Skip to content
2000
image of Lipid Biochemistry and its Role in Human Diseases

Abstract

Lipids play a variety of roles in living systems. They are a source of extremely high energy and a part of almost all signaling and biological processes. Despite the liver being the hub of lipid metabolism, lipid metabolism occurs across the human body. Any perturbation in the lipid metabolism or lipid storage systems can lead to diseases or disorders that can hamper the normal functioning of the human body. Lipids have been explored for their role in cancers. The intake of saturated fatty acids has been found to increase the metastasis and growth of cancerous cells. The role of lipids has also been studied in brain diseases. In Tay-Sachs disease, the inability to metabolize GM2 ganglioside alters normal nerve cell functioning. Similarly, lipids also play critical roles in Parkinson's and Alzheimer’s disease. Moreover, atherosclerosis is a leading cause of cardiovascular diseases and brain stroke. Dyslipidemia or excess fatty acids is a leading cause of non-alcoholic fatty liver disease, insulin resistance, and diabetes mellitus. Dyslipidemia also leads to jaundice, which, in turn, can seriously damage the kidneys. This review focuses on the various human diseases occurring because of lipid metabolism.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673351452241220071215
2025-01-30
2025-04-11
Loading full text...

Full text loading...

References

  1. Segatto M. Pallottini V. Facts about fats: new insights into the role of lipids in metabolism, disease and therapy. J. Mol. Sci. 2020 21 18 6651
    [Google Scholar]
  2. Berná G. Bermudo L.L. López E.B. Martín F. We are what we eat: The role of lipids in metabolic diseases. Adv. Food Nutr. Res. 2023 105 173 219 10.1016/bs.afnr.2022.11.004 37516463
    [Google Scholar]
  3. Ahmed S. Shah P. Ahmed O. Biochemistry, Lipids. StatPearls StatPearls Publishing Treasure Island (FL) 2021
    [Google Scholar]
  4. Issleny B.M. Jamjoum R. Majumder S. Stiban J. In The enzymes. Elsevier 2023 54 171 201
    [Google Scholar]
  5. Fernandis A.Z. Wenk M.R. Membrane lipids as signaling molecules. Curr. Opin. Lipidol. 2007 18 2 121 128 10.1097/MOL.0b013e328082e4d5 17353659
    [Google Scholar]
  6. Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013 93 3 1019 1137 10.1152/physrev.00028.2012 23899561
    [Google Scholar]
  7. Escribá P.V. Ros G.J.M. Goñi F.M. Kinnunen P.K.J. Vigh L. Magraner S.L. Fernández A.M. Busquets X. Horváth I. Coblijn B.G. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 2008 12 3 829 875 10.1111/j.1582‑4934.2008.00281.x 18266954
    [Google Scholar]
  8. Garcia C. Andersen C.J. Blesso C.N. The role of lipids in the regulation of immune responses. Nutrients 2023 15 18 3899 10.3390/nu15183899 37764683
    [Google Scholar]
  9. Gurr M.I. In Lipid Technologies and Applications. Routledge 2018 79 112 10.1201/9780203748848‑4
    [Google Scholar]
  10. Li Y. Pan Y. Zhao X. Wu S. Li F. Wang Y. Liu B. Zhang Y. Gao X. Wang Y. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin. Nutr. 2024 43 1 332 345 38142478
    [Google Scholar]
  11. Hollak C.E.M. Weinreb N.J. The attenuated/late onset lysosomal storage disorders: Therapeutic goals and indications for enzyme replacement treatment in Gaucher and Fabry disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015 29 2 205 218 10.1016/j.beem.2014.08.006 25987174
    [Google Scholar]
  12. Kurdi H. Lavalle L. Moon J.C.C. Hughes D. Inflammation in fabry disease: stages, molecular pathways, and therapeutic implications. Front. Cardiovasc. Med. 2024 11 1420067 10.3389/fcvm.2024.1420067 38932991
    [Google Scholar]
  13. Hertz E. Chen Y. Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat. Rev. Neurol. 2024 20 9 526 540 10.1038/s41582‑024‑00999‑z 39107435
    [Google Scholar]
  14. Behl T. Kaur G. Fratila O. Buhas C. Pusta J.C.T. Negrut N. Bustea C. Bungau S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl. Neurodegener. 2021 10 1 4 10.1186/s40035‑020‑00226‑x 33446243
    [Google Scholar]
  15. Butler L.M. Perone Y. Dehairs J. Lupien L.E. Laat d.V. Talebi A. Loda M. Kinlaw W.B. Swinnen J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020 159 245 293 10.1016/j.addr.2020.07.013 32711004
    [Google Scholar]
  16. Pesiri V. Totta P. Segatto M. Bianchi F. Pallottini V. Marino M. Acconcia F. Estrogen receptor α L429 and A430 regulate 17β-estradiol-induced cell proliferation via CREB1. Cell. Signal. 2015 27 12 2380 2388 10.1016/j.cellsig.2015.08.021 26348925
    [Google Scholar]
  17. Dong C. Zhang Y. Zeng J. Chong S. Liu Y. Bian Z. Fan S. Chen X. FUT2 promotes colorectal cancer metastasis by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1. Commun. Biol. 2024 7 1 1297 10.1038/s42003‑024‑06993‑x 39390072
    [Google Scholar]
  18. Luo X. Zhao X. Cheng C. Li N. Liu Y. Cao Y. The implications of signaling lipids in cancer metastasis. Exp. Mol. Med. 2018 50 9 1 10 10.1038/s12276‑018‑0150‑x 30242145
    [Google Scholar]
  19. Takai M. Mori S. Honoki K. Tsujiuchi T. Roles of lysophosphatidic acid (LPA) receptor-mediated signaling in cancer cell biology. J. Bioenerg. Biomembr. 2024 56 4 475 482 10.1007/s10863‑024‑10028‑9 38886303
    [Google Scholar]
  20. Kume H. Harigane R. Rikimaru M. Involvement of lysophospholipids in pulmonary vascular functions and diseases. Biomedicines 2024 12 1 124 10.3390/biomedicines12010124 38255229
    [Google Scholar]
  21. Ye L. Li Y. Zhang S. Wang J. Lei B. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression. Cytokine Grow. Fact. Rev. 2023 73 27 39 10.1016/j.cytogfr.2023.05.002 37291031
    [Google Scholar]
  22. Lin Z. Hua G. Hu X. Lipid metabolism associated crosstalk: the bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight. Cancer Cell Int. 2024 24 1 295 10.1186/s12935‑024‑03481‑4 39174964
    [Google Scholar]
  23. Hu Q. Zhang H. Cortés G.N. Wu D. Wang P. Zhang J. Mattison J.A. Smith E. Bettcher L.F. Wang M. Lakatta E.G. Sheu S.S. Wang W. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ. Res. 2020 126 4 456 470 10.1161/CIRCRESAHA.119.315252 31896304
    [Google Scholar]
  24. Kuller L.H. Nutrition, lipids, and cardiovascular disease. Nutr. Rev. 2006 64 Pt 2 Suppl. 1 S15 S26 10.1111/j.1753‑4887.2006.tb00230.x 16532896
    [Google Scholar]
  25. Spaggiari R. Angelini S. Vincenzo D.A. Scaglione G. Morrone S. Finello V. Fagioli S. Castaldo F. Sanz J.M. Sergi D. Passaro A. Ceramides as emerging players in cardiovascular disease: focus on their pathogenetic effects and regulation by diet. Adv. Nutr. 2024 15 7 100252 10.1016/j.advnut.2024.100252 38876397
    [Google Scholar]
  26. Gai Z. Wang T. Visentin M. Ublick K.G. Fu X. Wang Z. Lipid accumulation and chronic kidney disease. Nutrients 2019 11 4 722 10.3390/nu11040722 30925738
    [Google Scholar]
  27. Galkina O.V. Vetrovoy O.V. Krasovskaya I.E. Eschenko N.D. Role of lipids in regulation of neuroglial interactions. Biochemistry 2023 88 3 337 352 10.1134/S0006297923030045 37076281
    [Google Scholar]
  28. Cartocci V. Segatto M. Tunno D.I. Leone S. Pfrieger F.W. Pallottini V. Modulation of the isoprenoid/cholesterol biosynthetic pathway during neuronal differentiation in vitro. J. Cell. Biochem. 2016 117 9 2036 2044 10.1002/jcb.25500 27392312
    [Google Scholar]
  29. Jin U. Park S.J. Park S.M. Cholesterol metabolism in the brain and its association with Parkinson’s disease. Exp. Neurobiol. 2019 28 5 554 567 10.5607/en.2019.28.5.554 31698548
    [Google Scholar]
  30. Segatto M. Tonini C. Pfrieger F.W. Trezza V. Pallottini V. Loss of mevalonate/cholesterol homeostasis in the brain: a focus on autism spectrum disorder and Rett syndrome. Int. J. Mol. Sci. 2019 20 13 3317 10.3390/ijms20133317 31284522
    [Google Scholar]
  31. Abumrad N.A. Davidson N.O. Role of the gut in lipid homeostasis. Physiol. Rev. 2012 92 3 1061 1085 10.1152/physrev.00019.2011 22811425
    [Google Scholar]
  32. Kloska A. Węsierska M. Malinowska M. Gabig-Cimińska M. Banecka J.J. Lipophagy and lipolysis status in lipid storage and lipid metabolism diseases. Int. J. Mol. Sci. 2020 21 17 6113 10.3390/ijms21176113 32854299
    [Google Scholar]
  33. Tonini C. Colardo M. Colella B. Bartolomeo D.S. Berardinelli F. Caretti G. Pallottini V. Segatto M. Inhibition of bromodomain and extraterminal domain (BET) proteins by JQ1 unravels a novel epigenetic modulation to control lipid homeostasis. Int. J. Mol. Sci. 2020 21 4 1297 10.3390/ijms21041297 32075110
    [Google Scholar]
  34. Ramazi S. Zahiri J. Post-translational modifications in proteins: resources, tools and prediction methods. Database 2021 2021 baab012 10.1093/database/baab012 33826699
    [Google Scholar]
  35. Brown H.A. Marnett L.J. Introduction to lipid biochemistry, metabolism, and signaling. Chem. Rev. 2011 111 10 5817 5820 10.1021/cr200363s 21951202
    [Google Scholar]
  36. Kader J.C. Proteins and the intracellular exchange of lipids. Biochim. Biophys. Acta Lipids Lipid Metab. 1975 380 1 31 44 10.1016/0005‑2760(75)90042‑9 804327
    [Google Scholar]
  37. Larsen L.K. Lerche M.H. Poulsen F.M. Roepstorff P. Winther J.R. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification. J. Biol. Chem. 2001 276 36 33547 33553 10.1074/jbc.M104841200 11435437
    [Google Scholar]
  38. Girotti A.W. Mechanisms of lipid peroxidation. J. Free Radic. Biol. Med. 1985 1 2 87 95 10.1016/0748‑5514(85)90011‑X 3915303
    [Google Scholar]
  39. Sen T. Sen N. Tripathi G. Chatterjee U. Chakrabarti S. Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria. Neurochem. Int. 2006 49 1 20 27 10.1016/j.neuint.2005.12.018 16510213
    [Google Scholar]
  40. ekkabut W.J. Xu Z. Triampo W. Tang I.M. Tieleman P.D. Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 2007 93 12 4225 4236 10.1529/biophysj.107.112565 17766354
    [Google Scholar]
  41. Ayala A. Muñoz M.F. Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014 2014 1 1 31 10.1155/2014/360438 24999379
    [Google Scholar]
  42. Sayre L.M. Lin D. Yuan Q. Zhu X. Tang X. Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab. Rev. 2006 38 4 651 675 10.1080/03602530600959508 17145694
    [Google Scholar]
  43. Gentile F. Arcaro A. Pizzimenti S. Daga M. Cetrangolo G.P. Dianzani C. Lepore A. Graf M. Ames P.R.J. Barrera G. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genet. 2017 4 2 103 137 10.3934/genet.2017.2.103 31435505
    [Google Scholar]
  44. Gęgotek A. Skrzydlewska E. Biological effect of protein modifications by lipid peroxidation products. Chem. Phys. Lipi. 2019 221 46 52 10.1016/j.chemphyslip.2019.03.011 30922835
    [Google Scholar]
  45. Resh M.D. Covalent lipid modifications of proteins. Curr. Biol. 2013 23 10 R431 R435 10.1016/j.cub.2013.04.024 23701681
    [Google Scholar]
  46. Chen B. Sun Y. Niu J. Jarugumilli G.K. Wu X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 2018 25 7 817 831 10.1016/j.chembiol.2018.05.003 29861273
    [Google Scholar]
  47. Tator C.H. Evans J.R. Olszewski J. Tracers for the detection of brain tumors. Neurology 1966 16 7 650 661 10.1212/WNL.16.7.650 5949432
    [Google Scholar]
  48. Spector A.A. Steinberg D. Relationship between fatty acid and glucose utilization in Ehrlich ascites tumor cells. J. Lipid Res. 1966 7 5 657 663 10.1016/S0022‑2275(20)39247‑6 5971047
    [Google Scholar]
  49. Jensen V. Ladekarl M. Nielsen H.P. Melsen F. Sœrensen F.B. The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-I in node-negative breast cancer. J. Pathol. 1995 176 4 343 352 10.1002/path.1711760405 7562249
    [Google Scholar]
  50. Epstein J.I. Carmichael M. Partin A.W. OA-519 (fatty acid synthase) as an independent predictor of pathologic stage in adenocarcinoma of the prostate. Urology 1995 45 1 81 86 10.1016/S0090‑4295(95)96904‑7 7817483
    [Google Scholar]
  51. Corn K.C. Windham M.A. Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res. 2020 80 101055 10.1016/j.plipres.2020.101055 32791170
    [Google Scholar]
  52. Bian X. Liu R. Meng Y. Xing D. Xu D. Lu Z. Lipid metabolism and cancer. J. Exp. Med. 2021 218 1 e20201606 10.1084/jem.20201606 33601415
    [Google Scholar]
  53. Wu Y.S. Bao D.K. Dai J.Y. Chen C. Zhang H.X. Yang Y. Xing J.L. Huang X.J. Wan S.G. Polymorphisms in genes of the de novo lipogenesis pathway and overall survival of hepatocellular carcinoma patients undergoing transarterial chemoembolization. Asian Pac. J. Cancer Prev. 2015 16 3 1051 1056 10.7314/APJCP.2015.16.3.1051 25735330
    [Google Scholar]
  54. Perez M.M. Urricelqui U.U. Bigas C. Benitah S.A. The role of lipids in cancer progression and metastasis. Cell Metab. 2022 34 11 1675 1699 10.1016/j.cmet.2022.09.023 36261043
    [Google Scholar]
  55. Eiriksson F.F. Nøhr M.K. Costa M. Bödvarsdottir S.K. Ögmundsdottir H.M. Thorsteinsdottir M. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS One 2020 15 4 e0231289 10.1371/journal.pone.0231289 32287294
    [Google Scholar]
  56. Broadfield L.A. Pane A.A. Talebi A. Swinnen J.V. Fendt S.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev. Cell 2021 56 10 1363 1393 10.1016/j.devcel.2021.04.013 33945792
    [Google Scholar]
  57. Picou F. Debeissat C. Bourgeais J. Gallay N. Ferrié E. Foucault A. Ravalet N. Maciejewski A. Vallet N. Ducrocq E. Haddaoui L. Domenech J. Hérault O. Gyan E. N-3 polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and NRF2 pathway activation. Pharmacol. Res. 2018 136 45 55 10.1016/j.phrs.2018.08.015 30142422
    [Google Scholar]
  58. Kim S. Yang X. Yin A. Zha J. Beharry Z. Bai A. Bielawska A. Bartlett M.G. Yin H. Cai H. Dietary palmitate cooperates with SRC kinase to promote prostate tumor progression. Prostate 2019 79 8 896 908 10.1002/pros.23796 30900312
    [Google Scholar]
  59. Yang T. Fang S. Zhang H.X. Xu L.X. Zhang Z.Q. Yuan K.T. Xue C.L. Yu H.L. Zhang S. Li Y.F. Shi H.P. Zhang Y. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J. Nutr. Biochem. 2013 24 5 744 753 10.1016/j.jnutbio.2012.03.023 22854319
    [Google Scholar]
  60. Dai J. Shen J. Pan W. Shen S. Das U.N. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis. 2013 12 1 71 10.1186/1476‑511X‑12‑71 23663688
    [Google Scholar]
  61. Shim J.K. Choi S. Yoon S.J. Choi R.J. Park J. Lee E.H. Cho H.J. Lee S. Teo W.Y. Moon J.H. Kim H.S. Kim E.H. Cheong J.H. Chang J.H. Yook J.I. Kang S.G. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres. Cancer Cell Int. 2022 22 1 309 10.1186/s12935‑022‑02731‑7 36221088
    [Google Scholar]
  62. Zhang C. Hu Z. Pan Z. Ji Z. Cao X. Yu H. Qin X. Guan M. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer. Analyst 2024 149 6 1907 1920 10.1039/D3AN01723K 38372525
    [Google Scholar]
  63. López V.A. Ramírez G.V.L. Hortal N.M.D Hernández F.T.Y. Battino M. Quiles J.L. Seminars in Cancer Biology. New York, United States Elsevier 2021 369
    [Google Scholar]
  64. Begicevic R.R. Arfuso F. Falasca M. Bioactive lipids in cancer stem cells. World J. Stem Cells 2019 11 9 693 704 10.4252/wjsc.v11.i9.693 31616544
    [Google Scholar]
  65. Farooqui A.A. Ong W.Y. Horrocks L.A. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 2006 58 3 591 620 10.1124/pr.58.3.7 16968951
    [Google Scholar]
  66. Spector A.A. Yorek M.A. Membrane lipid composition and cellular function. J. Lipid Res. 1985 26 9 1015 1035 10.1016/S0022‑2275(20)34276‑0 3906008
    [Google Scholar]
  67. Hu W. Liu J. Hu Y. Xu Q. Deng T. Wei M. Lu L. Mi J. Bergquist J. Xu F. Tian G. Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction. Front. Mol. Neurosci. 2022 15 1044022 10.3389/fnmol.2022.1044022 36590920
    [Google Scholar]
  68. Després J.P. Couillard C. Gagnon J. Bergeron J. Leon A.S. Rao D.C. Skinner J.S. Wilmore J.H. Bouchard C. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler. Thromb. Vasc. Biol. 2000 20 8 1932 1938 10.1161/01.ATV.20.8.1932 10938014
    [Google Scholar]
  69. Solovyeva V.V. Shaimardanova A.A. Chulpanova D.S. Kitaeva K.V. Chakrabarti L. Rizvanov A.A. New approaches to tay-sachs disease therapy. Front. Physiol. 1663 2018 9 30524313
    [Google Scholar]
  70. Filho F.J.A. Shapiro B.E. Tay-Sachs Disease. Arch. Neurol. 2004 61 9 1466 1468 10.1001/archneur.61.9.1466 15364698
    [Google Scholar]
  71. Lew R. Burnett L. Delatycki M. Proos A. Tay-Sachs disease: current perspectives from Australia. Appl. Clin. Genet. 2015 8 19 25 10.2147/TACG.S49628 25653550
    [Google Scholar]
  72. Caines M.E.C. Vaughan M.D. Tarling C.A. Hancock S.M. Warren R.A.J. Withers S.G. Strynadka N.C.J. Structural and mechanistic analyses of endo-glycoceramidase II, a membrane-associated family 5 glycosidase in the Apo and GM3 ganglioside-bound forms. J. Biol. Chem. 2007 282 19 14300 14308 10.1074/jbc.M611455200 17329247
    [Google Scholar]
  73. Kao Y.C. Ho P.C. Tu Y.K. Jou I.M. Tsai K.J. Lipids and alzheimer’s disease. Int. J. Mol. Sci. 2020 21 4 1505 10.3390/ijms21041505 32098382
    [Google Scholar]
  74. Gaamouch E.F. Jing P. Xia J. Cai D. Alzheimer’s disease risk genes and lipid regulators. J. Alzheimers Dis. 2016 53 1 15 29 10.3233/JAD‑160169 27128373
    [Google Scholar]
  75. Pararasa C. Ikwuobe J. Shigdar S. Boukouvalas A. Nabney I.T. Brown J.E. Devitt A. Bailey C.J. Bennett S.J. Griffiths H.R. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPAR γ. Aging Cell 2016 15 1 128 139 10.1111/acel.12416 26522807
    [Google Scholar]
  76. Whiley L. Sen A. Heaton J. Proitsi P. Gómez G.D. Leung R. Smith N. Thambisetty M. Kloszewska I. Mecocci P. Soininen H. Tsolaki M. Vellas B. Lovestone S. Quigley L.C. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol. Aging 2014 35 2 271 278 10.1016/j.neurobiolaging.2013.08.001 24041970
    [Google Scholar]
  77. Michno W. Bowman A. Jha D. Minta K. Ge J. Koutarapu S. Zetterberg H. Blennow K. Lashley T. Heeren R.M.A. Hanrieder J. Spatial neurolipidomics at the single amyloid-β plaque level in postmortem human Alzheimer’s disease brain. ACS Chem. Neurosci. 2024 15 4 877 888 10.1021/acschemneuro.4c00006 38299453
    [Google Scholar]
  78. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008 79 4 368 376 10.1136/jnnp.2007.131045 18344392
    [Google Scholar]
  79. Cheng D. Jenner A.M. Shui G. Cheong W.F. Mitchell T.W. Nealon J.R. Kim W.S. McCann H. Wenk M.R. Halliday G.M. Garner B. Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS One 2011 6 2 e17299 10.1371/journal.pone.0017299 21387008
    [Google Scholar]
  80. Schuchman E.H. Desnick R.J. Types A and B Niemann-Pick disease. Mol. Genet. Metab. 2017 120 1-2 27 33 10.1016/j.ymgme.2016.12.008 28164782
    [Google Scholar]
  81. Bajwa H. Niemann-Pick Disease StatPearls StatPearls Publishing Treasure Island (FL) 2023
    [Google Scholar]
  82. Vanier M.T. Handbook of Clinical Neurology. Dulac O. Lassonde M. Sarnat H.B. Amsterdam, Netherlands Elsevier 2013 113 1717 1721
    [Google Scholar]
  83. Boenzi S. Catesini G. Sacchetti E. Tagliaferri F. Vici D.C. Deodato F. Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease. Mol. Genet. Metab. 2021 134 4 337 343 10.1016/j.ymgme.2021.11.005 34810067
    [Google Scholar]
  84. Li M. Gao Y. Wang D. Hu X. Jiang J. Qing Y. Yang X. Cui G. Wang P. Zhang J. Sun L. Wan C. Impaired membrane lipid homeostasis in schizophrenia. Schizophr. Bull. 2022 48 5 1125 1135 10.1093/schbul/sbac011 35751100
    [Google Scholar]
  85. Tavares H. Jr Yacubian J. Talib L.L. Barbosa N.R. Gattaz W.F. Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizophr. Res. 2003 61 1 1 6 10.1016/S0920‑9964(02)00281‑5 12648730
    [Google Scholar]
  86. Liu J. Xiu M. Liu H. Wang J. Li X. Plasma lysophosphatidylcholine and lysophosphatidylethanolamine levels were associated with the therapeutic response to olanzapine in female antipsychotics-naïve first-episode patients with schizophrenia. Front. Pharmacol. 2021 12 735196 10.3389/fphar.2021.735196 34603051
    [Google Scholar]
  87. Cox R.A. Palmieri G.M.R. Cholesterol, triglycerides, and associated lipoproteins. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd Ed. Boston Butterworths 2011
    [Google Scholar]
  88. Gofman J.W. Lindgren F. Elliott H. Mantz W. Hewitt J. Strisower B. Herring V. Lyon T.P. The role of lipids and lipoproteins in atherosclerosis. Science 1950 111 2877 166 186 10.1126/science.111.2877.166 15403115
    [Google Scholar]
  89. Koskinas K.C. What is the role of lipids in atherosclerosis and how low should we decrease lipid levels? EJ. Cardiol. Pract. 2020 19 1 15
    [Google Scholar]
  90. Yao Y. Li X. Wang Z. Ji Q. Xu Q. Yan Y. Lv Q. Interaction of lipids, mean platelet volume, and the severity of coronary artery disease among chinese adults: a mediation analysis. Front. Cardiovasc. Med. 2022 9 753171 10.3389/fcvm.2022.753171 35174229
    [Google Scholar]
  91. Barquera S. Tobías P.A. Medina C. Barrera H.L. Domingo B.K. Lozano R. Moran A.E. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res. 2015 46 5 328 338 10.1016/j.arcmed.2015.06.006 26135634
    [Google Scholar]
  92. Berliner J.A. Watson A.D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 2005 353 1 9 11 10.1056/NEJMp058118 16000351
    [Google Scholar]
  93. Berliner J.A. Leitinger N. Tsimikas S. The role of oxidized phospholipids in atherosclerosis. J. Lipid Res. 2009 50 Suppl S207 S212 10.1194/jlr.R800074‑JLR200 19059906
    [Google Scholar]
  94. Lee S. Birukov K.G. Romanoski C.E. Springstead J.R. Lusis A.J. Berliner J.A. Role of phospholipid oxidation products in atherosclerosis. Circ. Res. 2012 111 6 778 799 10.1161/CIRCRESAHA.111.256859 22935534
    [Google Scholar]
  95. Yin H. Xu L. Porter N.A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 2011 111 10 5944 5972 10.1021/cr200084z 21861450
    [Google Scholar]
  96. Moore K.J. Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011 145 3 341 355 10.1016/j.cell.2011.04.005 21529710
    [Google Scholar]
  97. Glass C.K. Witztum J.L. Atherosclerosis. Cell 2001 104 4 503 516 10.1016/S0092‑8674(01)00238‑0 11239408
    [Google Scholar]
  98. Zhong S. Li L. Shen X. Li Q. Xu W. Wang X. Tao Y. Yin H. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic. Biol. Med. 2019 144 266 278 10.1016/j.freeradbiomed.2019.03.036 30946962
    [Google Scholar]
  99. Linton M.F. Yancey P.G. Davies S.S. Jerome W.G. Linton E.F. Song W.L. Doran A.C. Vickers K.C. The role of lipids and lipoproteins in atherosclerosis. Endotext South Dartmouth 2019
    [Google Scholar]
  100. Mhaimeed O. Burney Z.A. Schott S.L. Kohli P. Marvel F.A. Martin S.S. The importance of LDL-C lowering in atherosclerotic cardiovascular disease prevention: Lower for longer is better. Am. J. Prev. Cardiol. 2024 18 100649 10.1016/j.ajpc.2024.100649
    [Google Scholar]
  101. Diffenderfer M.R. Schaefer E.J. The composition and metabolism of large and small LDL. Curr. Opin. Lipidol. 2014 25 3 221 226 10.1097/MOL.0000000000000067 24811298
    [Google Scholar]
  102. Hoogeveen R.C. Gaubatz J.W. Sun W. Dodge R.C. Crosby J.R. Jiang J. Couper D. Virani S.S. Kathiresan S. Boerwinkle E. Ballantyne C.M. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 2014 34 5 1069 1077 10.1161/ATVBAHA.114.303284 24558110
    [Google Scholar]
  103. Tsai M.Y. Steffen B.T. Guan W. McClelland R.L. Warnick R. McConnell J. Hoefner D.M. Remaley A.T. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014 34 1 196 201 10.1161/ATVBAHA.113.302401 24233487
    [Google Scholar]
  104. Öörni K. Kovanen P.T. Aggregation susceptibility of low-density lipoproteins-a novel modifiable biomarker of cardiovascular risk. J. Clin. Med. 2021 10 8 1769 10.3390/jcm10081769 33921661
    [Google Scholar]
  105. Ruuth M. Nguyen S.D. Vihervaara T. Hilvo M. Laajala T.D. Kondadi P.K. Gisterå A. Lähteenmäki H. Kittilä T. Huusko J. Uusitupa M. Schwab U. Savolainen M.J. Sinisalo J. Lokki M.L. Nieminen M.S. Jula A. Perola M. Herttula Y.S. Rudel L. Öörni A. Baumann M. Baruch A. Laaksonen R. Ketelhuth D.F.J. Aittokallio T. Jauhiainen M. Käkelä R. Borén J. Williams K.J. Kovanen P.T. Öörni K. Susceptibility of low- density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. Eur. Heart J. 2018 39 27 2562 2573 10.1093/eurheartj/ehy319 29982602
    [Google Scholar]
  106. Wolf D. Ley K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019 124 2 315 327 10.1161/CIRCRESAHA.118.313591 30653442
    [Google Scholar]
  107. Soppert J. Lehrke M. Marx N. Jankowski J. Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 2020 159 4 33 10.1016/j.addr.2020.07.019 32730849
    [Google Scholar]
  108. Tcheugui E.J.B. Jain M. Cheng S. Breaking through the surface: more to learn about lipids and cardiovascular disease. J. Clin. Invest. 2020 130 3 1084 1086 10.1172/JCI134696 31985490
    [Google Scholar]
  109. Badmus O.O. Hillhouse S.A. Anderson C.D. Hinds T.D. Jr Stec D.E. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin. Sci. 2022 136 18 1347 1366 10.1042/CS20220572 36148775
    [Google Scholar]
  110. Abdul S.M.M. Lipid metabolism in metabolic-associated steatotic liver disease (MASLD). Metabolites 2023 14 1 12 10.3390/metabo14010012 38248815
    [Google Scholar]
  111. Arvind A. Osganian S.A. Cohen D.E. Corey K.E. Lipid and lipoprotein metabolism in liver disease. Endotext South Dartmouth 2019
    [Google Scholar]
  112. Lucchinetti E. Lou P.H. Wawrzyniak P. Wawrzyniak M. Scharl M. Holtzhauer G.A. Krämer S.D. Hersberger M. Rogler G. Zaugg M. Novel strategies to prevent total parenteral nutrition-induced gut and liver inflammation, and adverse metabolic outcomes. Mol. Nutr. Food Res. 2021 65 5 1901270 10.1002/mnfr.201901270 32359213
    [Google Scholar]
  113. Natesan V. Kim S.J. Lipid metabolism, disorders and therapeutic drugs–review. Biomol. Ther. 2021 29 6 596 604 10.4062/biomolther.2021.122 34697272
    [Google Scholar]
  114. Cohen J.C. Horton J.D. Hobbs H.H. Human fatty liver disease: old questions and new insights. Science 2011 332 6037 1519 1523 10.1126/science.1204265 21700865
    [Google Scholar]
  115. Schwabe R.F. Maher J.J. Lipids in liver disease: looking beyond steatosis. Gastroenterology 2012 142 1 8 11 10.1053/j.gastro.2011.11.004 22107717
    [Google Scholar]
  116. Mouskeftara T. Kalopitas G. Liapikos T. Arvanitakis K. Germanidis G. Gika H. Predicting non-alcoholic steatohepatitis: a lipidomics-driven machine learning approach. Int. J. Mol. Sci. 2024 25 11 5965 10.3390/ijms25115965 38892150
    [Google Scholar]
  117. Williams C.D. Stengel J. Asike M.I. Torres D.M. Shaw J. Contreras M. Landt C.L. Harrison S.A. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011 140 1 124 131 10.1053/j.gastro.2010.09.038 20858492
    [Google Scholar]
  118. Rinella M.E. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015 313 22 2263 2273 10.1001/jama.2015.5370 26057287
    [Google Scholar]
  119. Li H. Xu Q.Y. Xie Y. Luo J.J. Cao H.X. Pan Q. Effects of chronic HBV infection on lipid metabolism in non-alcoholic fatty liver disease: A lipidomic analysis. Ann. Hepatol. 2021 24 100316 10.1016/j.aohep.2021.100316 33515803
    [Google Scholar]
  120. Chatrath H. Vuppalanchi R. Chalasani N. Seminars in liver disease New York Thieme Medical Publishers 2012 32 022 029
    [Google Scholar]
  121. Baum S.J. Etherton K.P.M. Willett W.C. Lichtenstein A.H. Rudel L.L. Maki K.C. Whelan J. Ramsden C.E. Block R.C. Fatty acids in cardiovascular health and disease: A comprehensive update. J. Clin. Lipidol. 2012 6 3 216 234 10.1016/j.jacl.2012.04.077 22658146
    [Google Scholar]
  122. Freeman L.R. Zitlin H.V. Rosenberger D.S. Granholm A.C. Damaging effects of a high-fat diet to the brain and cognition: A review of proposed mechanisms. Nutr. Neurosci. 2014 17 6 241 251 10.1179/1476830513Y.0000000092 24192577
    [Google Scholar]
  123. Georg P. Ludvik B. Lipids and diabetes. J. Clin. Basic Card. 2000 3 3 159 162
    [Google Scholar]
  124. Adiels M. Taskinen M.R. Borén J. Fatty liver, insulin resistance, and dyslipidemia. Curr. Diab. Rep. 2008 8 1 60 64 10.1007/s11892‑008‑0011‑4 18367000
    [Google Scholar]
  125. Stillman A.E. Jaundice. Clinical Methods: The History. 3rd Ed. Physical, and Laboratory Examinations 1990
    [Google Scholar]
  126. Kelly W.R. The liver and biliary system. Path. Domest. Ani. 1993 2 4 319 406
    [Google Scholar]
  127. Fargo M.V. Grogan S.P. Saguil A. Evaluation of jaundice in adults. Am. Fam. Physician 2017 95 3 164 168 28145671
    [Google Scholar]
  128. Roche S.P. Kobos R. Jaundice in the adult patient. Am. Fam. Physician 2004 69 2 299 304 14765767
    [Google Scholar]
  129. Virtue S. Puig V.A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochimica et Biophysica Acta 2010 1801 3 338 349
    [Google Scholar]
  130. Jin X. Qiu T. Li L. Yu R. Chen X. Li C. Proud C.G. Jiang T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023 13 6 2403 2424 10.1016/j.apsb.2023.01.012 37425065
    [Google Scholar]
  131. Gomez M.G. Gray S. Puig V.A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1). Public Health Nutr. 2007 10 10A 1132 1137 10.1017/S1368980007000614 17903321
    [Google Scholar]
  132. García M.C. Izquierdo A. Velagapudi V. Vivas Y. Velasco I. Campbell M. Burling K. Cava F. Ros M. Orešič M. Puig V.A. Gomez M.G. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model. Dis. Model. Mech. 2012 5 5 dmm.009266 10.1242/dmm.009266 22773754
    [Google Scholar]
  133. Barbagallo C.M. Cefalù A.B. Giammanco A. Noto D. Caldarella R. Ciaccio M. Averna M.R. Nardi E. Lipoprotein abnormalities in chronic kidney disease and renal transplantation. Life 2021 11 4 315 10.3390/life11040315 33916487
    [Google Scholar]
  134. Lanzon B. Taboada M.M. Alves C.V. Bedmar V.R. González de Pablos I. Duberg D. Gomez P. Rodriguez E. Orešič M. Hyötyläinen T. Morales E. Ruperez F.J. Gomez M.G. Lipidomic and metabolomic signature of progression of chronic kidney disease in patients with severe obesity. Metabolites 2021 11 12 836 10.3390/metabo11120836 34940593
    [Google Scholar]
  135. Zamora G. Shaver P.A.L. Minimal change disease. StatPearls Treasure Island StatPearls Publishing 2020
    [Google Scholar]
  136. Chugh S.S. Clement L.C. Macé C. New insights into human minimal change disease: lessons from animal models. Am. J. Kidney Dis. 2012 59 2 284 292 10.1053/j.ajkd.2011.07.024 21974967
    [Google Scholar]
  137. Lahuerta I.A. García M.C. Gómez M.G. Lipotoxicity as a trigger factor of renal disease. J. Nephrol. 2016 29 5 603 610 10.1007/s40620‑016‑0278‑5 26956132
    [Google Scholar]
  138. Roy A. Biswas S. Samanta A.P. Das R.K. Madhwani K.P. Patra K.K. Study on lipid profile in idiopathic nephrotic syndrome in children. Eur. J. Cardiovasc. Med. 2024 14 795 802
    [Google Scholar]
  139. Vaidya S.R. Chronic kidney disease. StatPearls StatPearls Publishing Treasure Island (FL) 2022
    [Google Scholar]
  140. Arabi Y.M. Tamimi W. Jones G. Jawdat D. Tamim H. Dorzi A.H.M. Sadat M. Afesh L. Sakhija M. Dawood A.A. Free fatty acids’ level and nutrition in critically ill patients and association with outcomes: a prospective sub-study of PermiT trial. Nutrients 2019 11 2 384 10.3390/nu11020384 30781774
    [Google Scholar]
  141. Kwon S. Kim D.K. Oh K.H. Joo K.W. Lim C.S. Kim Y.S. Han S.S. Apolipoprotein B is a risk factor for end-stage renal disease. Clin. Kidney J. 2021 14 2 617 623 10.1093/ckj/sfz186 33623687
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673351452241220071215
Loading
/content/journals/cmc/10.2174/0109298673351452241220071215
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: lipid metabolism ; dyslipidemia ; cancers ; atherosclerosis ; Lipids ; human diseases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test