Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Apigenin (APG) is being investigated for its potential in treating different forms of cancer. It can regulate many cellular processes, such as cell proliferation, apoptosis, cell cycle arrest, invasion, metastasis, and autophagy, controlling multiple cellular signaling pathways. In addition, this chemical demonstrates a significant preference for cancer cells over healthy cells. This is a crucial factor when compared to other treatments for cancer. However, apigenin is distinguished by its limited ability to dissolve in water, sluggish absorption when taken orally, rapid metabolism, and strong affinity for binding to plasma proteins. Therefore, oral dosing generally results in low plasma concentrations. Nanotechnology is being developed to address the constraints of pharmacokinetics and physicochemical properties. It offers a precise and regulated method for delivering drugs, enhancing oral absorption, improving their solubility in water, and reducing side effects. The mechanism of action of apigenin has persuaded the scientific community to acknowledge it as an anticancer drug, hence supporting the utility of apigenin nano formulations as a contemporary therapeutic tool. Nonetheless, diverse nanocarriers for apigenin have effectively addressed inadequate water solubility and non-specificity towards target tissues. This review summarizes diverse biological aspects of apigenin and elaborates on the issues associated with using apigenin nanocarriers to enhance its efficacy in human carcinomas. Subsequent tests showed its capacity to decrease tumor size, prompting further experimentation with human subjects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673339611241031031946
2024-12-16
2025-05-26
Loading full text...

Full text loading...

References

  1. SinghA. SinghJ. ParweenG. KhatorR. MongaV. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits.Crit. Rev. Food Sci. Nutr.2024202413710.1080/10408398.2024.239055039154213
    [Google Scholar]
  2. Nunes CunhaI.V. CamposA.M. CaonT. Nano-based apigenin delivery systems for cancer applications.J. Drug Deliv. Sci. Technol.20249210533410.1016/j.jddst.2024.105334
    [Google Scholar]
  3. YoonJ.H. KimM.Y. ChoJ.Y. Apigenin: A therapeutic agent for treatment of skin inflammatory diseases and cancer.Int. J. Mol. Sci.2023242149810.3390/ijms2402149836675015
    [Google Scholar]
  4. NabaviM.S. HabtemariamS. DagliaM. NabaviF.S. Apigenin and breast cancers: From chemistry to medicine.Anticancer Agents Med. Chem.201515672835
    [Google Scholar]
  5. GanaiS.A. Plant-derived flavone Apigenin: The small- molecule with promising activity against therapeutically resistant prostate cancer.Biomed. Pharmacother.201785475610.1016/j.biopha.2016.11.13027930986
    [Google Scholar]
  6. PandeyP. KhanF. UpadhyayT.K. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers.Chem. Biol. Drug Des.202310161446145810.1111/cbdd.1420636746671
    [Google Scholar]
  7. SardarabadiH. DarvishiM.H. ZohrabF. JavadiH. Nanophytomedicine: A promising practical approach in phytotherapy.Phytother. Res.20243873607364410.1002/ptr.823038725270
    [Google Scholar]
  8. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE.B. NovellinoE. AntolakH. AzziniE. SetzerW.N. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms2006130530875872
    [Google Scholar]
  9. TangD. ChenK. HuangL. LiJ. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone.Expert Opin. Drug Metab. Toxicol.201713332333010.1080/17425255.2017.125190327766890
    [Google Scholar]
  10. HassaniS. MaghsoudiH. FattahiF. MalekinejadF. HajmalekN. SheikhniaF. KheradmandF. FahimiradS. GhorbanpourM. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer.Int. J. Biol. Macromol.202324112450810.1016/j.ijbiomac.2023.12450837085076
    [Google Scholar]
  11. KhanH. UllahH. MartorellM. ValdesS.E. BelwalT. TejadaS. SuredaA. KamalM.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects.Semin. Cancer Biol.20216920021110.1016/j.semcancer.2019.07.02331374244
    [Google Scholar]
  12. AielloP. ConsalviS. PoceG. RaguzziniA. TotiE. PalmeryM. BiavaM. BernardiM. KamalM.A. PerryG. PelusoI. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy.Semin. Cancer Biol.20216915016510.1016/j.semcancer.2019.08.02931454670
    [Google Scholar]
  13. SindhuR.K. VermaR. SalgotraT. RahmanM.H. ShahM. AkterR. MuradW. MubinS. BibiP. QustiS. AlshammariE.M. BatihaG.E.S. TomczykM. Al-kuraishyH.M. Impacting the remedial potential of nano delivery-based flavonoids for breast cancer treatment.Molecules20212617516310.3390/molecules2617516334500597
    [Google Scholar]
  14. KumarG. JainP. VirmaniT. SharmaA. AkhtarM.S. AldosariS.A. KhanM.F. DuarteS.O.D. FonteP. Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin.Ther. Deliv.202415971773510.1080/20415990.2024.238692839259258
    [Google Scholar]
  15. PatelP. GaralaK. SinghS. PrajapatiB.G. ChittasuphoC. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy.Pharmaceuticals202417332910.3390/ph1703032938543115
    [Google Scholar]
  16. ZhouY. YuY. LvH. ZhangH. LiangT. ZhouG. HuangL. TianY. LiangW. Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent.Food Chem. Toxicol.202216811338510.1016/j.fct.2022.11338536007853
    [Google Scholar]
  17. MehtaN. MehtaK. SainiR. Current status of commercial anticancer phytochemicals and their derivatives: Natural anticancer bioactive compounds.Handbook of Research on Advanced Phytochemicals and Plant-based Drug Discovery.IGI Global202214116210.4018/978‑1‑6684‑5129‑8.ch008
    [Google Scholar]
  18. AdelM. ZahmatkeshanM. AkbarzadehA. RabieeN. AhmadiS. KeyhanvarP. RezayatS.M. SeifalianA.M. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles.Biotechnol. Rep.202234e0073010.1016/j.btre.2022.e0073035686000
    [Google Scholar]
  19. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  20. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent Mater.2022561593161510.1007/s42247‑021‑00335‑x35005431
    [Google Scholar]
  21. MasarudinM.J. CuttsS.M. EvisonB.J. PhillipsD.R. PigramP.J. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of (14C)-doxorubicin.Nanotechnol. Sci. Appl.20158678010.2147/NSA.S9178526715842
    [Google Scholar]
  22. IlinskayaA.N. DobrovolskaiaM.A. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future.Toxicol. Appl. Pharmacol.2016299707710.1016/j.taap.2016.01.00526773813
    [Google Scholar]
  23. BukhariS.N.A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials.Pharmaceutics202214486610.3390/pharmaceutics1404086635456698
    [Google Scholar]
  24. FobianS.F. ChengZ. ten HagenT.L.M. Smart lipid-based nanosystems for therapeutic immune induction against cancers: Perspectives and outlooks.Pharmaceutics20211412610.3390/pharmaceutics1401002635056922
    [Google Scholar]
  25. TripathiS. GuptaU. UjjwalR.R. YadavA.K. Nano-lipidic formulation and therapeutic strategies for Alzheimer’s disease via intranasal route.J. Microencapsul.2021387-857259310.1080/02652048.2021.198658534591731
    [Google Scholar]
  26. RanjbarS. EmamjomehA. SharifiF. ZarepourA. AghaabbasiK. DehshahriA. SepahvandA.M. ZarrabiA. BeyzaeiH. ZahediM.M. MohammadinejadR. Lipid-based delivery systems for flavonoids and flavonolignans: Liposomes, nanoemulsions, and solid lipid nanoparticles.Pharmaceutics2023157194410.3390/pharmaceutics1507194437514130
    [Google Scholar]
  27. CarvalhoB.G. VitF.F. CarvalhoH.F. HanS.W. de la TorreL.G. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment.J. Mater. Chem. B Mater. Biol. Med.2021951208123710.1039/D0TB02168G33393582
    [Google Scholar]
  28. LiuJ. ZhangR. XuZ.P. Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions.Small20191532190026210.1002/smll.20190026230908864
    [Google Scholar]
  29. ZverevY.F. RykunovaA.Y. Modern nanocarriers as a factor in increasing the bioavailability and pharmacological activity of flavonoids.Appl. Biochem. Microbiol.20225891002102010.1134/S000368382209014936540406
    [Google Scholar]
  30. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. SarabiaF. PradosJ. MelguizoC. López-RomeroJ.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials20199463810.3390/nano904063831010180
    [Google Scholar]
  31. WaheedA. ZameerS. SultanaN. AliA. AqilM. SultanaY. IqbalZ. Engineering of QbD driven and ultrasonically shaped lyotropic liquid crystalline nanoparticles for Apigenin in the management of skin cancer.Eur. J. Pharm. Biopharm.202218026928010.1016/j.ejpb.2022.10.01536272654
    [Google Scholar]
  32. WalveJ.R. BakliwalS.R. RaneB.R. PawarS.P. Transfersomes: Surrogated carrier for transdermal drug delivery system.IJABPT201121204213
    [Google Scholar]
  33. KumarB. PandeyM. PottooF.H. FayazF. SharmaA. SahooP.K. Liposomes: Novel drug delivery approach for targeting Parkinson’s disease.Curr. Pharm. Des.202026374721473710.2174/138161282666620012814512432003666
    [Google Scholar]
  34. HasC. SuntharP. A comprehensive review on recent preparation techniques of liposomes.J. Liposome Res.202030433636510.1080/08982104.2019.166801031558079
    [Google Scholar]
  35. VeselovV.V. NosyrevA.E. JicsinszkyL. AlyautdinR.N. CravottoG. Targeted delivery methods for anticancer drugs.Cancers202214362210.3390/cancers1403062235158888
    [Google Scholar]
  36. AllemailemK.S. AlmatroudiA. AlharbiH.O.A. AlSuhaymiN. AlsugoorM.H. AldakheelF.M. KhanA.A. RahmaniA.H. Apigenin: A bioflavonoid with a promising role in disease prevention and treatment.Biomedicines2024126135310.3390/biomedicines1206135338927560
    [Google Scholar]
  37. ZhangY. WeiJ. XuJ. LeongW.S. LiuG. JiT. ChengZ. WangJ. LangJ. ZhaoY. YouL. ZhaoX. WeiT. AndersonG.J. QiS. KongJ. NieG. LiS. Suppression of tumor energy supply by liposomal nanoparticle-mediated inhibition of aerobic glycolysis.ACS Appl. Mater. Interfaces20181032347235310.1021/acsami.7b1668529286239
    [Google Scholar]
  38. DabholkarN. WaghuleT. Krishna RapalliV. GorantlaS. AlexanderA. Narayan SahaR. SinghviG. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers.J. Mol. Liq.202133911714510.1016/j.molliq.2021.117145
    [Google Scholar]
  39. SenK. BanerjeeS. MandalM. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer.Colloids Surf. B Biointerfaces201918092210.1016/j.colsurfb.2019.04.03531015105
    [Google Scholar]
  40. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  41. SebaalyC. Greige-GergesH. CharcossetC. Lipid membrane models for biomembrane properties’ investigation.Current Trends and Future Developments on (bio-) membranes.Elsevier201931134010.1016/B978‑0‑12‑813606‑5.00011‑7
    [Google Scholar]
  42. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules2304090729662019
    [Google Scholar]
  43. JangdeyM.S. GuptaA. SarafS. SarafS. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: In vitro evaluation.Artif. Cells Nanomed. Biotechnol.20174571452146210.1080/21691401.2016.124785028050929
    [Google Scholar]
  44. JinX. YangQ. ZhangY. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: Implications for effective treatment of lung cancer.Int. J. Nanomedicine2017125109511810.2147/IJN.S14009628761344
    [Google Scholar]
  45. BanerjeeK. BanerjeeS. MandalM. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions.J. Colloid Interface Sci.20174919811010.1016/j.jcis.2016.12.02528012918
    [Google Scholar]
  46. RajendranI. DhandapaniH. AnantanarayananR. RajaramR. Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells.RSC Advances2015563510555106610.1039/C5RA04303D
    [Google Scholar]
  47. Mabrouk ZayedM.M. SahyonH.A. HanafyN.A.N. El-KemaryM.A. The effect of encapsulated apigenin nanoparticles on HePG-2 cells through regulation of P53.Pharmaceutics2022146116010.3390/pharmaceutics1406116035745733
    [Google Scholar]
  48. AminiS. M. MohammadiE. Askarian-AmiriS. AziziY. Shakeri-ZadehA. NeshastehrizA. Investigating the in vitro photothermal effect of green synthesized apigenin-coated gold nanoparticle on colorectal carcinoma.IET nanobiotechnology202115332933710.1049/nbt2.12016
    [Google Scholar]
  49. MahmoudiS. GhorbaniM. SabzichiM. RamezaniF. HamishehkarH. SamadiN. Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells.J. Drug Deliv. Sci. Technol.20194926827610.1016/j.jddst.2018.11.013
    [Google Scholar]
  50. KazmiI. Al-AbbasiF.A. ImamS.S. AfzalM. NadeemM.S. AltaybH.N. AlshehriS. Formulation and evaluation of apigenin-loaded hybrid nanoparticles.Pharmaceutics202214478310.3390/pharmaceutics1404078335456617
    [Google Scholar]
  51. Al-OtaibiA.M. Al-GebalyA.S. AlmeerR. AlbasherG. Al-QahtaniW.S. Abdel MoneimA.E. Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells.Environ. Sci. Pollut. Res. Int.20222931475394754810.1007/s11356‑022‑19166‑235182347
    [Google Scholar]
  52. BhattacharyaS. MondalL. MukherjeeB. DuttaL. EhsanI. DebnathM.C. GaonkarR.H. PalM.M. MajumdarS. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats.Nanomedicine20181461905191710.1016/j.nano.2018.05.01129802937
    [Google Scholar]
  53. AlfalehM.A. HashemA.M. AbujamelT.S. AlhakamyN.A. KalamM.A. RiadiY. MdS. Apigenin loaded lipoid–PLGA–TPGS nanoparticles for colon cancer therapy: Characterization, sustained release, cytotoxicity, and apoptosis pathways.Polymers20221417357710.3390/polym1417357736080654
    [Google Scholar]
  54. MujtabaM.A. AlotaibiN.M. AlshehriS.M. YusufM. AnwerM.K. RahmanM.A. ParveenA. Novel therapeutic approach in PEGylated chitosan nanoparticles of Apigenin for the treatment of cancer via oral nanomedicine.Polymers20221420434410.3390/polym1420434436297920
    [Google Scholar]
  55. JiangJ. MaoQ. LiH. LouJ. Apigenin stabilized gold nanoparticles increased radiation therapy efficiency in lung cancer cells.Int. J. Clin. Exp. Med.20171091329813305
    [Google Scholar]
  56. DuttaD. ChakrabortyA. MukherjeeB. GuptaS. Aptamer-conjugated apigenin nanoparticles to target colorectal carcinoma: A promising safe alternative of colorectal cancer chemotherapy.ACS Appl. Bio Mater.2018151538155610.1021/acsabm.8b0044134996205
    [Google Scholar]
  57. NgernyuangN. WongwattanakulM. CharusirisawadW. ShaoR. LimpaiboonT. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro.Heliyon2022812e1202810.1016/j.heliyon.2022.e1202836506385
    [Google Scholar]
  58. SenR. GangulyS. GangulyS. DebnathM.C. ChakrabortyS. MukherjeeB. ChattopadhyayD. Apigenin-loaded PLGA-DMSA nanoparticles: A novel strategy to treat melanoma lung metastasis.Mol. Pharm.20211851920193810.1021/acs.molpharmaceut.0c0097733780261
    [Google Scholar]
  59. DasS. DasJ. SamadderA. PaulA. Khuda-BukhshA.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: Mitochondria mediated apoptotic signalling cascades.Food Chem. Toxicol.20136267068010.1016/j.fct.2013.09.03724120900
    [Google Scholar]
  60. HashemiM. SamadianN. Effects of apigenin and apigenin-loaded nanogel on induction of apoptosis in human chronic myeloid leukemia cells.Galen Med. J.20187e100810.31661/gmj.v7i0.100834466424
    [Google Scholar]
  61. KanwalR. ShuklaS. ExnerA.A. TzakosA.G. GuptaS. Abstract 260: Apigenin nanoparticle suppresses sphere formation in CD133+/ALDH1high prostate cancer stem cells through downregulation of stem cell markers.Cancer Res.20187813_Supplement26026010.1158/1538‑7445.AM2018‑260
    [Google Scholar]
  62. WuW. ZuY. WangL. WangL. WangH. LiY. WuM. ZhaoX. FuY. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique.Drug Deliv.20172411713172010.1080/10717544.2017.139930229115900
    [Google Scholar]
  63. YangB. MaoY. ZhangY. HaoY. GuoM. LiB. PengH. HA-coated PLGA nanoparticles loaded with apigenin for colon cancer with high expression of CD44.Molecules20232822756510.3390/molecules2822756538005286
    [Google Scholar]
  64. Hormozi-MoghaddamZ. Neshasteh-RizA. AminiS.M. AliakbariS. HejaziP. CheraghiS. TaheriS.M. AghaeiA. Investigating the effect of low-intensity ultrasound radiation in the presence of Apigenin-coated gold nanoparticles on the expression of mRNAs affecting the apoptosis of MCF7 breast cancer cells.Food Biosci.20245710348610.1016/j.fbio.2023.103486
    [Google Scholar]
  65. GangulyS. DewanjeeS. SenR. ChattopadhyayD. GangulyS. GaonkarR. DebnathM.C. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma.Colloids Surf. B Biointerfaces202120411177810.1016/j.colsurfb.2021.11177833915380
    [Google Scholar]
  66. PatraA. SatpathyS. NaikP.K. KaziM. DelwarM.H. Folate receptor-targeted nanodelivery of apigenin in breast cancer: Formulation development, characterization and in vitro evaluation.J. Biomed. Nanotechnol.202420465566610.1166/jbn.2024.3803
    [Google Scholar]
  67. HongS. DiaV.P. BaekS.J. ZhongQ. Nanoencapsulation of apigenin with whey protein isolate: Physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability.Lebensm. Wiss. Technol.202215411275110.1016/j.lwt.2021.11275134840350
    [Google Scholar]
  68. DasS. DasJ. SamadderA. PaulA. Khuda-BukhshA.R. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro.Toxicol. Lett.2013223212413810.1016/j.toxlet.2013.09.01224070738
    [Google Scholar]
  69. LiuR. RongG. LiuY. HuangW. HeD. LuR. Delivery of apigenin-loaded magnetic Fe2O3/Fe3O4@mSiO2 nanocomposites to A549 cells and their antitumor mechanism.Mater. Sci. Eng. C202112011171910.1016/j.msec.2020.11171933545870
    [Google Scholar]
  70. QuW. JiP. HanX. WangX. LiY. LiuJ. Highly biocompatible apigenin-loaded silk fibroin nanospheres: Preparation, characterization, and anti-breast-cancer activity.Polymers20221512310.3390/polym1501002336616371
    [Google Scholar]
  71. PalM.K. JaiswarS.P. DwivediA. GoyalS. DwivediV.N. PathakA.K. RayR.S. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): A ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anticancer Agents Med. Chem.2017171217211732
    [Google Scholar]
  72. ChenR. JiangZ. ChengY. YeJ. LiS. XuY. YeZ. ShiY. DingJ. ZhaoY. ZhengH. WuF. LinG. XieC. YaoQ. KouL. Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer.Int. J. Pharm.202465512401610.1016/j.ijpharm.2024.12401638503397
    [Google Scholar]
  73. ThankiK. GangwalR.P. SangamwarA.T. JainS. Oral delivery of anticancer drugs: Challenges and opportunities.J. Control. Release20131701154010.1016/j.jconrel.2013.04.02023648832
    [Google Scholar]
  74. TsakirisN. PapavasileiouM. BozzatoE. LopesA. VigneronA.M. PréatV. Combinational drug-loaded lipid nanocapsules for the treatment of cancer.Int. J. Pharm.201956911858810.1016/j.ijpharm.2019.11858831377406
    [Google Scholar]
  75. GongH. PengR. LiuZ. Carbon nanotubes for biomedical imaging: The recent advances.Adv. Drug Deliv. Rev.201365151951196310.1016/j.addr.2013.10.00224184130
    [Google Scholar]
  76. GuptaM. SharmaV. ChauhanN.S. Chapter 16 - Nanotechnology for oral delivery of anticancer drugs: An insight potential. Nanostructures for Oral Medicine- Micro and Nano TechnologiesElsevier201746751010.1016/B978‑0‑323‑47720‑8.00017‑1
    [Google Scholar]
  77. DingB. ChenH. WangC. ZhaiY. ZhaiG. Preparation and in vitro evaluation of apigenin loaded lipid nanocapsules.J. Nanosci. Nanotechnol.201313106546655210.1166/jnn.2013.776324245113
    [Google Scholar]
  78. MushtaqA. Mohd WaniS. MalikA.R. GullA. RamniwasS. Ahmad NayikG. ErcisliS. Alina MarcR. UllahR. BariA. Recent insights into Nanoemulsions: Their preparation, properties and applications.Food Chem. X20231810068410.1016/j.fochx.2023.10068437131847
    [Google Scholar]
  79. ChouT.H. NugrohoD.S. ChangJ.Y. ChengY.S. LiangC.H. DengM.J. Encapsulation and characterization of nanoemulsions based on an anti-oxidative polymeric amphiphile for topical apigenin delivery.Polymers2021137101610.3390/polym1307101633806031
    [Google Scholar]
  80. JangdeyM.S. GuptaA. SarafS. Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma.Drug Deliv.20172411026103610.1080/10717544.2017.134433328687053
    [Google Scholar]
  81. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  82. AgrawalY.K. PatelV.R. Nanosuspension: An approach to enhance solubility of drugs.J. Adv. Pharm. Technol. Res.201122818710.4103/2231‑4040.8295022171298
    [Google Scholar]
  83. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers201810723810.3390/cancers1007023830037052
    [Google Scholar]
  84. WeiG. WangY. HuangX. YangG. ZhaoJ. ZhouS. Enhancing the accumulation of polymer micelles by selectively dilating tumor blood vessels with NO for highly effective cancer treatment.Adv. Healthc. Mater.2018724180109410.1002/adhm.20180109430565900
    [Google Scholar]
  85. KucheK. BhargaviN. DoraC.P. JainS. Drug-phospholipid complex—a go through strategy for enhanced oral bioavailability.AAPS PharmSciTech20192024310.1208/s12249‑018‑1252‑430610392
    [Google Scholar]
  86. MunyendoW.L.L. ZhangZ. AbbadS. WaddadA.Y. LvH. BarazaL.D. ZhouJ. Micelles of TPGS modified apigenin phospholipid complex for oral administration: preparation, in vitro and in vivo evaluation.J. Biomed. Nanotechnol.20139122034204710.1166/jbn.2013.170424266259
    [Google Scholar]
  87. QianJ. ZhangM. MannersI. WinnikM.A. Nanofiber micelles from the self-assembly of block copolymers.Trends Biotechnol.2010282849210.1016/j.tibtech.2009.11.00319962775
    [Google Scholar]
  88. YokoyamaM. Polymeric micelles as drug carriers: their lights and shadows.J. Drug Target.201422757658310.3109/1061186X.2014.93468825012065
    [Google Scholar]
  89. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  90. ZhaiY. GuoS. LiuC. YangC. DouJ. LiL. ZhaiG. Preparation and in vitro evaluation of apigenin-loaded polymeric micelles.Colloids Surf. A Physicochem. Eng. Asp.2013429243010.1016/j.colsurfa.2013.03.051
    [Google Scholar]
  91. LiT. ShiS. GoelS. ShenX. XieX. ChenZ. ZhangH. LiS. QinX. YangH. WuC. LiuY. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer.Acta Biomater.20198911310.1016/j.actbio.2019.02.03130797106
    [Google Scholar]
  92. KankalaR.K. HanY.H. NaJ. LeeC.H. SunZ. WangS.B. KimuraT. OkY.S. YamauchiY. ChenA.Z. WuK.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles.Adv. Mater.20203223190703510.1002/adma.20190703532319133
    [Google Scholar]
  93. HuangY. ZhaoX. ZuY. WangL. DengY. WuM. WangH. Enhanced solubility and bioavailability of apigenin via preparation of solid dispersions of mesoporous silica nanoparticles.Iran. J. Pharm. Res.201918116818231089353
    [Google Scholar]
  94. SztanderaK. GorzkiewiczM. Klajnert-MaculewiczB. Gold nanoparticles in cancer treatment.Mol. Pharm.201916112310.1021/acs.molpharmaceut.8b0081030452861
    [Google Scholar]
  95. BeikJ. KhateriM. KhosraviZ. KamravaS.K. KooranifarS. GhaznaviH. Shakeri-ZadehA. Gold nanoparticles in combinatorial cancer therapy strategies.Coord. Chem. Rev.201938729932410.1016/j.ccr.2019.02.025
    [Google Scholar]
  96. LimZ.Z.J. LiJ.E.J. NgC.T. YungL.Y.L. BayB.H. Gold nanoparticles in cancer therapy.Acta Pharmacol. Sin.201132898399010.1038/aps.2011.8221743485
    [Google Scholar]
  97. JaraiB.M. KoleweE.L. StillmanZ.S. RamanN. FromenC.A. Polymeric Nanoparticles.Nanoparticles for Biomedical Applications.Elsevier202030332410.1016/B978‑0‑12‑816662‑8.00018‑7
    [Google Scholar]
  98. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  99. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  100. ParkJ. YeM. ParkK. Biodegradable polymers for microencapsulation of drugs.Molecules200510114616110.3390/1001014618007283
    [Google Scholar]
  101. YuL. ZhengS. ChenY. LuoJ. Assessing the interactions between p53 gene and three types of flavonoid therapeutic compound in ovarian cancer cell line.Int. J. Clin. Exp. Med.201710347644771
    [Google Scholar]
  102. ByunJ. Recent progress and opportunities for nucleic acid aptamers.Life (Basel)202111319310.3390/life1103019333671039
    [Google Scholar]
  103. SelimA.A. AbdelmonemI.M. AminM.A. EssaB.M. Biogenic harmony of biocompatible silver nanoplatforms using chamomile extract and apigenin-7-glucoside for solid tumor therapy.J. Radioanal. Nucl. Chem.2024333270571510.1007/s10967‑023‑09323‑3
    [Google Scholar]
  104. KhedrA.I.M. FarragA.F.S. NasrA.M. SwidanS.A. NafieM.S. Abdel-KaderM.S. GodaM.S. BadrJ.M. AbdelhameedR.F.A. Comparative estimation of the cytotoxic activity of different parts of Cynara scolymus L.: Crude extracts versus green synthesized silver nanoparticles with apoptotic investigation.Pharmaceutics20221410218510.3390/pharmaceutics1410218536297619
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673339611241031031946
Loading
/content/journals/cmc/10.2174/0109298673339611241031031946
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Apigenin; drug delivery; human carcinomas; nanoparticle; nanotechnology; pharmacokinetics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test