Skip to content
2000
image of Multiple Machine Learning Models, Molecular Subtyping and Single- cell Analysis Identify PANoptosis-related Core Genes and their Association with Subtypes in Crohn’s Disease

Abstract

Background

PANoptosis plays an important role in many inflammatory diseases. However, there are no reports on the association between PANoptosis and CD.

Materials and Methods

This study used five machine learning algorithms - least absolute shrinkage and selection operator, support vector machine, random forest, decision tree and Gaussian mixture models - to construct CD’s PANoptosis signature. Unsupervised hierarchical clustering analysis was used to identify PANoptosis-associated subgroups of CD. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted to compare the PANoptosis-associated subgroups of CD among the potential biological mechanisms. Single sample GSEA was used to assess immune microenvironmental differences among the subgroups. The potential role of PANoptosis in CD was further explored using single-cell RNA-Seq (scRNA-Seq) for PANoptosis scoring, differential analysis, pseudotime analysis, cellular communication analysis and weighted gene co-expression network analysis (WGCNA) analysis.

Results

CD’s PANoptosis signature consisted of seven genes: , , , , , and . The PANoptosis signature in multiple cohorts had a strong ability to recognise CD. The levels of immune cell infiltration and the vigour of the immune responses significantly varied between the two subpopulations of CD associated with PANoptosis. Multiple lines of evidence from the GO, KEGG, GSEA, GSVA, scRNA-Seq and WGCNA analyses suggested that I-kappaB kinase/NF-kappaB signalling, mitogen-activated protein kinase (MAPK), leukocyte activation and leukocyte migration were mechanisms closely associated with PANoptosis in CD.

Conclusion

This study is the first to construct a PANoptosis signature with excellent efficacy in recognising CD. PANoptosis may mediate the process of CD through inflammatory and immune mechanisms, such as NF- kappaB, MAPK and leukocyte migration.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330894241008060309
2024-10-21
2024-11-26
Loading full text...

Full text loading...

References

  1. Kosinsky R.L. Gonzalez M.M. Saul D. Barros L.L. Sagstetter M.R. Fedyshyn Y. Nair A. Sun Z. Hamdan F.H. Gibbons H.R. Perez Pachon M.E. Druliner B.R. Johnsen S.A. Faubion W.A. The FOXP3+ pro-inflammatory T cell: A potential therapeutic target in crohn’s disease. Gastroenterology 2024 166 4 631 644.e17 10.1053/j.gastro.2024.01.007 38211712
    [Google Scholar]
  2. Imbrizi M. Magro F. Coy C.S.R. Pharmacological therapy in inflammatory bowel diseases: A narrative review of the past 90 years. Pharmaceuticals 2023 16 9 1272 10.3390/ph16091272 37765080
    [Google Scholar]
  3. Rivera Rodríguez R. Johnson J.J. Terpenes: Modulating anti-inflammatory signaling in inflammatory bowel disease. Pharmacol. Ther. 2023 248 108456 10.1016/j.pharmthera.2023.108456 37247693
    [Google Scholar]
  4. Agrawal M. Jess T. Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United European Gastroenterol. J. 2022 10 10 1113 1120 10.1002/ueg2.12317 36251359
    [Google Scholar]
  5. Seyed Tabib N.S. Madgwick M. Sudhakar P. Verstockt B. Korcsmaros T. Vermeire S. Big data in IBD: Big progress for clinical practice. Gut 2020 69 8 1520 1532 10.1136/gutjnl‑2019‑320065 32111636
    [Google Scholar]
  6. Sinopoulou V. Gordon M. Akobeng A.K. Gasparetto M. Sammaan M. Vasiliou J. Dovey T.M. Interventions for the management of abdominal pain in Crohn’s disease and inflammatory bowel disease. Cochrane Database Syst. Rev. 2021 11 11 CD013531 34844288
    [Google Scholar]
  7. Lenti M.V. Cococcia S. Ghorayeb J. Di Sabatino A. Selinger C.P. Stigmatisation and resilience in inflammatory bowel disease. Intern. Emerg. Med. 2020 15 2 211 223 10.1007/s11739‑019‑02268‑0 31893346
    [Google Scholar]
  8. Shah S.C. Itzkowitz S.H. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology 2022 162 3 715 730.e3 10.1053/j.gastro.2021.10.035 34757143
    [Google Scholar]
  9. Muller M. Hansmannel F. Arnone D. Choukour M. Ndiaye N.C. Kokten T. Houlgatte R. Peyrin-Biroulet L. Genomic and molecular alterations in human inflammatory bowel disease-associated colorectal cancer. United European Gastroenterol. J. 2020 8 6 675 684 10.1177/2050640620919254 32268844
    [Google Scholar]
  10. Hammoudi N. Lehmann-Che J. Lambert J. Amoyel M. Maggiori L. Salfati D. Tran Minh M. L. Baudry C. Asesio N. Poirot B. Lourenco N. Corte H. Allez M. Aparicio T. Gornet J. M. Prognosis and molecular characteristics of IBD-associated colorectal cancer: Experience from a French tertiary-care center. Dig. Liver Dis. 2023 55 9 1280 1287
    [Google Scholar]
  11. Agrawal M. Spencer E.A. Colombel J.F. Ungaro R.C. Approach to the management of recently diagnosed inflammatory bowel disease patients: A user’s guide for adult and pediatric gastroenterologists. Gastroenterology 2021 161 1 47 65 10.1053/j.gastro.2021.04.063 33940007
    [Google Scholar]
  12. Wang Y. Kanneganti T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J. 2021 19 4641 4657 10.1016/j.csbj.2021.07.038 34504660
    [Google Scholar]
  13. Yang Z. Kao X. Huang N. Yuan K. Chen J. He M. Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. J. Inflamm. Res. 2024 17 1941 1956 10.2147/JIR.S452608 38562657
    [Google Scholar]
  14. Pandeya A. Kanneganti T.D. Therapeutic potential of PANoptosis: Innate sensors, inflammasomes, and RIPKs in PANoptosomes. Trends Mol. Med. 2024 30 1 74 88 10.1016/j.molmed.2023.10.001 37977994
    [Google Scholar]
  15. Sharma B.R. Karki R. Rajesh Y. Kanneganti T.D. Immune regulator IRF1 contributes to ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosome activation and inflammatory cell death (PANoptosis). J. Biol. Chem. 2023 299 9 105141 10.1016/j.jbc.2023.105141 37557956
    [Google Scholar]
  16. Chen W. Gullett J.M. Tweedell R.E. Kanneganti T.D. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur. J. Immunol. 2023 53 11 2250235 10.1002/eji.202250235 36782083
    [Google Scholar]
  17. He W. Tang M. Gu R. Wu X. Mu X. Nie X. The role of p53 in regulating chronic inflammation and PANoptosis in diabetic wounds. Aging Dis. 2024 38377027
    [Google Scholar]
  18. Karki R. Sharma B.R. Tuladhar S. Williams E.P. Zalduondo L. Samir P. Zheng M. Sundaram B. Banoth B. Malireddi R.K.S. Schreiner P. Neale G. Vogel P. Webby R. Jonsson C.B. Kanneganti T.D. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021 184 1 149 168.e17 10.1016/j.cell.2020.11.025 33278357
    [Google Scholar]
  19. Karki R. Kanneganti T.D. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J. Transl. Med. 2022 20 1 542 10.1186/s12967‑022‑03767‑z 36419185
    [Google Scholar]
  20. Messaoud-Nacer Y. Culerier E. Rose S. Maillet I. Rouxel N. Briault S. Ryffel B. Quesniaux V.F.J. Togbe D. STING agonist diABZI induces PANoptosis and DNA mediated acute respiratory distress syndrome (ARDS). Cell Death Dis. 2022 13 3 269 10.1038/s41419‑022‑04664‑5 35338116
    [Google Scholar]
  21. Wang J.M. Yang J. Xia W.Y. Wang Y.M. Zhu Y.B. Huang Q. Feng T. Xie L.S. Li S.H. Liu S.Q. Yu S.G. Wu Q.F. Comprehensive analysis of panoptosis-related gene signature of ulcerative colitis. Int. J. Mol. Sci. 2023 25 1 348 10.3390/ijms25010348 38203518
    [Google Scholar]
  22. Zhao J. Zhao Z. Ying P. Zhou Y. Xu Z. Wang H. Tang L. METTL3-mediated m 6 A modification of circPRKAR1B promotes Crohn’s colitis by inducing pyroptosis via autophagy inhibition. Clin. Transl. Med. 2023 13 9 e1405 10.1002/ctm2.1405 37679886
    [Google Scholar]
  23. Zhang J. Cen L. Zhang X. Tang C. Chen Y. Zhang Y. Yu M. Lu C. Li M. Li S. Lin B. Zhang T. Song X. Yu C. Wu H. Shen Z. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT. Redox Biol. 2022 56 102469 10.1016/j.redox.2022.102469 36126419
    [Google Scholar]
  24. Yang X. Li G. Lou P. Zhang M. Yao K. Xiao J. Chen Y. Xu J. Tian S. Deng M. Pan Y. Li M. Wu X. Liu R. Shi X. Tian Y. Yu L. Ke H. Jiao B. Cong Y. Plikus M.V. Liu X. Yu Z. Lv C. Excessive nucleic acid R-loops induce mitochondria-dependent epithelial cell necroptosis and drive spontaneous intestinal inflammation. Proc. Natl. Acad. Sci. USA 2024 121 1 e2307395120 10.1073/pnas.2307395120 38157451
    [Google Scholar]
  25. Cheung T. S. Giacomini C. Cereda M. Avivar-Valderas A. Capece D. Bertolino G. M. delaRosa O. Hicks R. Ciccocioppo R. Franzoso G. Galleu A. Ciccarelli F. D. Dazzi F. Apoptosis in mesenchymal stromal cells activates an immunosuppressive secretome predicting clinical response in Crohn's disease. Mol. Ther. 2023 31 12 3531 3544
    [Google Scholar]
  26. Zhu J. Huang Q. Peng X. Luo C. Liu Z. Liu D. Yuan H. Yuan R. Cheng X. Identification of molecular subtypes based on PANoptosis-related genes and construction of a signature for predicting the prognosis and response to immunotherapy response in hepatocellular carcinoma. Front. Immunol. 2023 14 1218661 10.3389/fimmu.2023.1218661 37662906
    [Google Scholar]
  27. Li Y. Lu F. Yin Y. Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease. Sci. Rep. 2022 12 1 11340 10.1038/s41598‑022‑15609‑5 35790774
    [Google Scholar]
  28. Bao W. Wang L. Liu X. Li M. Predicting diagnostic biomarkers associated with immune infiltration in Crohn’s disease based on machine learning and bioinformatics. Eur. J. Med. Res. 2023 28 1 255 10.1186/s40001‑023‑01200‑9 37496049
    [Google Scholar]
  29. Li Y. Pan J. Zhou N. Fu D. Lian G. Yi J. Peng Y. Liu X. A random forest model predicts responses to infliximab in Crohn’s disease based on clinical and serological parameters. Scand. J. Gastroenterol. 2021 56 9 1030 1039 10.1080/00365521.2021.1939411 34304688
    [Google Scholar]
  30. Zeng J. Huai M. Ge W. Yang Z. Pan X. Development and validation of diagnosis model for inflammatory bowel diseases based on a serologic biomarker panel: A decision tree model study. Arab J. Gastroenterol. 2024
    [Google Scholar]
  31. Scrucca L. Fop M. Murphy T.B. Raftery A.E. mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. R J. 2016 8 1 289 317 10.32614/RJ‑2016‑021 27818791
    [Google Scholar]
  32. Zeng D. Ye Z. Shen R. Yu G. Wu J. Xiong Y. Zhou R. Qiu W. Huang N. Sun L. Li X. Bin J. Liao Y. Shi M. Liao W. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol. 2021 12 687975 10.3389/fimmu.2021.687975 34276676
    [Google Scholar]
  33. Huang Q. Liu Y. Du Y. Garmire L.X. Evaluation of cell type annotation r packages on single-cell RNA-seq data. Genom Proteom Bioinform. 2021 19 2 267 281 10.1016/j.gpb.2020.07.004 33359678
    [Google Scholar]
  34. Wu H. Gonzalez Villalobos R. Yao X. Reilly D. Chen T. Rankin M. Myshkin E. Breyer M.D. Humphreys B.D. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022 34 7 1064 1078.e6 10.1016/j.cmet.2022.05.010 35709763
    [Google Scholar]
  35. Dong C. Zhao L. Liu X. Dang L. Zhang X. Single-cell analysis reveals landscape of endometrial cancer response to estrogen and identification of early diagnostic markers. PLoS One 2024 19 3 e0301128 10.1371/journal.pone.0301128 38517922
    [Google Scholar]
  36. Jin S. Guerrero-Juarez C.F. Zhang L. Chang I. Ramos R. Kuan C.H. Myung P. Plikus M.V. Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021 12 1 1088 10.1038/s41467‑021‑21246‑9 33597522
    [Google Scholar]
  37. Qiu X. Mao Q. Tang Y. Wang L. Chawla R. Pliner H.A. Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 2017 14 10 979 982 10.1038/nmeth.4402 28825705
    [Google Scholar]
  38. Morabito S. Reese F. Rahimzadeh N. Miyoshi E. Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 2023 3 6 100498
    [Google Scholar]
  39. Liu Y. Yang X. Gan J. Chen S. Xiao Z.X. Cao Y. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022 50 W1 W159 W164 10.1093/nar/gkac394 35609983
    [Google Scholar]
  40. Singh S. Murad M.H. Fumery M. Sedano R. Jairath V. Panaccione R. Sandborn W.J. Ma C. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2021 6 12 1002 1014 10.1016/S2468‑1253(21)00312‑5 34688373
    [Google Scholar]
  41. Yuan Y. Fu M. Li N. Ye M. Identification of immune infiltration and cuproptosis-related subgroups in Crohn’s disease. Front. Immunol. 2022 13 1074271 10.3389/fimmu.2022.1074271 36466876
    [Google Scholar]
  42. Sun W. Li P. Wang M. Xu Y. Shen D. Zhang X. Liu Y. Molecular characterization of PANoptosis-related genes with features of immune dysregulation in systemic lupus erythematosus. Clin. Immunol. 2023 253 109660 10.1016/j.clim.2023.109660 37295541
    [Google Scholar]
  43. Yang Q. Song W. Reheman H. Wang D. Qu J. Li Y. PANoptosis, an indicator of COVID-19 severity and outcomes. Brief. Bioinform. 2024 25 3 bbae124 10.1093/bib/bbae124 38555477
    [Google Scholar]
  44. He Y. Q. Deng J. L. Zhou C. C. Jiang S. G. Zhang F. Tao X. Chen W. S. Ursodeoxycholic acid alleviates sepsis-induced lung injury by blocking PANoptosis via STING pathway. Int. Immunopharmacol. 2023 125 Pt B 111161 10.1016/j.intimp.2023.111161
    [Google Scholar]
  45. Pan Z. Lin H. Fu Y. Zeng F. Gu F. Niu G. Fang J. Gu B. Identification of gene signatures associated with ulcerative colitis and the association with immune infiltrates in colon cancer. Front. Immunol. 2023 14 1086898 10.3389/fimmu.2023.1086898 36742294
    [Google Scholar]
  46. Keita Å.V. Alkaissi L.Y. Holm E.B. Heil S.D.S. Chassaing B. Darfeuille-Michaud A. McKay D.M. Söderholm J.D. Enhanced E. coli LF82 translocation through the follicle-associated epithelium in crohn’s disease is dependent on long polar fimbriae and CEACAM6 expression, and increases paracellular permeability. J. Crohn’s Colitis 2020 14 2 216 229 10.1093/ecco‑jcc/jjz144 31393983
    [Google Scholar]
  47. Zhou R. Qiu P. Wang H. Yang H. Yang X. Ye M. Wang F. Zhao Q. Identification of microRNA-16-5p and microRNA-21-5p in feces as potential noninvasive biomarkers for inflammatory bowel disease. Aging 2021 13 3 4634 4646 10.18632/aging.202428 33535181
    [Google Scholar]
  48. Todd Kuenstner J. Kali M. Welch C. Whole exome sequencing of patients who resolved Crohn’s disease and complex regional pain syndrome following treatment for paratuberculosis. Gut Pathog. 2019 11 1 34 10.1186/s13099‑019‑0311‑z 31249631
    [Google Scholar]
  49. Wu F. Dassopoulos T. Cope L. Maitra A. Brant S.R. Harris M.L. Bayless T.M. Parmigiani G. Chakravarti S. Genome-wide gene expression differences in Crohnʼs disease and ulcerative colitis from endoscopic pinch biopsies: Insights into distinctive pathogenesis. Inflamm. Bowel Dis. 2007 13 7 807 821 10.1002/ibd.20110 17262812
    [Google Scholar]
  50. Krzystek-Korpacka M. Diakowska D. Bania J. Gamian A. Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: Implications for finding suitable normalizers for inflammatory bowel disease studies. Inflamm. Bowel Dis. 2014 20 7 1147 1156 10.1097/MIB.0000000000000067 24859296
    [Google Scholar]
  51. Hao Y. Yang B. Yang J. Shi X. Yang X. Zhang D. Zhao D. Yan W. Chen L. Zheng H. Zhang K. Liu X. ZBP1: A powerful innate immune sensor and double-edged sword in host immunity. Int. J. Mol. Sci. 2022 23 18 10224 10.3390/ijms231810224 36142136
    [Google Scholar]
  52. Liu X. Tang A.L. Chen J. Gao N. Zhang G. Xiao C. RIPK1 in the inflammatory response and sepsis: Recent advances, drug discovery and beyond. Front. Immunol. 2023 14 1114103 10.3389/fimmu.2023.1114103 37090690
    [Google Scholar]
  53. Zhou R. Ying J. Qiu X. Yu L. Yue Y. Liu Q. Shi J. Li X. Qu Y. Mu D. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin. Med. J. 2022 135 12 1474 1485 10.1097/CM9.0000000000002010 35261352
    [Google Scholar]
  54. Zhou S. Yu J. Crohn’s disease and breast cancer: A literature review of the mechanisms and treatment. Intern. Emerg. Med. 2023 18 5 1303 1316 10.1007/s11739‑023‑03281‑0 37138170
    [Google Scholar]
  55. Yin J. Hu T. Xu L. Zhang L. Zhu J. Ye Y. Pang Z. Hsa_circRNA_103124 upregulation in Crohn’s disease promoted macrophage M1 polarization to maintain an inflammatory microenvironment via activation of the AKT2 and TLR4/NF-κB pathways. Int. Immunopharmacol. 2023 123 110763 10.1016/j.intimp.2023.110763 37567009
    [Google Scholar]
  56. Zhou L. Zhu L. Wu X. Hu S. Zhang S. Ning M. Yu J. Chen M. Decreased TMIGD1 aggravates colitis and intestinal barrier dysfunction via the BANF1-NF-κB pathway in Crohn’s disease. BMC Med. 2023 21 1 287 10.1186/s12916‑023‑02989‑2 37542259
    [Google Scholar]
  57. Song X. Wen H. Zuo L. Geng Z. Nian J. Wang L. Jiang Y. Tao J. Zhu Z. Wu X. Wang Z. Zhang X. Yu L. Zhao H. Xiang P. Li J. Shen L. Hu J. Epac-2 ameliorates spontaneous colitis in Il-10 −/− mice by protecting the intestinal barrier and suppressing NF-κB/MAPK signalling. J. Cell. Mol. Med. 2022 26 1 216 227 10.1111/jcmm.17077 34862717
    [Google Scholar]
  58. Reza Lahimchi M. Eslami M. Yousefi B. Interleukin-35 and interleukin-37 anti-inflammatory effect on inflammatory bowel disease: Application of non-coding RNAs in IBD therapy. Int. Immunopharmacol. 2023 117 109932 10.1016/j.intimp.2023.109932 37012889
    [Google Scholar]
  59. Zhang L. Lin Y. Xu X. Liu H. Wang X. Pan J. Telotristat Etiprate alleviates rheumatoid arthritis by targeting LGALS3 and affecting MAPK signaling. Intractable Rare Dis. Res. 2023 12 1 45 57 10.5582/irdr.2022.01121 36873667
    [Google Scholar]
  60. Park W.S. Jung W.K. Park S.K. Heo K.W. Kang M.S. Choi Y.H. Kim G.Y. Park S.G. Seo S.K. Yea S.S. Liu K.H. Shim E.B. Kim D.J. Her M. Choi I.W. Expression of galectin-9 by IFN-γ stimulated human nasal polyp fibroblasts through MAPK, PI3K, and JAK/STAT signaling pathways. Biochem. Biophys. Res. Commun. 2011 411 2 259 264 10.1016/j.bbrc.2011.06.110 21723260
    [Google Scholar]
  61. Lin S.Y. Chang C.L. Liou K.T. Kao Y.K. Wang Y.H. Chang C.C. Kuo T.B.J. Huang H.T. Yang C.C.H. Liaw C.C. Shen Y.C. The protective role of Achyranthes aspera extract against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and PANoptosis. J. Ethnopharmacol. 2024 319 Pt 1 117097 10.1016/j.jep.2023.117097 37648176
    [Google Scholar]
  62. Veny M. Fernández-Clotet A. Panés J. Controlling leukocyte trafficking in IBD. Pharmacol. Res. 2020 159 105050 10.1016/j.phrs.2020.105050 32598943
    [Google Scholar]
  63. Getter T. Margalit R. Kahremany S. Levy L. Blum E. Khazanov N. Keshet-Levy N.Y. Tamir T.Y. Ben Major M. Lahav R. Zilber S. Senderowitz H. Bradfield P. Imhof B.A. Alpert E. Gruzman A. Novel inhibitors of leukocyte transendothelial migration. Bioorg. Chem. 2019 92 103250 10.1016/j.bioorg.2019.103250 31580982
    [Google Scholar]
  64. Lee S. Karki R. Wang Y. Nguyen L.N. Kalathur R.C. Kanneganti T.D. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 2021 597 7876 415 419 10.1038/s41586‑021‑03875‑8 34471287
    [Google Scholar]
  65. Saez A. Herrero-Fernandez B. Gomez-Bris R. Sánchez-Martinez H. Gonzalez-Granado J.M. Pathophysiology of inflammatory bowel disease: Innate immune system. Int. J. Mol. Sci. 2023 24 2 1526 10.3390/ijms24021526 36675038
    [Google Scholar]
  66. Cordes F. Foell D. Ding J.N. Varga G. Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J. Gastroenterol. 2020 26 28 4055 4075 10.3748/wjg.v26.i28.4055 32821070
    [Google Scholar]
  67. Woznicki J.A. Saini N. Flood P. Rajaram S. Lee C.M. Stamou P. Skowyra A. Bustamante-Garrido M. Regazzoni K. Crawford N. McDade S.S. Longley D.B. Aza-Blanc P. Shanahan F. Zulquernain S.A. McCarthy J. Melgar S. McRae B.L. Nally K. TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis. 2021 12 10 864 10.1038/s41419‑021‑04151‑3 34556638
    [Google Scholar]
  68. Salas A. Hernandez-Rocha C. Duijvestein M. Faubion W. McGovern D. Vermeire S. Vetrano S. Vande Casteele N. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020 17 6 323 337 10.1038/s41575‑020‑0273‑0 32203403
    [Google Scholar]
  69. Herrera-deGuise C. Serra-Ruiz X. Lastiri E. Borruel N. JAK inhibitors: A new dawn for oral therapies in inflammatory bowel diseases. Front. Med. 2023 10 1089099 10.3389/fmed.2023.1089099 36936239
    [Google Scholar]
  70. Lu J. Li F. Ye M. PANoptosis and autophagy-related molecular signature and immune landscape in ulcerative colitis: Integrated analysis and experimental validation. J. Inflamm. Res. 2024 17 3225 3245 10.2147/JIR.S455862 38800594
    [Google Scholar]
  71. Chu Y.D. Cheng L.C. Lim S.N. Lai M.W. Yeh C.T. Lin W.R. Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. Cell Death Dis. 2023 14 10 660 10.1038/s41419‑023‑06187‑z 37816733
    [Google Scholar]
  72. Yang T. Wang H. Li M. Yang L. Han Y. Liu C. Zhang B. Wu M. Wang G. Zhang Z. Zhang W. Huang J. Zhang H. Cao T. Chen P. Zhang W. CD151 promotes colorectal cancer progression by a crosstalk involving CEACAM6, LGR5 and Wnt signaling via TGFβ1. Int. J. Biol. Sci. 2021 17 3 848 860 10.7150/ijbs.53657 33767593
    [Google Scholar]
  73. Lou T. Zhang L. Jin Z. Miao C. Wang J. Ke K. miR-455-5p enhances 5-fluorouracil sensitivity in colorectal cancer cells by targeting PIK3R1 and DEPDC1. Open Med. 2022 17 1 847 856 10.1515/med‑2022‑0474 35582195
    [Google Scholar]
  74. Liu H. Jiang X. Zhang M. Pan Y. Yu Y. Zhang S. Ma X. Li Q. Chen K. Association of CASP9, CASP10 gene polymorphisms and tea drinking with colorectal cancer risk in the Han Chinese population. J. Zhejiang Univ. Sci. B 2013 14 1 47 57 10.1631/jzus.B1200218 23303631
    [Google Scholar]
  75. Jiang X. Yang L. Chen G. Feng X. Liu Y. Gao Q. Mai M. Chen C.Y.C. Ye S. Yang Z. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation. Cancer Lett. 2024 584 216600 10.1016/j.canlet.2023.216600 38159835
    [Google Scholar]
  76. Ha Y.J. Tak K.H. Kim C.W. Roh S.A. Choi E.K. Cho D.H. Kim J.H. Kim S.K. Kim S.Y. Kim Y.S. Kim J.C. PSMB8 as a candidate marker of responsiveness to preoperative radiation therapy in rectal cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2017 98 5 1164 1173 10.1016/j.ijrobp.2017.03.023 28721901
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330894241008060309
Loading
/content/journals/cmc/10.2174/0109298673330894241008060309
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: machine learning ; NF-kappaB ; leukocyte activation ; MAPK ; PANoptosis ; Crohn's disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test