Skip to content
2000
image of Synthesis, Anticancer Activity, and Mitochondria-targeted Bioimaging Applications of Novel Fluorescent Calix [4]arenes-benzimidazole Derivatives

Abstract

Background

Calix[n]arenes have attracted great attention due to their biocompatibility and superior stability. When the necessary functional groups are attached to these compounds, they may have the potential to target tumor tissues. Benzimidazoles are among the anticancer drugs discovered in recent years.

Aim

The aim of this study was to design and synthesise a series of calix[4]arenes-benzimidazoles. For comparison purposes, a benzimidazole derivative was synthesized by attaching it to the diester. The anticancer effects of these compounds were investigated by performing cell proliferation, apoptosis, and cell imaging studies on cancer cell lines.

Methods

Some of the obtained compounds were synthesized by employing the methods available in literature studies, and the rest were synthesized by modifying previous methods. As a result, a total of 3 new fluorescent calix[4]arene-benzimidazole derivatives were synthesized. MTT was used for cell proliferation, and Annexin V was used for apoptosis studies. For confocal imaging studies, cells were treated with DAPI and MitoTracker dyes.

Results

Four designed calix[4]arene-benzimidazoles were successfully synthesized and structurally confirmed by 1H-NMR, 13C-NMR, and IR spectroscopy. The anticancer study on four synthesized compounds was performed. Bio-imaging studies were performed using confocal microscopy for the three successfully synthesized fluorescent compounds.

Conclusion

CB5-a and CB5-c were found to be the most effective against MCF-7 cells and CB5-b against HT-29 cells in the MTT test. Apoptosis analyses also proved that these compounds inhibited the proliferation of cancer cells. As a comparison compound, the synthesized CB5-R proved to be less cytotoxic than the fluorescent compounds by the MTT method, and we found the cationic compound to bind to the calix[4]arene more effectively than the molecule’s binding to the diester.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673356048241120182243
2025-01-31
2025-04-11
Loading full text...

Full text loading...

References

  1. Huang F. Anslyn E.V. Introduction: Supramolecular chemistry. Chem. Rev. 2015 115 15 6999 7000 10.1021/acs.chemrev.5b00352 26263840
    [Google Scholar]
  2. Williams G.T. Haynes C.J.E. Fares M. Caltagirone C. Hiscock J.R. Gale P.A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 2021 50 4 2737 2763 10.1039/D0CS00948B 33438685
    [Google Scholar]
  3. Isik A. Oguz M. Kocak A. Yilmaz M. Calixarenes: Recent progress in supramolecular chemistry for application in cancer therapy. J. Incl. Phenom. Macrocycl. Chem. 2022 102 5-6 439 449 10.1007/s10847‑022‑01134‑5
    [Google Scholar]
  4. Shinkai S. Calixarenes - The third generation of supramolecules. Tetrahedron 1993 49 40 8933 8968 10.1016/S0040‑4020(01)91215‑3
    [Google Scholar]
  5. Fan X. Guo X. Development of calixarene-based drug nanocarriers. J. Mol. Liq. 2021 325 115246 10.1016/j.molliq.2020.115246
    [Google Scholar]
  6. Baldini L. Casnati A. Sansone F. Ungaro R. Calixarene-based multivalent ligands. Chem. Soc. Rev. 2007 36 2 254 266 10.1039/B603082N 17264928
    [Google Scholar]
  7. Rodik R. Cherenok S. Kalchenko O. Yesypenko O. Lipkowski J. Kalchenko V. Functional calixarenes for material and life science. Curr. Org. Chem. 2018 22 22 2200 2222 10.2174/1385272822666181015141327
    [Google Scholar]
  8. Abd Karim N.F.N. Supian F.L. Musa M. Ayop S.K. Azmi M.S.M. Yazid M.D. Yi W.Y. Calixarene derivatives: A mini-review on their synthesis and demands in nanosensors and biomedical fields. Mini Rev. Med. Chem. 2023 23 6 734 745 10.2174/1389557522666220928120727 36173047
    [Google Scholar]
  9. Berberan-Santos M. Marcos P.M. Calixarene Complexes: Synthesis, Properties and Applications. MDPI-Multidisciplinary Digital Publishing Institute 2021
    [Google Scholar]
  10. Karakurt S. Kellici T.F. Mavromoustakos T. Tzakos A.G. Yilmaz M. Calixarenes in lipase biocatalysis and cancer therapy. Curr. Org. Chem. 2016 20 10 1043 1057 10.2174/1385272820666151211192249
    [Google Scholar]
  11. Oguz A. Oguz M. Kursunlu A.N. Yilmaz M. A fully water-soluble Calix[4]arene probe for fluorometric and colorimetric detection of toxic hydrosulfide and cyanide ions: Practicability in living cells and food samples. Food Chem. 2023 401 134132 10.1016/j.foodchem.2022.134132 36115237
    [Google Scholar]
  12. Oguz M. Alizada M. Gul A. Kursunlu A.N. Yilmaz M. A basket-type fluorescent sensor based calix[4]azacrown ether for multi-analytes: Practicability in living cells and real sample. Microchem. J. 2021 167 106279 10.1016/j.microc.2021.106279
    [Google Scholar]
  13. Oguz M. Dogan B. Durdagi S. Bhatti A.A. Karakurt S. Yilmaz M. Investigation of supramolecular interaction of quercetin with N, N-dimethylamine-functionalized p-sulfonated calix[4,8]arenes using molecular modeling and their in vitro cytotoxic response towards selected cancer cells. New J. Chem. 2021 45 39 18443 18452 10.1039/D1NJ03038H
    [Google Scholar]
  14. Oguz M. Bhatti A.A. Dogan B. Karakurt S. Durdagi S. Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: Solubility, cytotoxic effect and molecular modeling studies. J. Biomol. Struct. Dyn. 2020 38 13 3801 3813 10.1080/07391102.2019.1668301 31526236
    [Google Scholar]
  15. Neri P. Sessler J.L. Wang M-X. Calixarenes and beyond. Springer 2016 10.1007/978‑3‑319‑31867‑7
    [Google Scholar]
  16. de Fátima A. Fernandes S. Sabino A. Calixarenes as new platforms for drug design. Curr. Drug Discov. Technol. 2009 6 2 151 170 10.2174/157016309788488302 19519339
    [Google Scholar]
  17. Pan Y.C. Hu X.Y. Guo D.S. Biomedical applications of calixarenes: State of the art and perspectives. Angew. Chem. Int. Ed. 2021 60 6 2768 2794 10.1002/anie.201916380 31965674
    [Google Scholar]
  18. Tauran Y. Coleman A. Perret F. Kim B. Cellular and in vivo biological activities of the calix[n]arenes. Curr. Org. Chem. 2015 19 23 2250 2270 10.2174/1385272819666150608222114
    [Google Scholar]
  19. Shurpik D.N. Padnya P.L. Stoikov I.I. Cragg P.J. Antimicrobial activity of calixarenes and related macrocycles. Molecules 2020 25 21 5145 10.3390/molecules25215145 33167339
    [Google Scholar]
  20. Nimse S.B. Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013 42 1 366 386 10.1039/C2CS35233H 23032718
    [Google Scholar]
  21. Hussain M.A. Ashraf M.U. Muhammad G. Tahir M.N. Bukhari S.N.A. Calixarene: A versatile material for drug design and applications. Curr. Pharm. Des. 2017 23 16 2377 2388 27779081
    [Google Scholar]
  22. Paul S. Jeyaprakash R.S. Pai A. Venkatachalam H. Jayashree B.S. Calixarenes and their relevance in anticancer drug development. Med. Chem. 2023 19 10 939 945 10.2174/1573406419666230703114605 37403386
    [Google Scholar]
  23. Da Silva E. Lazar A.N. Coleman A.W. Biopharmaceutical applications of calixarenes. J. Drug Deliv. Sci. Technol. 2004 14 1 3 20 10.1016/S1773‑2247(04)50001‑1
    [Google Scholar]
  24. Dings R.P.M. Levine J.I. Brown S.G. Astorgues-Xerri L. MacDonald J.R. Hoye T.R. Raymond E. Mayo K.H. Polycationic calixarene PTX013, a potent cytotoxic agent against tumors and drug resistant cancer. Invest. New Drugs 2013 31 5 1142 1150 10.1007/s10637‑013‑9932‑0 23392775
    [Google Scholar]
  25. Naseer M.M. Ahmed M. Hameed S. Functionalized calix[4]arenes as potential therapeutic agents. Chem. Biol. Drug Des. 2017 89 2 243 256 10.1111/cbdd.12818 28205403
    [Google Scholar]
  26. Oguz M. Gul A. Karakurt S. Yilmaz M. Synthesis and evaluation of the antitumor activity of Calix[4]arene l-proline derivatives. Bioorg. Chem. 2020 94 103207 10.1016/j.bioorg.2019.103207 31451296
    [Google Scholar]
  27. Oguz M. Synthesis and anticancer activity of new p-tertbutylcalix[4]arenes integrated with trifluoromethyl aniline groups against several cell lines. Tetrahedron 2022 116 132816 10.1016/j.tet.2022.132816
    [Google Scholar]
  28. Oguz M. Yildirim A. Durmus I.M. Karakurt S. Yilmaz M. Synthesis of new calix[4]arene derivatives and evaluation of their cytotoxic activity. Med. Chem. Res. 2021 ••• 1 8
    [Google Scholar]
  29. An L. Wang C. Zheng Y.G. Liu J. Huang T. Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities. Eur. J. Med. Chem. 2021 210 112984 10.1016/j.ejmech.2020.112984 33183867
    [Google Scholar]
  30. An L. Han L.L. Zheng Y.G. Peng X.N. Xue Y.S. Gu X.K. Sun J. Yan C.G. Synthesis, X-ray crystal structure and anti-tumor activity of calix[n]arene polyhydroxyamine derivatives. Eur. J. Med. Chem. 2016 123 21 30 10.1016/j.ejmech.2016.07.016 27474920
    [Google Scholar]
  31. Youssif B.G.M. Morcoss M.M. Bräse S. Abdel-Aziz M. Abdel-Rahman H.M. Abou El-Ella D.A. Abdelhafez E.S.M.N. Benzimidazole-based derivatives as apoptotic Antiproliferative agents: Design, synthesis, docking, and mechanistic studies. Molecules 2024 29 2 446 10.3390/molecules29020446 38257358
    [Google Scholar]
  32. Alamgir M. Black D.S.C. Kumar N. Synthesis, reactivity and biological activity of benzimidazoles Bioactive Heterocycles III. Topics in Heterocyclic Chemistry Springer Berlin, Heidelberg 2007 9 87 118
    [Google Scholar]
  33. Tan Y.J. Lee Y.T. Yeong K.Y. Petersen S.H. Kono K. Tan S.C. Oon C.E. Anticancer activities of a benzimidazole compound through sirtuin inhibition in colorectal cancer. Future Med. Chem. 2018 10 17 2039 2057 10.4155/fmc‑2018‑0052 30066578
    [Google Scholar]
  34. Salahuddin M. Shaharyar M. Mazumder A. Benzimidazoles: A biologically active compounds. Arab. J. Chem. 2017 10 S157 S173 10.1016/j.arabjc.2012.07.017
    [Google Scholar]
  35. Ozkan S.C. Aksakal F. Yilmaz A. Synthesis of novel calix[4]arene p-benzazole derivatives and investigation of their DNA binding and cleavage activities with molecular docking and experimental studies. RSC Advances 2020 10 63 38695 38708 10.1039/D0RA07486A 35517565
    [Google Scholar]
  36. Bansal Y. Silakari O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012 20 21 6208 6236 10.1016/j.bmc.2012.09.013 23031649
    [Google Scholar]
  37. El-Rashedy A.A. Magd El-Din A.A. Yousif N.M. Yousif M.N.M. Recent trends on synthesis of Benzimidazoles. Antiinfect. Agents 2024 22 2 e301123224083 10.2174/0122113525276208231116121402
    [Google Scholar]
  38. Mavvaji M. Akkoc S. Recent advances in the application of heterogeneous catalysts for the synthesis of benzimidazole derivatives. Coord. Chem. Rev. 2024 505 215714 10.1016/j.ccr.2024.215714
    [Google Scholar]
  39. Goyal K. Sharma A. Arya R. Sharma R. Gupta G.K. Sharma A.K. Double edge sword behavior of Carbendazim: A potent fungicide with anticancer therapeutic properties Anticancer. Agents Med. Chem. 2018 18 1 38 45
    [Google Scholar]
  40. Darwish S.A. El-Kerdawy M.M. Elsheakh A.R. Abdelrahman R.S. Shaldam M.A. Abdel-Aziz H.A. Hassan G.S. Ghaly M.A. New tilomisole-based benzimidazothiazole derivatives as anti-inflammatory agents: Synthesis, in vivo, in vitro evaluation, and in silico studies. Bioorg. Chem. 2022 120 105644 10.1016/j.bioorg.2022.105644 35121552
    [Google Scholar]
  41. Petersen J.S.S.M. Baird S.K. Treatment of breast and colon cancer cell lines with anti-helmintic benzimidazoles mebendazole or albendazole results in selective apoptotic cell death. J. Cancer Res. Clin. Oncol. 2021 147 10 2945 2953 10.1007/s00432‑021‑03698‑0 34148157
    [Google Scholar]
  42. Oguz A. Saglik B.N. Oguz M. Ozturk B. Yilmaz M. Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity. Bioorg. Med. Chem. 2024 98 117586 10.1016/j.bmc.2023.117586 38171252
    [Google Scholar]
  43. Fang J.A. Zhao J.L. Liao X. Zeng X. Chen K. Wei X.Y. Su S.B. Luo Q.Y. Redshaw C. Jin Z. Molecular tweezers-like calix[4]arene based alkaline earth metal cation (Ca2+, Sr2+, and Ba2+) chemosensor and its imaging in living cells and zebrafish. Inorg. Chem. 2019 58 21 14720 14727 10.1021/acs.inorgchem.9b02364 31613605
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673356048241120182243
Loading
/content/journals/cmc/10.2174/0109298673356048241120182243
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test