Skip to content
2000
image of Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses

Abstract

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival. In the fight against cancer, immunotherapy has demonstrated encouraging results, especially in cases of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). A key component in improving T cell responses against tumours is the use of immune checkpoint inhibitors, which include PD-1/PD-L1 and CTLA-4 blockers. Cancer vaccines and CAR T-cell therapy are two examples of adoptive cell therapies that might be used to boost the immune system's ability to eliminate tumours. In order to improve surgical results and decrease recurrence, neoadjuvant immunotherapy is being investigated for its ability to preoperatively reduce tumours. Precision medicine tailors treatment based on individual genetic profiles and tumour features, boosting therapeutic efficacy and avoiding unwanted effects. For certain types of non-small cell lung cancer (NSCLC), targeted treatments based on mutations in genes including EGFR, ALK, and ROS1 have shown excellent results. When it comes to optimizing treatment regimens, biomarker-driven approaches guarantee that the patients most likely to benefit from particular medicines are selected. Artificial intelligence (AI) is revolutionizing lung cancer care through increased diagnostic accuracy, prognostic assessments, and therapy planning. Machine learning algorithms examine enormous information to detect trends and forecast outcomes, permitting individualized treatment techniques. AI-driven imaging tools enable early diagnosis and monitoring of disease progression, while predictive models assist in evaluating therapy responses and potential toxicity. The convergence of these advanced technologies holds promise for overcoming the constraints of conventional therapy. Combining immunotherapy with targeted treatments and utilizing AI for precision medicine delivers a multimodal approach that tackles the heterogeneous and dynamic nature of lung cancer. The incorporation of these new tactics into clinical practice demands cross-disciplinary collaboration and continuing study to develop and confirm their effectiveness. The synergistic application of immunotherapy, precision medicine, and AI constitutes a paradigm shift in lung cancer management. These discoveries provide a robust basis for individualized and adaptable therapy, potentially altering the prognosis for lung cancer patients. Ongoing research and clinical studies are vital to unlocking the full potential of these technologies, paving the way for enhanced therapeutic outcomes and improved quality of life for people battling this tough disease.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673347323241119184648
2025-01-14
2025-07-04
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  3. Archilla-Ortega A. Domuro C. Martin-Liberal J. Muñoz P. Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity. J. Exp. Clin. Cancer Res. 2022 41 1 62 10.1186/s13046‑022‑02264‑x 35164813
    [Google Scholar]
  4. Liu Y.T. Sun Z.J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 2021 11 11 5365 5386 10.7150/thno.58390 33859752
    [Google Scholar]
  5. Rizzo A. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate. Br. J. Cancer 2022 127 8 1381 1382 10.1038/s41416‑022‑01929‑w 36064585
    [Google Scholar]
  6. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support. Care Cancer 2023 31 11 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  7. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the Royal Marsden Hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers (Basel) 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
  8. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  9. Rizzo A. Mollica V. Tateo V. Tassinari E. Marchetti A. Rosellini M. De Luca R. Santoni M. Massari F. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol. Immunother. 2023 72 6 1381 1394 10.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  10. Li Q. Shi Z. Zhang F. Zeng W. Zhu D. Mei L. Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharm. Sin. B 2022 12 1 107 134 10.1016/j.apsb.2021.05.031 35127375
    [Google Scholar]
  11. Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front. Immunol. 2023 14 1063716 10.3389/fimmu.2023.1063716 36817482
    [Google Scholar]
  12. Lau S.C.M. Pan Y. Velcheti V. Wong K.K. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell 2022 40 11 1279 1293 10.1016/j.ccell.2022.09.018 36270277
    [Google Scholar]
  13. Kumar A. Kumar A. Non-small-cell lung cancer-associated gene mutations and inhibitors. Advances in Cancer Biology - Metastasis 2022 6 100076 10.1016/j.adcanc.2022.100076
    [Google Scholar]
  14. Sieow B.F.L. Wun K.S. Yong W.P. Hwang I.Y. Chang M.W. Tweak to treat: Reprograming bacteria for cancer treatment. Trends Cancer 2021 7 5 447 464 10.1016/j.trecan.2020.11.004 33303401
    [Google Scholar]
  15. Yang L. Gu X. Yu J. Ge S. Fan X. Oncolytic Virotherapy: From bench to bedside. Front. Cell Dev. Biol. 2021 9 790150 10.3389/fcell.2021.790150 34901031
    [Google Scholar]
  16. Derosa L. Routy B. Thomas A.M. Iebba V. Zalcman G. Friard S. Mazieres J. Audigier-Valette C. Moro-Sibilot D. Goldwasser F. Silva C.A.C. Terrisse S. Bonvalet M. Scherpereel A. Pegliasco H. Richard C. Ghiringhelli F. Elkrief A. Desilets A. Blanc-Durand F. Cumbo F. Blanco A. Boidot R. Chevrier S. Daillère R. Kroemer G. Alla L. Pons N. Le Chatelier E. Galleron N. Roume H. Dubuisson A. Bouchard N. Messaoudene M. Drubay D. Deutsch E. Barlesi F. Planchard D. Segata N. Martinez S. Zitvogel L. Soria J.C. Besse B. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 2022 28 2 315 324 10.1038/s41591‑021‑01655‑5 35115705
    [Google Scholar]
  17. Chattopadhyay S. Myers R.R. Janes J. Shubayev V. Cytokine regulation of MMP-9 in peripheral glia: Implications for pathological processes and pain in injured nerve. Brain Behav. Immun. 2007 21 5 561 568 10.1016/j.bbi.2006.10.015 17189680
    [Google Scholar]
  18. Hoebart J. Exploring an oncolytic virus triggered PD-L1 response via immunoPET. PhD thesis 2023
    [Google Scholar]
  19. Dhar R. Seethy A. Singh S. Pethusamy K. Srivastava T. Talukdar J. Rath G.K. Karmakar S. Cancer immunotherapy. J. Cancer Res. Ther. 2021 17 4 834 844 10.4103/jcrt.JCRT_1241_20 34528529
    [Google Scholar]
  20. Wen W. Zhang Y. Zhang H. Chen Y. Clinical outcomes of PD-1/PD-L1 inhibitors in patients with advanced hepatocellular carcinoma: A systematic review and meta- analysis. J. Cancer Res. Clin. Oncol. 2023 149 3 969 978 10.1007/s00432‑022‑04057‑3 35771261
    [Google Scholar]
  21. Restrepo J.C. Dueñas D. Corredor Z. Liscano Y. Advances in genomic data and biomarkers: Revolutionizing NSCLC diagnosis and treatment. Cancers (Basel) 2023 15 13 3474 10.3390/cancers15133474 37444584
    [Google Scholar]
  22. Wojtukiewicz M.Z. Rek M.M. Karpowicz K. Górska M. Polityńska B. Wojtukiewicz A.M. Moniuszko M. Radziwon P. Tucker S.C. Honn K.V. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021 40 3 949 982 10.1007/s10555‑021‑09976‑0 34236546
    [Google Scholar]
  23. Bilusic M. What are the advantages of neoadjuvant immunotherapy over adjuvant immunotherapy? Expert Rev. Anticancer Ther. 2022 22 6 561 563 10.1080/14737140.2022.2069097 35473572
    [Google Scholar]
  24. Xie H. Shi X. Wang G. Neoadjuvant immunotherapy for resectable non-small cell lung cancer. Am. J. Cancer Res. 2021 11 6 2521 2536 34249414
    [Google Scholar]
  25. Shiravand Y. Khodadadi F. Kashani S.M.A. Hosseini-Fard S.R. Hosseini S. Sadeghirad H. Ladwa R. O’Byrne K. Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022 29 5 3044 3060 10.3390/curroncol29050247 35621637
    [Google Scholar]
  26. Aguado C. Chara L. Antoñanzas M. Matilla Gonzalez J.M. Jiménez U. Hernanz R. Mielgo-Rubio X. Trujillo-Reyes J.C. Couñago F. Neoadjuvant treatment in non-small cell lung cancer: New perspectives with the incorporation of immunotherapy. World J. Clin. Oncol. 2022 13 5 314 322 10.5306/wjco.v13.i5.314 35662985
    [Google Scholar]
  27. Stefani D. Plönes T. Viehof J. Darwiche K. Stuschke M. Schuler M. Aigner C. Lung cancer surgery after neoadjuvant immunotherapy. Cancers (Basel) 2021 13 16 4033 10.3390/cancers13164033 34439187
    [Google Scholar]
  28. Tang T. Huang X. Zhang G. Hong Z. Bai X. Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 72 10.1038/s41392‑020‑00449‑4 33608497
    [Google Scholar]
  29. Zhang H. Ye L. Yu X. Jin K. Wu W. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer. Front. Immunol. 2022 13 956984 10.3389/fimmu.2022.956984 36225934
    [Google Scholar]
  30. Olivier T. Prasad V. Neoadjuvant checkpoint inhibition in non-small cell lung cancer: Is earlier unquestionably better than later? Transl. Oncol. 2022 24 101505 10.1016/j.tranon.2022.101505 35953223
    [Google Scholar]
  31. Tong B.C. Gu L. Wang X. Wigle D.A. Phillips J.D. Harpole D.H. Jr Klapper J.A. Sporn T. Ready N.E. D’Amico T.A. Perioperative outcomes of pulmonary resection after neoadjuvant pembrolizumab in patients with non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2022 163 2 427 436 10.1016/j.jtcvs.2021.02.099 33985811
    [Google Scholar]
  32. Sepesi B. Zhou N. William W.N. Jr Lin H.Y. Leung C.H. Weissferdt A. Mitchell K.G. Pataer A. Walsh G.L. Rice D.C. Roth J.A. Mehran R.J. Hofstetter W.L. Antonoff M.B. Rajaram R. Negrao M.V. Tsao A.S. Gibbons D.L. Lee J.J. Heymach J.V. Vaporciyan A.A. Swisher S.G. Cascone T. Surgical outcomes after neoadjuvant nivolumab or nivolumab with ipilimumab in patients with non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2022 164 5 1327 1337 10.1016/j.jtcvs.2022.01.019 35190177
    [Google Scholar]
  33. Cascone T. Leung C.H. Weissferdt A. Pataer A. Carter B.W. Godoy M.C.B. Feldman H. William W.N. Jr Xi Y. Basu S. Sun J.J. Yadav S.S. Rojas Alvarez F.R. Lee Y. Mishra A.K. Chen L. Pradhan M. Guo H. Sinjab A. Zhou N. Negrao M.V. Le X. Gay C.M. Tsao A.S. Byers L.A. Altan M. Glisson B.S. Fossella F.V. Elamin Y.Y. Blumenschein G. Jr Zhang J. Skoulidis F. Wu J. Mehran R.J. Rice D.C. Walsh G.L. Hofstetter W.L. Rajaram R. Antonoff M.B. Fujimoto J. Solis L.M. Parra E.R. Haymaker C. Wistuba I.I. Swisher S.G. Vaporciyan A.A. Lin H.Y. Wang J. Gibbons D.L. Jack Lee J. Ajami N.J. Wargo J.A. Allison J.P. Sharma P. Kadara H. Heymach J.V. Sepesi B. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: The phase 2 platform NEOSTAR trial. Nat. Med. 2023 29 3 593 604 10.1038/s41591‑022‑02189‑0 36928818
    [Google Scholar]
  34. Tang S. Qin C. Hu H. Liu T. He Y. Guo H. Yan H. Zhang J. Tang S. Zhou H. Immune checkpoint inhibitors in non-small cell lung cancer: Progress, challenges, and prospects. Cells 2022 11 3 320 10.3390/cells11030320 35159131
    [Google Scholar]
  35. Shah K. Al-Haidari A. Sun J. Kazi J.U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 2021 6 1 412 10.1038/s41392‑021‑00823‑w 34897277
    [Google Scholar]
  36. Waldman A.D. Fritz J.M. Lenardo M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020 20 11 651 668 10.1038/s41577‑020‑0306‑5 32433532
    [Google Scholar]
  37. Sobhani N. Tardiel-Cyril D.R. Davtyan A. Generali D. Roudi R. Li Y. CTLA-4 in regulatory T Cells for cancer immunotherapy. Cancers (Basel) 2021 13 6 1440 10.3390/cancers13061440 33809974
    [Google Scholar]
  38. Kumar S. Chatterjee M. Ghosh P. Ganguly K.K. Basu M. Ghosh M.K. Targeting PD-1/PD-L1 in cancer immunotherapy: An effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis. 2023 10 4 1318 1350 10.1016/j.gendis.2022.07.024 37397537
    [Google Scholar]
  39. Lisi L. Lacal P.M. Martire M. Navarra P. Graziani G. Clinical experience with CTLA-4 blockade for cancer immunotherapy: From the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment. Pharmacol. Res. 2022 175 105997 10.1016/j.phrs.2021.105997 34826600
    [Google Scholar]
  40. Najafi S. Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed. Pharmacother. 2023 164 114954 10.1016/j.biopha.2023.114954 37257227
    [Google Scholar]
  41. Wijfjes Z. van Dalen F.J. Le Gall C.M. Verdoes M.J.M.P. Controlling antigen fate in therapeutic cancer vaccines by targeting dendritic cell receptors. 2023 20 4826 4847
    [Google Scholar]
  42. Mahaki H. Saeed Modaghegh M.H. Nasr Isfahani Z. The role of peptide-based tumor vaccines on cytokines of adaptive immunity. A review. Int. J. Pept. Res. Ther. 2021 27 2527 2542
    [Google Scholar]
  43. Speiser D.E. Chijioke O. Schaeuble K. Münz C. CD4+ T cells in cancer. Nat. Can. 2023 4 3 317 329 10.1038/s43018‑023‑00521‑2 36894637
    [Google Scholar]
  44. Truong C.S. Yoo S.Y. Oncolytic vaccinia virus in lung cancer vaccines. Vaccines 2022 10 2 240 10.3390/vaccines10020240 35214699
    [Google Scholar]
  45. Fan T. Zhang M. Yang J. Zhu Z. Cao W. Dong C. Therapeutic cancer vaccines: Advancements, challenges and prospects. Signal Transduct. Target. Ther. 2023 8 1 450 10.1038/s41392‑023‑01674‑3 38086815
    [Google Scholar]
  46. Liu J. Fu M. Wang M. Wan D. Wei Y. Wei X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022 15 1 28 10.1186/s13045‑022‑01247‑x 35303904
    [Google Scholar]
  47. Liu D. Che X. Wang X. Ma C. Wu G. Tumor vaccines: Unleashing the power of the immune system to fight cancer. Pharmaceuticals (Basel) 2023 16 10 1384 10.3390/ph16101384 37895855
    [Google Scholar]
  48. Naimi A. Mohammed R.N. Raji A. Chupradit S. Yumashev A.V. Suksatan W. Shalaby M.N. Thangavelu L. Kamrava S. Shomali N. Sohrabi A.D. Adili A. Noroozi-Aghideh A. Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun. Signal. 2022 20 1 44 10.1186/s12964‑022‑00854‑y 35392976
    [Google Scholar]
  49. Kandra P. Nandigama R. Eul B. Huber M. Kobold S. Seeger W. Grimminger F. Savai R. Utility and drawbacks of Chimeric Antigen receptor T cell (CAR-T) therapy in lung cancer. Front. Immunol. 2022 13 903562 10.3389/fimmu.2022.903562 35720364
    [Google Scholar]
  50. Qu J. Mei Q. Chen L. Zhou J. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunol. Immunother. 2021 70 3 619 631 10.1007/s00262‑020‑02735‑0 33025047
    [Google Scholar]
  51. Soria J.C. Ohe Y. Vansteenkiste J. Reungwetwattana T. Chewaskulyong B. Lee K.H. Dechaphunkul A. Imamura F. Nogami N. Kurata T. Okamoto I. Zhou C. Cho B.C. Cheng Y. Cho E.K. Voon P.J. Planchard D. Su W.C. Gray J.E. Lee S.M. Hodge R. Marotti M. Rukazenkov Y. Ramalingam S.S. Osimertinib in untreated EGFR-mutated advanced non–small cell lung cancer. N. Engl. J. Med. 2018 378 2 113 125 10.1056/NEJMoa1713137 29151359
    [Google Scholar]
  52. Alharbi K.S. Javed Shaikh M.A. Afzal O. Alfawaz Altamimi A.S. Almalki W.H. Alzarea S.I. Kazmi I. Al-Abbasi F.A. Singh S.K. Dua K. Gupta G. An overview of epithelial growth factor receptor (EGFR) inhibitors in cancer therapy. Chem. Biol. Interact. 2022 366 110108 10.1016/j.cbi.2022.110108 36027944
    [Google Scholar]
  53. Cao B. Liu M. Wang L. Zhu K. Cai M. Chen X. Feng Y. Yang S. Fu S. Zhi C. Ye X. Zhang J. Zhang Z. Yang X. Zhao M. Wu Q. Xu L. Yang L. Lian H. Zhao Q. Zhang Z. Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non- small cell lung cancer. Nat. Commun. 2022 13 1 6203 10.1038/s41467‑022‑33968‑5 36261437
    [Google Scholar]
  54. Xiao B.F. Zhang J.T. Zhu Y.G. Cui X.R. Lu Z.M. Yu B.T. Wu N. Chimeric antigen receptor T-cell therapy in lung cancer: Potential and challenges. Front. Immunol. 2021 12 782775 10.3389/fimmu.2021.782775 34790207
    [Google Scholar]
  55. Chen L. Chen F. Li J. Pu Y. Yang C. Wang Y. Lei Y. Huang Y. CAR-T cell therapy for lung cancer: Potential and perspective. Thorac. Cancer 2022 13 7 889 899 10.1111/1759‑7714.14375 35289077
    [Google Scholar]
  56. Faust J.R. Hamill D. Kolb E.A. Gopalakrishnapillai A. Barwe S.P. Mesothelin: An immunotherapeutic target beyond solid tumors. Cancers (Basel) 2022 14 6 1550 10.3390/cancers14061550 35326701
    [Google Scholar]
  57. Lv J. Li P. Mesothelin as a biomarker for targeted therapy. Biomark. Res. 2019 7 1 18 10.1186/s40364‑019‑0169‑8 31463062
    [Google Scholar]
  58. Shen J. Sun X. Zhou J. Insights into the role of Mesothelin as a diagnostic and therapeutic target in ovarian Carcinoma. Front. Oncol. 2020 10 1263 10.3389/fonc.2020.01263 32983962
    [Google Scholar]
  59. Chen W. Zhang Z. Zhang S. Zhu P. Ko J.K.S. Yung K.K.L. MUC1: Structure, function, and clinic application in Epithelial cancers. Int. J. Mol. Sci. 2021 22 12 6567 10.3390/ijms22126567 34207342
    [Google Scholar]
  60. Gao J. McConnell M.J. Yu B. Li J. Balko J.M. Black E.P. Johnson J.O. Lloyd M.C. Altiok S. Haura E.B. MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion. Int. J. Oncol. 2009 35 2 337 345 19578748
    [Google Scholar]
  61. Lahiri A. Maji A. Potdar P.D. Singh N. Parikh P. Bisht B. Mukherjee A. Paul M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023 22 1 40 10.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  62. Vathiotis I.A. Gomatou G. Stravopodis D.J. Syrigos N. Programmed death-Ligand 1 as a regulator of tumor progression and Metastasis. Int. J. Mol. Sci. 2021 22 10 5383 10.3390/ijms22105383 34065396
    [Google Scholar]
  63. Mortezaee K. Majidpoor J. Mechanisms of CD8+ T cell exclusion and dysfunction in cancer resistance to anti-PD-(L)1. Biomed. Pharmacother. 2023 163 114824 10.1016/j.biopha.2023.114824 37141735
    [Google Scholar]
  64. Rustagi V. Nagar G. Mittal P. Singh A. Singh I.K. Receptor tyrosine kinase-like orphan receptors ROR1/2: Insights into the mechanism of action, inhibition, and therapeutic potential. Protein Kinase Inhibitors 597-621. Elsevier 2022 10.1016/B978‑0‑323‑91287‑7.00018‑1
    [Google Scholar]
  65. Irmer B. Efing J. Reitnauer L.E. Angenendt A. Heinrichs S. Schubert A. Schulz M. Binder C. Tio J. Hansen U. Geyer C. Gerwing M. Bleckmann A. Menck K. Extracellular vesicle-associated tyrosine kinase-like orphan receptors ROR1 and ROR2 promote breast cancer progression. Cell Commun. Signal. 2023 21 1 171 10.1186/s12964‑023‑01186‑1 37430307
    [Google Scholar]
  66. Osorio-Rodríguez D.A. Camacho B.A. Ramírez-Segura C. Anti-ROR1 CAR-T cells: Architecture and performance. Front. Med. (Lausanne) 2023 10 1121020 10.3389/fmed.2023.1121020 36873868
    [Google Scholar]
  67. Azari F. Meijer R.P.J. Kennedy G.T. Hanna A. Chang A. Nadeem B. Din A. Pèlegrin A. Framery B. Cailler F. Sullivan N.T. Kucharczuk J. Martin L.W. Vahrmeijer A.L. Singhal S. Carcinoembryonic antigen–related cell adhesion molecule type 5 receptor–targeted fluorescent intraoperative molecular imaging tracer for lung cancer. JAMA Netw. Open 2023 6 1 e2252885 10.1001/jamanetworkopen.2022.52885 36705924
    [Google Scholar]
  68. Miao T. Du L. Xiao W. Mao B. Wang Y. Fu J. Identification of survival-associated gene signature in lung cancer coexisting with COPD. Front. Oncol. 2021 11 600243 10.3389/fonc.2021.600243 33791201
    [Google Scholar]
  69. Maansson C.T. Helstrup S. Ebert E.B.F. Meldgaard P. Sorensen B.S. Circulating immune response proteins predict the outcome following disease progression of osimertinib treated epidermal growth factor receptor-positive non-small-cell lung cancer patients. Transl. Lung Cancer Res. 2023 12 1 14 26 10.21037/tlcr‑22‑577 36762069
    [Google Scholar]
  70. Pang K. Shi Z.D. Wei L.Y. Dong Y. Ma Y.Y. Wang W. Wang G.Y. Cao M.Y. Dong J.J. Chen Y.A. Zhang P. Hao L. Xu H. Pan D. Chen Z.S. Han C.H. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist. Updat. 2023 66 100907 10.1016/j.drup.2022.100907 36527888
    [Google Scholar]
  71. Jiang W. Pan S. Chen X. Wang Z. Zhu X. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol. Cancer 2021 20 1 116 10.1186/s12943‑021‑01406‑7 34496886
    [Google Scholar]
  72. Laba S Mallett G Amarnath S The depths of PD-1 function within the tumor microenvironment beyond CD8+ T cells Semin Cancer Biol 2022 86 Pt 2 1045 1055
    [Google Scholar]
  73. Grant M.J. Herbst R.S. Goldberg S.B. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat. Rev. Clin. Oncol. 2021 18 10 625 644 10.1038/s41571‑021‑00520‑1 34168333
    [Google Scholar]
  74. Wang Y. Zhang T. Huang Y. Li W. Zhao J. Yang Y. Li C. Wang L. Bi N. Real-world safety and efficacy of consolidation durvalumab after chemoradiation therapy for stage III non-small cell lung cancer: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2022 112 5 1154 1164 10.1016/j.ijrobp.2021.12.150 34963558
    [Google Scholar]
  75. Ricciuti B. Wang X. Alessi J.V. Rizvi H. Mahadevan N.R. Li Y.Y. Polio A. Lindsay J. Umeton R. Sinha R. Vokes N.I. Recondo G. Lamberti G. Lawrence M. Vaz V.R. Leonardi G.C. Plodkowski A.J. Gupta H. Cherniack A.D. Tolstorukov M.Y. Sharma B. Felt K.D. Gainor J.F. Ravi A. Getz G. Schalper K.A. Henick B. Forde P. Anagnostou V. Jänne P.A. Van Allen E.M. Nishino M. Sholl L.M. Christiani D.C. Lin X. Rodig S.J. Hellmann M.D. Awad M.M. Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol. 2022 8 8 1160 1168 10.1001/jamaoncol.2022.1981 35708671
    [Google Scholar]
  76. Sanghavi N. Farwa U. Khurshid F. Husain H. Landscape of immunotherapy in lung cancer. Cancer Metastasis Through the Lymphovascular System. Springer 2022 719 727 10.1007/978‑3‑030‑93084‑4_68
    [Google Scholar]
  77. Halbert B. Einstein D.J. Hot or not: Tumor mutational burden (TMB) as a biomarker of immunotherapy response in genitourinary cancers. Urology 2021 147 119 126 10.1016/j.urology.2020.10.030 33137348
    [Google Scholar]
  78. Meri-Abad M. Moreno-Manuel A. García S.G. Calabuig-Fariñas S. Pérez R.S. Herrero C.C. Jantus-Lewintre E. Clinical and technical insights of tumour mutational burden in non-small cell lung cancer. Crit. Rev. Oncol. Hematol. 2023 182 103891 10.1016/j.critrevonc.2022.103891 36565893
    [Google Scholar]
  79. Kaler, A.K.; Maskomani, S.; Kavyashree, R.; Vadera, V.; Choudhary, V.; Shaikh, I.; Goyle, S.; Mistry, R. Evolution of biomarkers and treatment outcomes of immunotherapy in lung cancer. Current Tissue Microenvironment Reports. 2023 4 41 63
    [Google Scholar]
  80. Gilson P. Merlin J.L. Harlé A. Detection of microsatellite instability: State of the art and future applications in circulating tumour. Cancers (Basel) 2021 13 7 1491 10.3390/cancers13071491 33804907
    [Google Scholar]
  81. Zeng Z. Yang B. Liao Z. Biomarkers in immunotherapy-based precision treatments of digestive system tumors. Front. Oncol. 2021 11 650481 10.3389/fonc.2021.650481 33777812
    [Google Scholar]
  82. Motta R. Cabezas-Camarero S. Torres-Mattos C. Riquelme A. Calle A. Figueroa A. Sotelo M.J. Immunotherapy in microsatellite instability metastatic colorectal cancer: Current status and future perspectives. 2021 7 4 511 522 34541365
    [Google Scholar]
  83. Horinouchi H. Nogami N. Saka H. Nishio M. Tokito T. Takahashi T. Kasahara K. Hattori Y. Ichihara E. Adachi N. Noguchi K. Souza F. Kurata T. Pembrolizumab plus pemetrexed-platinum for metastatic nonsquamous non–small-cell lung cancer: KEYNOTE-189 Japan study. Cancer Sci. 2021 112 8 3255 3265 10.1111/cas.14980 34036692
    [Google Scholar]
  84. Nogami N. Barlesi F. Socinski M.A. Reck M. Thomas C.A. Cappuzzo F. Mok T.S.K. Finley G. Aerts J.G. Orlandi F. Moro-Sibilot D. Jotte R.M. Stroyakovskiy D. Villaruz L.C. Rodríguez-Abreu D. Wan-Teck Lim D. Merritt D. Coleman S. Lee A. Shankar G. Yu W. Bara I. Nishio M. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain. J. Thorac. Oncol. 2022 17 2 309 323 10.1016/j.jtho.2021.09.014 34626838
    [Google Scholar]
  85. Man J. Millican J. Mulvey A. Gebski V. Hui R. Response rate and survival at key timepoints with PD-1 blockade vs. chemotherapy in PD-L1 subgroups: Meta-analysis of metastatic NSCLC trials. JNCI Cancer Spectr. 2021 5 3 pkab012 10.1093/jncics/pkab012 34084999
    [Google Scholar]
  86. Powell S.F. Rodríguez-Abreu D. Langer C.J. Tafreshi A. Paz-Ares L. Kopp H.G. Rodríguez-Cid J. Kowalski D.M. Cheng Y. Kurata T. Awad M.M. Lin J. Zhao B. Pietanza M.C. Piperdi B. Garassino M.C. Outcomes with Pembrolizumab plus platinum-based chemotherapy for patients with NSCLC and stable brain Metastases: Pooled Analysis of KEYNOTE-021, -189, and -407. J. Thorac. Oncol. 2021 16 11 1883 1892 10.1016/j.jtho.2021.06.020 34265431
    [Google Scholar]
  87. Wang L. Yang Y. Yu J. Zhang S. Li X. Wu X. Nie X. Liu W. Zhang P. Li Y. Li A. Ai B. Efficacy and safety of anti-PD-1/PD-L1 in combination with chemotherapy or not as first-line treatment for advanced non-small cell lung cancer: A systematic review and network meta-analysis. Thorac. Cancer 2022 13 3 322 337 10.1111/1759‑7714.14244 34907661
    [Google Scholar]
  88. Rebuzzi S.E. Facchinetti F. Tiseo M. Anti-angiogenesis boosts chemo-immunotherapy in patients with EGFR mutations or baseline liver metastases: Insights from IMpower150 study. Transl. Cancer Res. 2019 8 Suppl. 6 S612 S617 10.21037/tcr.2019.06.21 35117143
    [Google Scholar]
  89. Socinski M.A. Jotte R.M. Cappuzzo F. Nishio M. Mok T.S.K. Reck M. Finley G.G. Kaul M.D. Yu W. Paranthaman N. Bāra I. West H.J. Association of immune-related adverse events with efficacy of atezolizumab in patients with non–small cell lung cancer: Pooled analyses of the phase 3 IMpower130, IMpower132, and IMpower150 randomized clinical trials. JAMA Oncol. 2023 9 4 527 535 10.1001/jamaoncol.2022.7711 36795388
    [Google Scholar]
  90. Spigel D.R. Faivre-Finn C. Gray J.E. Vicente D. Planchard D. Paz-Ares L. Vansteenkiste J.F. Garassino M.C. Hui R. Quantin X. Rimner A. Wu Y.L. Özgüroğlu M. Lee K.H. Kato T. de Wit M. Kurata T. Reck M. Cho B.C. Senan S. Naidoo J. Mann H. Newton M. Thiyagarajah P. Antonia S.J. Five-year survival outcomes from the PACIFIC trial: Durvalumab after chemoradiotherapy in stage III non–small-cell lung Cancer. J. Clin. Oncol. 2022 40 12 1301 1311 10.1200/JCO.21.01308 35108059
    [Google Scholar]
  91. Brahmer J.R. Lee J.S. Ciuleanu T.E. Bernabe Caro R. Nishio M. Urban L. Audigier-Valette C. Lupinacci L. Sangha R. Pluzanski A. Burgers J. Mahave M. Ahmed S. Schoenfeld A.J. Paz-Ares L.G. Reck M. Borghaei H. O’Byrne K.J. Gupta R.G. Bushong J. Li L. Blum S.I. Eccles L.J. Ramalingam S.S. Five-year survival outcomes with Nivolumab plus Ipilimumab versus chemotherapy as first-line treatment for Metastatic non– small-cell lung cancer in CheckMate 227. J. Clin. Oncol. 2023 41 6 1200 1212 10.1200/JCO.22.01503 36223558
    [Google Scholar]
  92. Memmott R.M. Wolfe A.R. Carbone D.P. Williams T.M. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors. J. Thorac. Oncol. 2021 16 7 1086 1098 10.1016/j.jtho.2021.03.017 33845212
    [Google Scholar]
  93. Santarpia M. Ciappina G. Spagnolo C.C. Squeri A. Passalacqua M.I. Aguilar A. Gonzalez-Cao M. Giovannetti E. Silvestris N. Rosell R. Targeted therapies for KRAS-mutant non-small cell lung cancer: From preclinical studies to clinical development—a narrative review. Transl. Lung Cancer Res. 2023 12 2 346 368 10.21037/tlcr‑22‑639 36895930
    [Google Scholar]
  94. Huang C.C. Lai C.Y. Tsai C.H. Wang J.Y. Wong R.H. Combined effects of cigarette smoking, DNA methyltransferase 3B genetic polymorphism, and DNA damage on lung cancer. BMC Cancer 2021 21 1 1066 10.1186/s12885‑021‑08800‑w 34587932
    [Google Scholar]
  95. Peyraud F. Italiano A. Combined PARP inhibition and immune checkpoint therapy in solid tumors. Cancers (Basel) 2020 12 6 1502 10.3390/cancers12061502 32526888
    [Google Scholar]
  96. Xie H. Wang W. Qi W. Jin W. Xia B. Targeting DNA repair response promotes immunotherapy in ovarian cancer: Rationale and clinical application. Front. Immunol. 2021 12 661115 10.3389/fimmu.2021.661115 34712221
    [Google Scholar]
  97. Mamdani H. Matosevic S. Khalid A.B. Durm G. Jalal S.I. Immunotherapy in lung cancer: Current landscape and future directions. Front. Immunol. 2022 13 823618 10.3389/fimmu.2022.823618 35222404
    [Google Scholar]
  98. Zhang Z. Liu X. Chen D. Yu J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther. 2022 7 1 258 10.1038/s41392‑022‑01102‑y 35906199
    [Google Scholar]
  99. Sugimoto T. Fujimoto D. Sato Y. Tamiya M. Yokoi T. Tamiya A. Iwasawa S. Hata A. Uchida J. Fukuda Y. Hara S. Kanazu M. Hirano K. Kokubo M. Yamamoto N. Durvalumab for patients with unresectable stage III non-small cell lung cancer and grade 1 radiation pneumonitis following concurrent chemoradiotherapy: A multicenter prospective cohort study. Invest. New Drugs 2021 39 3 853 859 10.1007/s10637‑020‑01060‑8 33405089
    [Google Scholar]
  100. Sugimoto T. Fujimoto D. Sato Y. Tamiya M. Yokoi T. Taniguchi Y. Hino A. Hata A. Uchida J. Fukuda Y. Hara S. Kanazu M. Matsumoto H. Kokubo M. Yamamoto N. Prospective multicenter cohort study of durvalumab for patients with unresectable stage III non-small cell lung cancer and grade 1 radiation pneumonitis. Lung Cancer 2022 171 3 8 10.1016/j.lungcan.2022.07.005 35863254
    [Google Scholar]
  101. Luo W. Wang Z. Zhang T. Yang L. Xian J. Li Y. Li W. Immunotherapy in non-small cell lung cancer: Rationale, recent advances and future perspectives. Precis. Clin. Med. 2021 4 4 258 270 10.1093/pcmedi/pbab027 35692863
    [Google Scholar]
  102. Olsen T.A. Zhuang T.Z. Caulfield S. Martini D.J. Brown J.T. Carthon B.C. Kucuk O. Harris W. Bilen M.A. Nazha B. Advances in knowledge and management of immune-related adverse events in cancer immunotherapy. Front. Endocrinol. (Lausanne) 2022 13 779915 10.3389/fendo.2022.779915 35392134
    [Google Scholar]
  103. Cani M. Bironzo P. Garetto F. Buffoni L. Cotogni P. Immune checkpoint inhibitors and opioids in patients with solid tumours: Is their association safe? A systematic literature review. Healthcare (Basel) 2022 11 1 116 10.3390/healthcare11010116 36611575
    [Google Scholar]
  104. Bradley A. Boland J.W. Effects of opioids on immune and Endocrine function in patients with cancer pain. Curr. Treat. Options Oncol. 2023 24 7 867 879 10.1007/s11864‑023‑01091‑2 37145383
    [Google Scholar]
  105. Smith K. Wang M. Abdukalikov R. Pain management considerations in patients with Opioid use disorder requiring critical care. 2022 62 4 449 462
    [Google Scholar]
  106. Luo B. Zhang Y. Zhang C. Liu X. Shi C. Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Lett. 2021 509 53 62 10.1016/j.canlet.2021.04.001 33845122
    [Google Scholar]
  107. Wu M. Huang Q. Xie Y. Wu X. Ma H. Zhang Y. Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022 15 1 24 10.1186/s13045‑022‑01242‑2 35279217
    [Google Scholar]
  108. Matson V. Chervin C.S. Gajewski T.F. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 2021 160 2 600 613 10.1053/j.gastro.2020.11.041 33253684
    [Google Scholar]
  109. Pinato D.J. Li X. Mishra-Kalyani P. D’Alessio A. Fulgenzi C.A.M. Scheiner B. Pinter M. Wei G. Schneider J. Rivera D.R. Pazdur R. Theoret M.R. Casak S. Lemery S. Fashoyin-Aje L. Cortellini A. Pelosof L. Association between antibiotics and adverse oncological outcomes in patients receiving targeted or immune-based therapy for hepatocellular carcinoma. JHEP Reports 2023 5 6 100747 10.1016/j.jhepr.2023.100747 37197442
    [Google Scholar]
  110. Chorti E. Kowall B. Hassel J.C. Schilling B. Sachse M. Gutzmer R. Loquai C. Kähler K.C. Hüsing A. Gilde C. Thielmann C.M. Zaremba-Montenari A. Placke J.M. Gratsias E. Martaki A. Roesch A. Ugurel S. Schadendorf D. Livingstone E. Stang A. Zimmer L. Association of antibiotic treatment with survival outcomes in treatment-naïve melanoma patients receiving immune checkpoint blockade. Eur. J. Cancer 2024 200 113536 10.1016/j.ejca.2024.113536 38306840
    [Google Scholar]
  111. Nyein A.F. Bari S. Hogue S. Zhao Y. Maller B. Sha S. Gomez M.F. Rollison D.E. Robinson L.A. Effect of prior antibiotic or chemotherapy treatment on immunotherapy response in non-small cell lung cancer. BMC Cancer 2022 22 1 101 10.1186/s12885‑022‑09210‑2 35073876
    [Google Scholar]
  112. Attili I. Tarantino P. Passaro A. Stati V. Curigliano G. de Marinis F. Strategies to overcome resistance to immune checkpoint blockade in lung cancer. Lung Cancer 2021 154 151 160 10.1016/j.lungcan.2021.02.035 33684660
    [Google Scholar]
  113. Hiltbrunner S. Cords L. Kasser S. Freiberger S.N. Kreutzer S. Toussaint N.C. Grob L. Opitz I. Messerli M. Zoche M. Soltermann A. Rechsteiner M. van den Broek M. Bodenmiller B. Curioni-Fontecedro A. Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype. Nat. Commun. 2023 14 1 5154 10.1038/s41467‑023‑40745‑5 37620318
    [Google Scholar]
  114. Czajka-Francuz P. Prendes M.J. Mankan A. Quintana Á. Pabla S. Ramkissoon S. Jensen T.J. Peiró S. Severson E.A. Achyut B.R. Vidal L. Poelman M. Saini K.S. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Front. Oncol. 2023 13 1200646 10.3389/fonc.2023.1200646 37427115
    [Google Scholar]
  115. Yuan M. Zhao Y. Arkenau H.T. Lao T. Chu L. Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct. Target. Ther. 2022 7 1 187 10.1038/s41392‑022‑01013‑y 35705538
    [Google Scholar]
  116. Guo C. Kong L. Xiao L. Liu K. Cui H. Xin Q. Gu X. Jiang C. Wu J. The impact of the gut microbiome on tumor immunotherapy: From mechanism to application strategies. Cell Biosci. 2023 13 1 188 10.1186/s13578‑023‑01135‑y 37828613
    [Google Scholar]
  117. Shi T. Liu K. Peng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024 38 5 977 997 37178241
    [Google Scholar]
  118. Krishnamoorthy M. Gerhardt L. Maleki Vareki S. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy. Cells 2021 10 5 1170 10.3390/cells10051170 34065010
    [Google Scholar]
  119. Shanshal M. Caimi P.F. Adjei A.A. Ma W.W. T-cell engagers in solid cancers-current landscape and future directions. Cancers (Basel) 2023 15 10 2824 10.3390/cancers15102824 37345160
    [Google Scholar]
  120. Du S Yan J Xue Y Zhong Y Dong Y. Adoptive cell therapy for cancer treatment. Exploration (Beijing) 2023 3 4 20210058 10.1002/EXP.20210058
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673347323241119184648
Loading
/content/journals/cmc/10.2174/0109298673347323241119184648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test