Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Astaxanthin (AXT), a natural antioxidant recognized for its therapeutic potential in cancer and cardiovascular diseases, holds promise in mitigating adriamycin-induced cardiotoxicity (AIC). Nevertheless, the underlying mechanisms of AXT in AIC mitigation remain to be elucidated. Consequently, this study endeavors to elucidate the mechanism of AXT against AIC, employing an integrated approach.

Methods

Network pharmacology, molecular docking, and molecular dynamics simulations were harnessed to explore the molecular mechanism underlying AXT's action against AIC. Furthermore, the AIC model was established with the H9c2 cell to generate transcriptome data for validation.

Results

A total of 533 putative AXT targets and 1478 AIC-related genes were initially screened by database retrieval and bioinformatics analysis. A total of 248 potential targets of AXT against AIC and several signaling pathways were identified by network pharmacology and enrichment analysis. Two core genes (CCL2 and NOS3) and the AGE-RAGE signaling pathway in diabetic complications were further highlighted by transcriptome validation based on the AIC model. Additionally, molecular docking and dynamics analyses supported the robust binding affinity of AXT with the core targets.

Conclusion

The study suggested that AXT might ameliorate AIC through the inhibition of CCL2 and NOS3 as well as AGE-RAGE signaling, which provide a theoretical basis for the development of a strategy against AIC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673329567241014071914
2024-10-28
2026-02-14
Loading full text...

Full text loading...

References

  1. WangZ. ChenY. GuM. WuZ. DingB. YangW. WuX. WangC. GaoX. YangY. YinG. Protective effects and mechanisms of lycorine against adriamycin-induced cardiotoxicity.Phytomedicine202210215417810.1016/j.phymed.2022.15417835617889
    [Google Scholar]
  2. KhadkaD. KimH.J. OhG.S. ShenA. LeeS. LeeS.B. SharmaS. KimS.Y. PanditA. ChoeS.K. KwakT.H. YangS.H. SimH. EomG.H. ParkR. SoH.S. Augmentation of NAD+ levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice.J. Mol. Cell. Cardiol.2018124455710.1016/j.yjmcc.2018.10.00130291911
    [Google Scholar]
  3. LiangZ. ChenY. WangZ. WuX. DengC. WangC. YangW. TianY. ZhangS. LuC. YangY. Protective effects and mechanisms of psoralidin against adriamycin-induced cardiotoxicity.J. Adv. Res.20224024926110.1016/j.jare.2021.12.00736100330
    [Google Scholar]
  4. XiaoM. TangY. WangJ. LuG. NiuJ. WangJ. LiJ. LiuQ. WangZ. HuangZ. GuoY. GaoT. ZhangX. YueS. GuJ. A new FGF1 variant protects against adriamycin-induced cardiotoxicity via modulating p53 activity.Redox Biol.20224910221910.1016/j.redox.2021.10221934990928
    [Google Scholar]
  5. BerthiaumeJ.M. WallaceK.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity.Cell Biol. Toxicol.2007231152510.1007/s10565‑006‑0140‑y17009097
    [Google Scholar]
  6. SongboM. LangH. XinyongC. BinX. PingZ. LiangS. Oxidative stress injury in doxorubicin-induced cardiotoxicity.Toxicol. Lett.2019307414810.1016/j.toxlet.2019.02.01330817977
    [Google Scholar]
  7. ChowE.J. AplencR. VroomanL.M. DoodyD.R. HuangY.S.V. AggarwalS. ArmenianS.H. BakerK.S. BhatiaS. ConstineL.S. FreyerD.R. KoppL.M. LeisenringW.M. AsselinB.L. SchwartzC.L. LipshultzS.E. Late health outcomes after dexrazoxane treatment: A report from the Children’s Oncology Group.Cancer2022128478879610.1002/cncr.3397434644414
    [Google Scholar]
  8. LipshultzS.E. FrancoV.I. SallanS.E. AdamsonP.C. SteinerR.K. SwainS.M. Dexrazoxane for reducing anthracycline-related cardiotoxicity in children with cancer: An update of the evidence.Prog. Pediatr. Cardiol.2014361/2394910.1016/j.ppedcard.2014.09.007
    [Google Scholar]
  9. AmbatiR. PhangS.M. RaviS. AswathanarayanaR. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review.Mar. Drugs201412112815210.3390/md1201012824402174
    [Google Scholar]
  10. FassettR.G. CoombesJ.S. Astaxanthin: A potential therapeutic agent in cardiovascular disease.Mar. Drugs20119344746510.3390/md903044721556169
    [Google Scholar]
  11. PereiraC. SouzaA. VasconcelosA. PradoP. NameJ. Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review).Int. J. Mol. Med.2020471374810.3892/ijmm.2020.478333155666
    [Google Scholar]
  12. DonosoA. González-DuránJ. MuñozA.A. GonzálezP.A. Agurto-MuñozC. “Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials”.Pharmacol. Res.202116610547910.1016/j.phrs.2021.10547933549728
    [Google Scholar]
  13. ZhangN. CaoX.D. ZhuH. YangD.D. ZhaoC.Y. WangX.M. ZhangZ.Y. The regulation mechanism of astaxanthin on breast cancer based on network pharmacology.J. Biol.2021384232810.3969/j.issn.2095‑1736.2021.04.023
    [Google Scholar]
  14. ZhangS.H. QiuL.Q. DingS.F. ShenM.S. RuanY.P. Effect of astaxanthin on doxorubicin—induced heart injury in rats.Chinese J. New Drugs2018275591595
    [Google Scholar]
  15. FanC. SunJ. FuX. HouY. LiY. YangM. FuX. SunB. Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage.Front. Physiol.20178104110.3389/fphys.2017.0104129311972
    [Google Scholar]
  16. KamelS.S. BakyN.A.A. KarkeetR.M. OsmanA.M.M. Sayed-AhmedM.M. FouadM.A. Astaxanthin extenuates the inhibition of aldehyde dehydrogenase and Klotho protein expression in cyclophosphamide-induced acute cardiomyopathic rat model.Clin. Exp. Pharmacol. Physiol.202249229130110.1111/1440‑1681.1359834597426
    [Google Scholar]
  17. DaiQ. PanY. ZhuX. ChenM. XieL. ZhuY. WanG. Network pharmacology along with molecular docking to explore the mechanism of danshen injection against anthracycline-induced cardiotoxicity and transcriptome validation.Curr. Pharm. Des.2024301295296710.2174/011381612828984524030507052238482629
    [Google Scholar]
  18. PatilA.D. KasabeP.J. DandgeP.B. Pharmaceutical and nutraceutical potential of natural bioactive pigment: Astaxanthin.Nat. Prod. Bioprospect.20221212510.1007/s13659‑022‑00347‑y35794254
    [Google Scholar]
  19. FaraoneI. SinisgalliC. OstuniA. ArmentanoM.F. CarmosinoM. MilellaL. RussoD. LabancaF. KhanH. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review.Pharmacol. Res.202015510468910.1016/j.phrs.2020.10468932057895
    [Google Scholar]
  20. YoshidaK. SakaiO. HondaT. KikuyaT. TakedaR. SawabeA. InabaM. KoikeC. Effects of astaxanthin, lutein, and zeaxanthin on eye–hand coordination and smooth-pursuit eye movement after visual display terminal operation in healthy subjects: A randomized, double-blind placebo-controlled intergroup trial.Nutrients2023156145910.3390/nu1506145936986186
    [Google Scholar]
  21. ZhuX. ChenY. ChenQ. YangH. XieX. Astaxanthin promotes Nrf2/ARE signaling to alleviate renal fibronectin and collagen IV accumulation in diabetic rats.J. Diabetes Res.201820181710.1155/2018/673031529744366
    [Google Scholar]
  22. MaH. ChenS. XiongH. WangM. HangW. ZhuX. ZhengY. GeB. LiR. CuiH. Astaxanthin from Haematococcus pluvialis ameliorates the chemotherapeutic drug (doxorubicin) induced liver injury through the Keap1/Nrf2/HO-1 pathway in mice.Food Funct.20201154659467110.1039/C9FO02429H32405635
    [Google Scholar]
  23. El-AgamyS.E. Abdel-AzizA.K. WahdanS. EsmatA. AzabS.S. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: Impact on oxidative, inflammatory, and apoptotic machineries.Mol. Neurobiol.20185575727574010.1007/s12035‑017‑0797‑729039023
    [Google Scholar]
  24. KumarR. SalweK.J. KumarappanM. Evaluation of antioxidant, hypolipidemic, and antiatherogenic property of lycopene and astaxanthin in atherosclerosis-induced rats.Pharmacognosy Res.20179216116710.4103/0974‑8490.20465428539740
    [Google Scholar]
  25. KatoT. KasaiT. SatoA. IshiwataS. YatsuS. MatsumotoH. ShitaraJ. MurataA. ShimizuM. SudaS. HikiM. NaitoR. DaidaH. Effects of 3-month astaxanthin supplementation on cardiac function in heart failure patients with left ventricular systolic dysfunction-a pilot study.Nutrients2020126189610.3390/nu1206189632604721
    [Google Scholar]
  26. DuanF. LiH. LuH. In vivo and molecular docking studies of the pathological mechanism underlying adriamycin cardiotoxicity.Ecotoxicol. Environ. Saf.202325611477810.1016/j.ecoenv.2023.11477836989556
    [Google Scholar]
  27. HannaA. FrangogiannisN.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure.Cardiovasc. Drugs Ther.202034684986310.1007/s10557‑020‑07071‑032902739
    [Google Scholar]
  28. ShenS. XuJ. ChengC. XiangX. HongB. ZhangM. GongC. MaL. Macrophages promote the transition from myocardial ischemia reperfusion injury to cardiac fibrosis in mice through GMCSF/CCL2/CCR2 and phenotype switching.Acta Pharmacol. Sin.202445595997410.1038/s41401‑023‑01222‑338225394
    [Google Scholar]
  29. ZhangH. YangK. ChenF. LiuQ. NiJ. CaoW. HuaY. HeF. LiuZ. LiL. FanG. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications.Front. Immunol.20221397536710.3389/fimmu.2022.97536736110847
    [Google Scholar]
  30. ZhangQ. LyuW. YuM. NiuY. Sulfur dioxide induces vascular relaxation through PI3K/Akt/eNOS and NO/cGMP signaling pathways in rats.Hum. Exp. Toxicol.20203981108111710.1177/096032712091142832153200
    [Google Scholar]
  31. NeilanT.G. BlakeS.L. IchinoseF. RaherM.J. BuysE.S. JassalD.S. FurutaniE. Perez-SanzT.M. GravelineA. JanssensS.P. PicardM.H. Scherrer-CrosbieM. BlochK.D. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin.Circulation2007116550651410.1161/CIRCULATIONAHA.106.65233917638931
    [Google Scholar]
  32. BurrS.D. StewartJ.A.Jr Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade.Life Sci.202025011756910.1016/j.lfs.2020.11756932201277
    [Google Scholar]
  33. DaffuG. Del PozoC. O’SheaK. AnanthakrishnanR. RamasamyR. SchmidtA. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond.Int. J. Mol. Sci.20131410198911991010.3390/ijms14101989124084731
    [Google Scholar]
  34. LijuanS. ShuL. YonghuaZ. QingminX. ChungangZ. LanL. Effect of Shenqi Yangxin decoction on high mobility group box 1 and inflammatory signal pathway in a rat model of dilated cardiomyopathy.J. Tradit. Chin. Med.201838686287110.1016/S0254‑6272(18)30985‑332186133
    [Google Scholar]
  35. ZhangH. LuX. LiuZ. DuK. Rosuvastatin reduces the pro-inflammatory effects of adriamycin on the expression of HMGB1 and RAGE in rats.Int. J. Mol. Med.20184263415342310.3892/ijmm.2018.392830320373
    [Google Scholar]
  36. JafariZ. BighamA. SadeghiS. DehdashtiS.M. RabieeN. AbedivashA. BagherzadehM. NasseriB. Karimi-MalehH. SharifiE. VarmaR.S. MakvandiP. Nanotechnology-abetted astaxanthin formulations in multimodel therapeutic and biomedical applications.J. Med. Chem.202265123610.1021/acs.jmedchem.1c0114434919379
    [Google Scholar]
  37. AbdelazimK. GhitA. AssalD. DorraN. NobyN. KhattabS.N. El FekyS.E. HusseinA. Production and therapeutic use of astaxanthin in the nanotechnology era.Pharmacol. Rep.202375477179010.1007/s43440‑023‑00488‑y37179259
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673329567241014071914
Loading
/content/journals/cmc/10.2174/0109298673329567241014071914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test