Skip to content
2000
image of Mechanism Exploration of Astaxanthin in the Treatment of Adriamycin-induced Cardiotoxicity Based on Network Pharmacology and Experimental Validation

Abstract

Introduction

Astaxanthin (AXT), a natural antioxidant recognized for its therapeutic potential in cancer and cardiovascular diseases, holds promise in mitigating adriamycin-induced cardiotoxicity (AIC). Nevertheless, the underlying mechanisms of AXT in AIC mitigation remain to be elucidated. Consequently, this study endeavors to elucidate the mechanism of AXT against AIC, employing an integrated approach.

Methods

Network pharmacology, molecular docking, and molecular dynamics simulations were harnessed to explore the molecular mechanism underlying AXT's action against AIC. Furthermore, the AIC model was established with the H9c2 cell to generate transcriptome data for validation.

Results

A total of 533 putative AXT targets and 1478 AIC-related genes were initially screened by database retrieval and bioinformatics analysis. A total of 248 potential targets of AXT against AIC and several signaling pathways were identified by network pharmacology and enrichment analysis. Two core genes (CCL2 and NOS3) and the AGE-RAGE signaling pathway in diabetic complications were further highlighted by transcriptome validation based on the AIC model. Additionally, molecular docking and dynamics analyses supported the robust binding affinity of AXT with the core targets.

Conclusion

The study suggested that AXT might ameliorate AIC through the inhibition of CCL2 and NOS3 as well as AGE-RAGE signaling, which provide a theoretical basis for the development of a strategy against AIC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673329567241014071914
2024-10-28
2025-01-10
Loading full text...

Full text loading...

References

  1. Wang Z. Chen Y. Gu M. Wu Z. Ding B. Yang W. Wu X. Wang C. Gao X. Yang Y. Yin G. Protective effects and mechanisms of lycorine against adriamycin-induced cardiotoxicity. Phytomedicine 2022 102 154178 10.1016/j.phymed.2022.154178 35617889
    [Google Scholar]
  2. Khadka D. Kim H.J. Oh G.S. Shen A. Lee S. Lee S.B. Sharma S. Kim S.Y. Pandit A. Choe S.K. Kwak T.H. Yang S.H. Sim H. Eom G.H. Park R. So H.S. Augmentation of NAD+ levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice. J. Mol. Cell. Cardiol. 2018 124 45 57 10.1016/j.yjmcc.2018.10.001 30291911
    [Google Scholar]
  3. Liang Z. Chen Y. Wang Z. Wu X. Deng C. Wang C. Yang W. Tian Y. Zhang S. Lu C. Yang Y. Protective effects and mechanisms of psoralidin against adriamycin-induced cardiotoxicity. J. Adv. Res. 2022 40 249 261 10.1016/j.jare.2021.12.007 36100330
    [Google Scholar]
  4. Xiao M. Tang Y. Wang J. Lu G. Niu J. Wang J. Li J. Liu Q. Wang Z. Huang Z. Guo Y. Gao T. Zhang X. Yue S. Gu J. A new FGF1 variant protects against adriamycin-induced cardiotoxicity via modulating p53 activity. Redox Biol. 2022 49 102219 10.1016/j.redox.2021.102219 34990928
    [Google Scholar]
  5. Berthiaume J.M. Wallace K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol. Toxicol. 2007 23 1 15 25 10.1007/s10565‑006‑0140‑y 17009097
    [Google Scholar]
  6. Songbo M. Lang H. Xinyong C. Bin X. Ping Z. Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol. Lett. 2019 307 41 48 10.1016/j.toxlet.2019.02.013 30817977
    [Google Scholar]
  7. Chow E.J. Aplenc R. Vrooman L.M. Doody D.R. Huang Y.S.V. Aggarwal S. Armenian S.H. Baker K.S. Bhatia S. Constine L.S. Freyer D.R. Kopp L.M. Leisenring W.M. Asselin B.L. Schwartz C.L. Lipshultz S.E. Late health outcomes after dexrazoxane treatment: A report from the Children’s Oncology Group. Cancer 2022 128 4 788 796 10.1002/cncr.33974 34644414
    [Google Scholar]
  8. Lipshultz S.E. Franco V.I. Sallan S.E. Adamson P.C. Steiner R.K. Swain S.M. Dexrazoxane for reducing anthracycline-related cardiotoxicity in children with cancer: An update of the evidence. Prog. Pediatr. Cardiol. 2014 36 1/2 39 49 10.1016/j.ppedcard.2014.09.007
    [Google Scholar]
  9. Ambati R. Phang S.M. Ravi S. Aswathanarayana R. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar. Drugs 2014 12 1 128 152 10.3390/md12010128 24402174
    [Google Scholar]
  10. Fassett R.G. Coombes J.S. Astaxanthin: A potential therapeutic agent in cardiovascular disease. Mar. Drugs 2011 9 3 447 465 10.3390/md9030447 21556169
    [Google Scholar]
  11. Pereira C. Souza A. Vasconcelos A. Prado P. Name J. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int. J. Mol. Med. 2020 47 1 37 48 10.3892/ijmm.2020.4783 33155666
    [Google Scholar]
  12. Donoso A. González-Durán J. Muñoz A.A. González P.A. Agurto-Muñoz C. “Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials”. Pharmacol. Res. 2021 166 105479 10.1016/j.phrs.2021.105479 33549728
    [Google Scholar]
  13. Zhang N. Cao X.D. Zhu H. Yang D.D. Zhao C.Y. Wang X.M. Zhang Z.Y. The regulation mechanism of astaxanthin on breast cancer based on network pharmacology. J. Biol. 2021 38 4 23 28 10.3969/j.issn.2095‑1736.2021.04.023
    [Google Scholar]
  14. Zhang S.H. Qiu L.Q. Ding S.F. Shen M.S. Ruan Y.P. Effect of astaxanthin on doxorubicin—induced heart injury in rats. Chinese JournaI of New Drugs 2018 27 5 591 595
    [Google Scholar]
  15. Fan C. Sun J. Fu X. Hou Y. Li Y. Yang M. Fu X. Sun B. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage. Front. Physiol. 2017 8 1041 10.3389/fphys.2017.01041 29311972
    [Google Scholar]
  16. Kamel S.S. Baky N.A.A. Karkeet R.M. Osman A.M.M. Sayed-Ahmed M.M. Fouad M.A. Astaxanthin extenuates the inhibition of aldehyde dehydrogenase and Klotho protein expression in cyclophosphamide‐induced acute cardiomyopathic rat model. Clin. Exp. Pharmacol. Physiol. 2022 49 2 291 301 10.1111/1440‑1681.13598 34597426
    [Google Scholar]
  17. Dai Q. Pan Y. Zhu X. Chen M. Xie L. Zhu Y. Wan G. Network Pharmacology along with Molecular Docking to Explore the Mechanism of Danshen Injection against Anthracycline-induced Cardiotoxicity and Transcriptome Validation. Curr. Pharm. Des. 2024 30 12 952 967 10.2174/0113816128289845240305070522 38482629
    [Google Scholar]
  18. Patil A.D. Kasabe P.J. Dandge P.B. Pharmaceutical and nutraceutical potential of natural bioactive pigment: Astaxanthin. Nat. Prod. Bioprospect. 2022 12 1 25 10.1007/s13659‑022‑00347‑y 35794254
    [Google Scholar]
  19. Faraone I. Sinisgalli C. Ostuni A. Armentano M.F. Carmosino M. Milella L. Russo D. Labanca F. Khan H. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review. Pharmacol. Res. 2020 155 104689 10.1016/j.phrs.2020.104689 32057895
    [Google Scholar]
  20. Yoshida K. Sakai O. Honda T. Kikuya T. Takeda R. Sawabe A. Inaba M. Koike C. Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye–Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial. Nutrients 2023 15 6 1459 10.3390/nu15061459 36986186
    [Google Scholar]
  21. Zhu X. Chen Y. Chen Q. Yang H. Xie X. Astaxanthin Promotes Nrf2/ARE Signaling to Alleviate Renal Fibronectin and Collagen IV Accumulation in Diabetic Rats. J. Diabetes Res. 2018 2018 1 7 10.1155/2018/6730315 29744366
    [Google Scholar]
  22. Ma H. Chen S. Xiong H. Wang M. Hang W. Zhu X. Zheng Y. Ge B. Li R. Cui H. Astaxanthin from Haematococcus pluvialis ameliorates the chemotherapeutic drug (doxorubicin) induced liver injury through the Keap1/Nrf2/HO-1 pathway in mice. Food Funct. 2020 11 5 4659 4671 10.1039/C9FO02429H 32405635
    [Google Scholar]
  23. El-Agamy S.E. Abdel-Aziz A.K. Wahdan S. Esmat A. Azab S.S. Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries. Mol. Neurobiol. 2018 55 7 5727 5740 10.1007/s12035‑017‑0797‑7 29039023
    [Google Scholar]
  24. Kumar R. Salwe K.J. Kumarappan M. Evaluation of Antioxidant, Hypolipidemic, and Antiatherogenic Property of Lycopene and Astaxanthin in Atherosclerosis-induced Rats. Pharmacognosy Res. 2017 9 2 161 167 10.4103/0974‑8490.204654 28539740
    [Google Scholar]
  25. Kato T. Kasai T. Sato A. Ishiwata S. Yatsu S. Matsumoto H. Shitara J. Murata A. Shimizu M. Suda S. Hiki M. Naito R. Daida H. Effects of 3-Month Astaxanthin Supplementation on Cardiac Function in Heart Failure Patients with Left Ventricular Systolic Dysfunction-A Pilot Study. Nutrients 2020 12 6 1896 10.3390/nu12061896 32604721
    [Google Scholar]
  26. Duan F. Li H. Lu H. In vivo and molecular docking studies of the pathological mechanism underlying adriamycin cardiotoxicity. Ecotoxicol. Environ. Saf. 2023 256 114778 10.1016/j.ecoenv.2023.114778 36989556
    [Google Scholar]
  27. Hanna A. Frangogiannis N.G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020 34 6 849 863 10.1007/s10557‑020‑07071‑0 32902739
    [Google Scholar]
  28. Shen S. Xu J. Cheng C. Xiang X. Hong B. Zhang M. Gong C. Ma L. Macrophages promote the transition from myocardial ischemia reperfusion injury to cardiac fibrosis in mice through GMCSF/CCL2/CCR2 and phenotype switching. Acta Pharmacol. Sin. 2024 45 5 959 974 10.1038/s41401‑023‑01222‑3 38225394
    [Google Scholar]
  29. Zhang H. Yang K. Chen F. Liu Q. Ni J. Cao W. Hua Y. He F. Liu Z. Li L. Fan G. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front. Immunol. 2022 13 975367 10.3389/fimmu.2022.975367 36110847
    [Google Scholar]
  30. Zhang Q. Lyu W. Yu M. Niu Y. Sulfur dioxide induces vascular relaxation through PI3K/Akt/eNOS and NO/cGMP signaling pathways in rats. Hum. Exp. Toxicol. 2020 39 8 1108 1117 10.1177/0960327120911428 32153200
    [Google Scholar]
  31. Neilan T.G. Blake S.L. Ichinose F. Raher M.J. Buys E.S. Jassal D.S. Furutani E. Perez-Sanz T.M. Graveline A. Janssens S.P. Picard M.H. Scherrer-Crosbie M. Bloch K.D. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007 116 5 506 514 10.1161/CIRCULATIONAHA.106.652339 17638931
    [Google Scholar]
  32. Burr S.D. Stewart J.A. Jr Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life Sci. 2020 250 117569 10.1016/j.lfs.2020.117569 32201277
    [Google Scholar]
  33. Daffu G. Del Pozo C. O’Shea K. Ananthakrishnan R. Ramasamy R. Schmidt A. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int. J. Mol. Sci. 2013 14 10 19891 19910 10.3390/ijms141019891 24084731
    [Google Scholar]
  34. Lijuan S. Shu L. Yonghua Z. Qingmin X. Chungang Z. Lan L. Effect of Shenqi Yangxin decoction on high mobility group box 1 and inflammatory signal pathway in a rat model of dilated cardiomyopathy. J. Tradit. Chin. Med. 2018 38 6 862 871 10.1016/S0254‑6272(18)30985‑3 32186133
    [Google Scholar]
  35. Zhang H. Lu X. Liu Z. Du K. Rosuvastatin reduces the pro-inflammatory effects of adriamycin on the expression of HMGB1 and RAGE in rats. Int. J. Mol. Med. 2018 42 6 3415 3423 10.3892/ijmm.2018.3928 30320373
    [Google Scholar]
  36. Jafari Z. Bigham A. Sadeghi S. Dehdashti S.M. Rabiee N. Abedivash A. Bagherzadeh M. Nasseri B. Karimi-Maleh H. Sharifi E. Varma R.S. Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J. Med. Chem. 2022 65 1 2 36 10.1021/acs.jmedchem.1c01144 34919379
    [Google Scholar]
  37. Abdelazim K. Ghit A. Assal D. Dorra N. Noby N. Khattab S.N. El Feky S.E. Hussein A. Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacol. Rep. 2023 75 4 771 790 10.1007/s43440‑023‑00488‑y 37179259
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673329567241014071914
Loading
/content/journals/cmc/10.2174/0109298673329567241014071914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test