranasal route. J. Microencapsul. 2021 38 7-8 572 593 10.1080/02652048.2021.1986585 34591731
    [Google Scholar]
  26. Ranjbar S. Emamjomeh A. Sharifi F. Zarepour A. Aghaabbasi K. Dehshahri A. Sepahvand A.M. Zarrabi A. Beyzaei H. Zahedi M.M. Mohammadinejad R. Lipid-based delivery systems for flavonoids and flavonolignans: Liposomes, nanoemulsions, and solid lipid nanoparticles. Pharmaceutics 2023 15 7 1944 10.3390/pharmaceutics15071944 37514130
    [Google Scholar]
  27. Carvalho B.G. Vit F.F. Carvalho H.F. Han S.W. de la Torre L.G. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J. Mater. Chem. B Mater. Biol. Med. 2021 9 5 1208 1237 10.1039/D0TB02168G 33393582
    [Google Scholar]
  28. Liu J. Zhang R. Xu Z.P. Nanoparticle‐based nanomedicines to promote cancer immunotherapy: recent advances and future directions. Small 2019 15 32 1900262 10.1002/smll.201900262 30908864
    [Google Scholar]
  29. Zverev Y.F. Rykunova A.Y. Modern nanocarriers as a factor in increasing the bioavailability and pharmacological activity of flavonoids. Appl. Biochem. Microbiol. 2022 58 9 1002 1020 10.1134/S0003683822090149 36540406
    [Google Scholar]
  30. García-Pinel B. Porras-Alcalá C. Ortega-Rodríguez A. Sarabia F. Prados J. Melguizo C. López-Romero J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials 2019 9 4 638 10.3390/nano9040638 31010180
    [Google Scholar]
  31. Waheed A. Zameer S. Sultana N. Ali A. Aqil M. Sultana Y. Iqbal Z. Engineering of QbD driven and ultrasonically shaped lyotropic liquid crystalline nanoparticles for Apigenin in the management of skin cancer. Eur. J. Pharm. Biopharm. 2022 180 269 280 10.1016/j.ejpb.2022.10.015 36272654
    [Google Scholar]
  32. Walve J.R. Bakliwal S.R. Rane B.R. Pawar S.P. Transfersomes: Surrogated carrier for transdermal drug delivery system. IJABPT 2011 2 1 204 213
    [Google Scholar]
  33. Kumar B. Pandey M. Pottoo F.H. Fayaz F. Sharma A. Sahoo P.K. Liposomes: Novel drug delivery approach for targeting Parkinson’s disease. Curr. Pharm. Des. 2020 26 37 4721 4737 10.2174/1381612826666200128145124 32003666
    [Google Scholar]
  34. Has C. Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020 30 4 336 365 10.1080/08982104.2019.1668010 31558079
    [Google Scholar]
  35. Veselov V.V. Nosyrev A.E. Jicsinszky L. Alyautdin R.N. Cravotto G. Targeted delivery methods for anticancer drugs. Cancers 2022 14 3 622 10.3390/cancers14030622 35158888
    [Google Scholar]
  36. Allemailem K.S. Almatroudi A. Alharbi H.O.A. AlSuhaymi N. Alsugoor M.H. Aldakheel F.M. Khan A.A. Rahmani A.H. Apigenin: A bioflavonoid with a promising role in disease prevention and treatment. Biomedicines 2024 12 6 1353 10.3390/biomedicines12061353 38927560
    [Google Scholar]
  37. Zhang Y. Wei J. Xu J. Leong W.S. Liu G. Ji T. Cheng Z. Wang J. Lang J. Zhao Y. You L. Zhao X. Wei T. Anderson G.J. Qi S. Kong J. Nie G. Li S. Suppression of tumor energy supply by liposomal nanoparticle-mediated inhibition of aerobic glycolysis. ACS Appl. Mater. Interfaces 2018 10 3 2347 2353 10.1021/acsami.7b16685 29286239
    [Google Scholar]
  38. Dabholkar N. Waghule T. Krishna Rapalli V. Gorantla S. Alexander A. Narayan Saha R. Singhvi G. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J. Mol. Liq. 2021 339 117145 10.1016/j.molliq.2021.117145
    [Google Scholar]
  39. Sen K. Banerjee S. Mandal M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces 2019 180 9 22 10.1016/j.colsurfb.2019.04.035 31015105
    [Google Scholar]
  40. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  41. Sebaaly C. Greige-Gerges H. Charcosset C. Lipid Membrane Models for Biomembrane Properties’ Investigation. Current Trends and Future Developments on (bio-) membranes. Elsevier 2019 311 340 10.1016/B978‑0‑12‑813606‑5.00011‑7
    [Google Scholar]
  42. Olusanya T. Haj Ahmad R. Ibegbu D. Smith J. Elkordy A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018 23 4 907 10.3390/molecules23040907 29662019
    [Google Scholar]
  43. Jangdey M.S. Gupta A. Saraf S. Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: In vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2017 45 7 1452 1462 10.1080/21691401.2016.1247850 28050929
    [Google Scholar]
  44. Jin X. Yang Q. Zhang Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: Implications for effective treatment of lung cancer. Int. J. Nanomedicine 2017 12 5109 5118 10.2147/IJN.S140096 28761344
    [Google Scholar]
  45. Banerjee K. Banerjee S. Mandal M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J. Colloid Interface Sci. 2017 491 98 110 10.1016/j.jcis.2016.12.025 28012918
    [Google Scholar]
  46. Rajendran I. Dhandapani H. Anantanarayanan R. Rajaram R. Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. RSC Advances 2015 5 63 51055 51066 10.1039/C5RA04303D
    [Google Scholar]
  47. Mabrouk Zayed M.M. Sahyon H.A. Hanafy N.A.N. El-Kemary M.A. The effect of encapsulated apigenin nanoparticles on HePG-2 cells through regulation of P53. Pharmaceutics 2022 14 6 1160 10.3390/pharmaceutics14061160 35745733
    [Google Scholar]
  48. Amini S. M. Mohammadi E. Askarian‐Amiri S. Azizi Y. Shakeri‐Zadeh A. Neshastehriz A. Investigating the in vitro photothermal effect of green synthesized apigenin‐coated gold nanoparticle on colorectal carcinoma. IET nanobiotechnology 2021 15 3 329 337 10.1049/nbt2.12016
    [Google Scholar]
  49. Mahmoudi S. Ghorbani M. Sabzichi M. Ramezani F. Hamishehkar H. Samadi N. Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells. J. Drug Deliv. Sci. Technol. 2019 49 268 276 10.1016/j.jddst.2018.11.013
    [Google Scholar]
  50. Kazmi I. Al-Abbasi F.A. Imam S.S. Afzal M. Nadeem M.S. Altayb H.N. Alshehri S. Formulation and evaluation of apigenin-loaded hybrid nanoparticles. Pharmaceutics 2022 14 4 783 10.3390/pharmaceutics14040783 35456617
    [Google Scholar]
  51. Al-Otaibi A.M. Al-Gebaly A.S. Almeer R. Albasher G. Al-Qahtani W.S. Abdel Moneim A.E. Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. Environ. Sci. Pollut. Res. Int. 2022 29 31 47539 47548 10.1007/s11356‑022‑19166‑2 35182347
    [Google Scholar]
  52. Bhattacharya S. Mondal L. Mukherjee B. Dutta L. Ehsan I. Debnath M.C. Gaonkar R.H. Pal M.M. Majumdar S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine 2018 14 6 1905 1917 10.1016/j.nano.2018.05.011 29802937
    [Google Scholar]
  53. Alfaleh M.A. Hashem A.M. Abujamel T.S. Alhakamy N.A. Kalam M.A. Riadi Y. Md S. Apigenin loaded lipoid–PLGA–TPGS nanoparticles for colon cancer therapy: Characterization, sustained release, cytotoxicity, and apoptosis pathways. Polymers 2022 14 17 3577 10.3390/polym14173577 36080654
    [Google Scholar]
  54. Mujtaba M.A. Alotaibi N.M. Alshehri S.M. Yusuf M. Anwer M.K. Rahman M.A. Parveen A. Novel therapeutic approach in PEGylated chitosan nanoparticles of Apigenin for the treatment of cancer via oral nanomedicine. Polymers 2022 14 20 4344 10.3390/polym14204344 36297920
    [Google Scholar]
  55. Jiang J. Mao Q. Li H. Lou J. Apigenin stabilized gold nanoparticles increased radiation therapy efficiency in lung cancer cells. Int. J. Clin. Exp. Med. 2017 10 9 13298 13305
    [Google Scholar]
  56. Dutta D. Chakraborty A. Mukherjee B. Gupta S. Aptamer-conjugated apigenin nanoparticles to target colorectal carcinoma: A promising safe alternative of colorectal cancer chemotherapy. ACS Appl. Bio Mater. 2018 1 5 1538 1556 10.1021/acsabm.8b00441 34996205
    [Google Scholar]
  57. Ngernyuang N. Wongwattanakul M. Charusirisawad W. Shao R. Limpaiboon T. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 2022 8 12 e12028 10.1016/j.heliyon.2022.e12028 36506385
    [Google Scholar]
  58. Sen R. Ganguly S. Ganguly S. Debnath M.C. Chakraborty S. Mukherjee B. Chattopadhyay D. Apigenin-loaded PLGA-DMSA nanoparticles: A novel strategy to treat melanoma lung metastasis. Mol. Pharm. 2021 18 5 1920 1938 10.1021/acs.molpharmaceut.0c00977 33780261
    [Google Scholar]
  59. Das S. Das J. Samadder A. Paul A. Khuda-Bukhsh A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: Mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol. 2013 62 670 680 10.1016/j.fct.2013.09.037 24120900
    [Google Scholar]
  60. Hashemi M. Samadian N. Effects of apigenin and apigenin-loaded nanogel on induction of apoptosis in human chronic myeloid leukemia cells. Galen Med. J. 2018 7 e1008 10.31661/gmj.v7i0.1008 34466424
    [Google Scholar]
  61. Kanwal R. Shukla S. Exner A.A. Tzakos A.G. Gupta S. Abstract 260: Apigenin nanoparticle suppresses sphere formation in CD133+/ALDH1high prostate cancer stem cells through downregulation of stem cell markers. Cancer Res. 2018 78 13_Supplement 260 260 10.1158/1538‑7445.AM2018‑260
    [Google Scholar]
  62. Wu W. Zu Y. Wang L. Wang L. Wang H. Li Y. Wu M. Zhao X. Fu Y. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique. Drug Deliv. 2017 24 1 1713 1720 10.1080/10717544.2017.1399302 29115900
    [Google Scholar]
  63. Yang B. Mao Y. Zhang Y. Hao Y. Guo M. Li B. Peng H. HA-Coated PLGA Nanoparticles Loaded with Apigenin for Colon Cancer with High Expression of CD44. Molecules 2023 28 22 7565 10.3390/molecules28227565 38005286
    [Google Scholar]
  64. Hormozi-Moghaddam Z. Neshasteh-Riz A. Amini S.M. Aliakbari S. Hejazi P. Cheraghi S. Taheri S.M. Aghaei A. Investigating the effect of low-intensity ultrasound radiation in the presence of Apigenin-coated gold nanoparticles on the expression of mRNAs affecting the apoptosis of MCF7 breast cancer cells. Food Biosci. 2024 57 103486 10.1016/j.fbio.2023.103486
    [Google Scholar]
  65. Ganguly S. Dewanjee S. Sen R. Chattopadhyay D. Ganguly S. Gaonkar R. Debnath M.C. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf. B Biointerfaces 2021 204 111778 10.1016/j.colsurfb.2021.111778 33915380
    [Google Scholar]
  66. Patra A. Satpathy S. Naik P.K. Kazi M. Delwar M.H. Folate receptor-targeted nanodelivery of apigenin in breast cancer: Formulation development, characterization and in vitro evaluation. J. Biomed. Nanotechnol. 2024 20 4 655 666 10.1166/jbn.2024.3803
    [Google Scholar]
  67. Hong S. Dia V.P. Baek S.J. Zhong Q. Nanoencapsulation of apigenin with whey protein isolate: Physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability. Lebensm. Wiss. Technol. 2022 154 112751 10.1016/j.lwt.2021.112751 34840350
    [Google Scholar]
  68. Das S. Das J. Samadder A. Paul A. Khuda-Bukhsh A.R. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol. Lett. 2013 223 2 124 138 10.1016/j.toxlet.2013.09.012 24070738
    [Google Scholar]
  69. Liu R. Rong G. Liu Y. Huang W. He D. Lu R. Delivery of apigenin-loaded magnetic Fe2O3/Fe3O4@mSiO2 nanocomposites to A549 cells and their antitumor mechanism. Mater. Sci. Eng. C 2021 120 111719 10.1016/j.msec.2020.111719 33545870
    [Google Scholar]
  70. Qu W. Ji P. Han X. Wang X. Li Y. Liu J. Highly biocompatible apigenin-loaded silk fibroin nanospheres: Preparation, characterization, and anti-breast-cancer activity. Polymers 2022 15 1 23 10.3390/polym15010023 36616371
    [Google Scholar]
  71. Pal M.K. Jaiswar S.P. Dwivedi A. Goyal S. Dwivedi V.N. Pathak A.K. Ray R.S. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): A ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anticancer Agents Med Chem 2017 17 12 1721 1732
    [Google Scholar]
  72. Chen R. Jiang Z. Cheng Y. Ye J. Li S. Xu Y. Ye Z. Shi Y. Ding J. Zhao Y. Zheng H. Wu F. Lin G. Xie C. Yao Q. Kou L. Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer. Int. J. Pharm. 2024 655 124016 10.1016/j.ijpharm.2024.124016 38503397
    [Google Scholar]
  73. Thanki K. Gangwal R.P. Sangamwar A.T. Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release 2013 170 1 15 40 10.1016/j.jconrel.2013.04.020 23648832
    [Google Scholar]
  74. Tsakiris N. Papavasileiou M. Bozzato E. Lopes A. Vigneron A.M. Préat V. Combinational drug-loaded lipid nanocapsules for the treatment of cancer. Int. J. Pharm. 2019 569 118588 10.1016/j.ijpharm.2019.118588 31377406
    [Google Scholar]
  75. Gong H. Peng R. Liu Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev. 2013 65 15 1951 1963 10.1016/j.addr.2013.10.002 24184130
    [Google Scholar]
  76. Gupta M. Sharma V. Chauhan N.S. Chapter 16 - Nanotechnology for oral delivery of anticancer drugs: An insight potential. Nanostructures for Oral Medicine- Micro and Nano Technologies Elsevier 2017 467 510 10.1016/B978‑0‑323‑47720‑8.00017‑1
    [Google Scholar]
  77. Ding B. Chen H. Wang C. Zhai Y. Zhai G. Preparation and in vitro evaluation of apigenin loaded lipid nanocapsules. J. Nanosci. Nanotechnol. 2013 13 10 6546 6552 10.1166/jnn.2013.7763 24245113
    [Google Scholar]
  78. Mushtaq A. Mohd Wani S. Malik A.R. Gull A. Ramniwas S. Ahmad Nayik G. Ercisli S. Alina Marc R. Ullah R. Bari A. Recent insights into Nanoemulsions: Their preparation, properties and applications. Food Chem. X 2023 18 100684 10.1016/j.fochx.2023.100684 37131847
    [Google Scholar]
  79. Chou T.H. Nugroho D.S. Chang J.Y. Cheng Y.S. Liang C.H. Deng M.J. Encapsulation and characterization of nanoemulsions based on an anti-oxidative polymeric amphiphile for topical apigenin delivery. Polymers 2021 13 7 1016 10.3390/polym13071016 33806031
    [Google Scholar]
  80. Jangdey M.S. Gupta A. Saraf S. Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma. Drug Deliv. 2017 24 1 1026 1036 10.1080/10717544.2017.1344333 28687053
    [Google Scholar]
  81. Jaiswal P. Gidwani B. Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 27 40 10.3109/21691401.2014.909822 24813223
    [Google Scholar]
  82. Agrawal Y.K. Patel V.R. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2011 2 2 81 87 10.4103/2231‑4040.82950 22171298
    [Google Scholar]
  83. Hanafy N. El-Kemary M. Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018 10 7 238 10.3390/cancers10070238 30037052
    [Google Scholar]
  84. Wei G. Wang Y. Huang X. Yang G. Zhao J. Zhou S. Enhancing the accumulation of polymer micelles by selectively dilating tumor blood vessels with NO for highly effective cancer treatment. Adv. Healthc. Mater. 2018 7 24 1801094 10.1002/adhm.201801094 30565900
    [Google Scholar]
  85. Kuche K. Bhargavi N. Dora C.P. Jain S. Drug-phospholipid complex—a go through strategy for enhanced oral bioavailability. AAPS PharmSciTech 2019 20 2 43 10.1208/s12249‑018‑1252‑4 30610392
    [Google Scholar]
  86. Munyendo W.L.L. Zhang Z. Abbad S. Waddad A.Y. Lv H. Baraza L.D. Zhou J. Micelles of TPGS modified apigenin phospholipid complex for oral administration: preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol. 2013 9 12 2034 2047 10.1166/jbn.2013.1704 24266259
    [Google Scholar]
  87. Qian J. Zhang M. Manners I. Winnik M.A. Nanofiber micelles from the self-assembly of block copolymers. Trends Biotechnol. 2010 28 2 84 92 10.1016/j.tibtech.2009.11.003 19962775
    [Google Scholar]
  88. Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J. Drug Target. 2014 22 7 576 583 10.3109/1061186X.2014.934688 25012065
    [Google Scholar]
  89. Torchilin V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2006 24 1 1 16 10.1007/s11095‑006‑9132‑0 17109211
    [Google Scholar]
  90. Zhai Y. Guo S. Liu C. Yang C. Dou J. Li L. Zhai G. Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf. A Physicochem. Eng. Asp. 2013 429 24 30 10.1016/j.colsurfa.2013.03.051
    [Google Scholar]
  91. Li T. Shi S. Goel S. Shen X. Xie X. Chen Z. Zhang H. Li S. Qin X. Yang H. Wu C. Liu Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 2019 89 1 13 10.1016/j.actbio.2019.02.031 30797106
    [Google Scholar]
  92. Kankala R.K. Han Y.H. Na J. Lee C.H. Sun Z. Wang S.B. Kimura T. Ok Y.S. Yamauchi Y. Chen A.Z. Wu K.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020 32 23 1907035 10.1002/adma.201907035 32319133
    [Google Scholar]
  93. Huang Y. Zhao X. Zu Y. Wang L. Deng Y. Wu M. Wang H. Enhanced solubility and bioavailability of apigenin via preparation of solid dispersions of mesoporous silica nanoparticles. Iran. J. Pharm. Res. 2019 18 1 168 182 31089353
    [Google Scholar]
  94. Sztandera K. Gorzkiewicz M. Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol. Pharm. 2019 16 1 1 23 10.1021/acs.molpharmaceut.8b00810 30452861
    [Google Scholar]
  95. Beik J. Khateri M. Khosravi Z. Kamrava S.K. Kooranifar S. Ghaznavi H. Shakeri-Zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 2019 387 299 324 10.1016/j.ccr.2019.02.025
    [Google Scholar]
  96. Lim Z.Z.J. Li J.E.J. Ng C.T. Yung L.Y.L. Bay B.H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 2011 32 8 983 990 10.1038/aps.2011.82 21743485
    [Google Scholar]
  97. Jarai B.M. Kolewe E.L. Stillman Z.S. Raman N. Fromen C.A. Polymeric Nanoparticles. Nanoparticles for Biomedical Applications. Elsevier 2020 303 324 10.1016/B978‑0‑12‑816662‑8.00018‑7
    [Google Scholar]
  98. Gagliardi A. Giuliano E. Venkateswararao E. Fresta M. Bulotta S. Awasthi V. Cosco D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 2021 12 601626 10.3389/fphar.2021.601626 33613290
    [Google Scholar]
  99. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  100. Park J. Ye M. Park K. Biodegradable polymers for microencapsulation of drugs. Molecules 2005 10 1 146 161 10.3390/10010146 18007283
    [Google Scholar]
  101. Yu L. Zheng S. Chen Y. Luo J. Assessing the interactions between p53 gene and three types of flavonoid therapeutic compound in ovarian cancer cell line. Int. J. Clin. Exp. Med. 2017 10 3 4764 4771
    [Google Scholar]
  102. Byun J. Recent progress and opportunities for nucleic acid aptamers. Life (Basel) 2021 11 3 193 10.3390/life11030193 33671039
    [Google Scholar]
  103. Selim A.A. Abdelmonem I.M. Amin M.A. Essa B.M. Biogenic harmony of biocompatible silver nanoplatforms using chamomile extract and apigenin-7-glucoside for solid tumor therapy. J. Radioanal. Nucl. Chem. 2024 333 2 705 715 10.1007/s10967‑023‑09323‑3
    [Google Scholar]
  104. Swidan S. Khedr A. Farrag A. Nasr A. Nafie M. Abdel-Kader M. Abdelhameed R. Comparative estimation of the cytotoxic activity of different parts of Cynara scolymus L.: Crude Extracts versus green synthesized silver nanoparticles with apoptotic investigation. Pharmaceutics 2022 14 10 2185
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673339611241031031946
Loading
/content/journals/cmc/10.2174/0109298673339611241031031946
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanoparticle ; drug delivery ; Apigenin ; pharmacology ; cancer ; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test