Skip to content
2000
image of Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives

Abstract

Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334469241017053508
2024-10-30
2024-11-26
Loading full text...

Full text loading...

References

  1. Bender A. Bojanic D. Davies J.W. Crisman T.J. Mikhailov D. Scheiber J. Jenkins J.L. Deng Z. Hill W.A. Popov M. Jacoby E. Glick M. Which aspects of HTS are empirically correlated with downstream success? Curr. Opin. Drug Discov. Devel. 2008 11 3 327 337 18428086
    [Google Scholar]
  2. Sadybekov A.V. Katritch V. Computational approaches streamlining drug discovery. Nature 2023 616 7958 673 685 10.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  3. Congreve M. de Graaf C. Swain N.A. Tate C.G. Impact of GPCR Structures on Drug Discovery. Cell 2020 181 1 81 91 10.1016/j.cell.2020.03.003 32243800
    [Google Scholar]
  4. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  5. Holcomb M. Chang Y.T. Goodsell D.S. Forli S. Evaluation of AlphaFold2 structures as docking targets. Protein Sci. 2023 32 1 e4530 10.1002/pro.4530 36479776
    [Google Scholar]
  6. Liu J. Wang R. Classification of current scoring functions. J. Chem. Inf. Model. 2015 55 3 475 482 10.1021/ci500731a 25647463
    [Google Scholar]
  7. Sliwoski G. Kothiwale S. Meiler J. Lowe E.W. Computational methods in drug discovery. Pharmacol Rev. 2014 66 1 334 395 10.1124/pr.112.007336
    [Google Scholar]
  8. Bender B.J. Gahbauer S. Luttens A. Lyu J. Webb C.M. Stein R.M. Fink E.A. Balius T.E. Carlsson J. Irwin J.J. Shoichet B.K. A practical guide to large-scale docking. Nat. Protoc. 2021 16 10 4799 4832 10.1038/s41596‑021‑00597‑z 34561691
    [Google Scholar]
  9. Weiner S.J. Kollman P.A. Case D.A. Singh U.C. Ghio C. Alagona G. Profeta S. Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984 106 3 765 784 10.1021/ja00315a051
    [Google Scholar]
  10. Guedes I.A. Barreto A.M.S. Marinho D. Krempser E. Kuenemann M.A. Sperandio O. Dardenne L.E. Miteva M.A. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep. 2021 11 1 3198 10.1038/s41598‑021‑82410‑1 33542326
    [Google Scholar]
  11. Dias R. de Azevedo W. Jr Molecular docking algorithms. Curr. Drug Targets 2008 9 12 1040 1047 10.2174/138945008786949432 19128213
    [Google Scholar]
  12. Yadava U. Search algorithms and scoring methods in protein-ligand docking. Endocrinology&Metabolism International Journal 2018 6 6 359 367 10.15406/emij.2018.06.00212
    [Google Scholar]
  13. Halperin I. Ma B. Wolfson H. Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002 47 4 409 443 10.1002/prot.10115 12001221
    [Google Scholar]
  14. Goodsell D.S. Olson A.J. Automated docking of substrates to proteins by simulated annealing. Proteins 1990 8 3 195 202 10.1002/prot.340080302 2281083
    [Google Scholar]
  15. Jones G. Willett P. Glen R.C. Leach A.R. Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997 267 3 727 748 10.1006/jmbi.1996.0897 9126849
    [Google Scholar]
  16. DesJarlais R.L. Sheridan R.P. Seibel G.L. Dixon J.S. Kuntz I.D. Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J. Med. Chem. 1988 31 4 722 729 10.1021/jm00399a006 3127588
    [Google Scholar]
  17. Scrima S. Tiberti M. Ryde U. Lambrughi M. Papaleo E. Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy. Biochim Biophys Acta BBA 2023 1871 4 140921
    [Google Scholar]
  18. Varela-Rial A. Majewski M. De Fabritiis G. Structure based virtual screening: Fast and slow. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 2 e1544 10.1002/wcms.1544
    [Google Scholar]
  19. Sippl M.J. Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 1993 7 4 473 501 10.1007/BF02337562 8229096
    [Google Scholar]
  20. Velec H.F.G. Gohlke H. Klebe G. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem. 2005 48 20 6296 6303 10.1021/jm050436v 16190756
    [Google Scholar]
  21. Gohlke H. Hendlich M. Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 2000 295 2 337 356 10.1006/jmbi.1999.3371 10623530
    [Google Scholar]
  22. Neudert G. Klebe G. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J. Chem. Inf. Model. 2011 51 10 2731 2745 10.1021/ci200274q 21863864
    [Google Scholar]
  23. Muegge I. Martin Y.C. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem. 1999 42 5 791 804 10.1021/jm980536j 10072678
    [Google Scholar]
  24. Hsieh J.H. Yin S. Wang X.S. Liu S. Dokholyan N.V. Tropsha A. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening. J. Chem. Inf. Model. 2012 52 1 16 28 10.1021/ci2002507 22017385
    [Google Scholar]
  25. Dias R. Macedo Timmers L.F. Caceres R. de Azevedo W. Jr Evaluation of molecular docking using polynomial empirical scoring functions. Curr. Drug Targets 2008 9 12 1062 1070 10.2174/138945008786949450 19128216
    [Google Scholar]
  26. Böhm H.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 1992 6 1 61 78 10.1007/BF00124387 1583540
    [Google Scholar]
  27. Eldridge M.D. Murray C.W. Auton T.R. Paolini G.V. Mee R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 1997 11 5 425 445 10.1023/A:1007996124545 9385547
    [Google Scholar]
  28. Wang R. Lai L. Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 2002 16 1 11 26 10.1023/A:1016357811882 12197663
    [Google Scholar]
  29. Friesner R.A. Banks J.L. Murphy R.B. Halgren T.A. Klicic J.J. Mainz D.T. Repasky M.P. Knoll E.H. Shelley M. Perry J.K. Shaw D.E. Francis P. Shenkin P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004 47 7 1739 1749 10.1021/jm0306430 15027865
    [Google Scholar]
  30. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  31. Quiroga R. Villarreal M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening. PLOS ONE 2016 11 5 e0155183
    [Google Scholar]
  32. Li H. Leung K.S. Wong M.H. idock: A multithreaded virtual screening tool for flexible ligand docking. 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 09-12 May, 2012, San Diego, CA, USA, 2012, pp. 77-84. 10.1109/CIBCB.2012.6217214
    [Google Scholar]
  33. Bitencourt-Ferreira G. Villarreal M.A. Quiroga R. Biziukova N. Poroikov V. Tarasova O. de Azevedo Junior W.F. Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Curr. Med. Chem. 2024 31 17 2361 2377 10.2174/0929867330666230321103731 36944627
    [Google Scholar]
  34. Irwin J.J. Raushel F.M. Shoichet B.K. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 2005 44 37 12316 12328 10.1021/bi050801k 16156645
    [Google Scholar]
  35. Pottel J. Therrien E. Gleason J.L. Moitessier N. Docking ligands into flexible and solvated macromolecules. 6. Development and application to the docking of HDACs and other zinc metalloenzymes inhibitors. J. Chem. Inf. Model. 2014 54 1 254 265 10.1021/ci400550m 24364808
    [Google Scholar]
  36. García-Sosa A.T. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies. J. Chem. Inf. Model. 2013 53 6 1388 1405 10.1021/ci3005786 23662606
    [Google Scholar]
  37. van Dijk A.D.J. Bonvin A.M.J.J. Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 2006 22 19 2340 2347 10.1093/bioinformatics/btl395 16899489
    [Google Scholar]
  38. Forli S. Olson A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 2012 55 2 623 638 10.1021/jm2005145 22148468
    [Google Scholar]
  39. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  40. Bitencourt-Ferreira G. De Azevedo W.F. Exploring the Scoring Function Space. Docking Screens for Drug Discovery. Springer 2019 10.1007/978‑1‑4939‑9752‑7_17
    [Google Scholar]
  41. Meli R. Morris G.M. Biggin P.C. Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review. Front. Bioinform. 2022 2 885983 10.3389/fbinf.2022.885983 36187180
    [Google Scholar]
  42. Ballester P.J. Mitchell J.B.O. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 2010 26 9 1169 1175 10.1093/bioinformatics/btq112 20236947
    [Google Scholar]
  43. Zilian D. Sotriffer C.A. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model. 2013 53 8 1923 1933 10.1021/ci400120b 23705795
    [Google Scholar]
  44. Zhang X. Shen C. Jiang D. Zhang J. Ye Q. Xu L. Hou T. Pan P. Kang Y. TB-IECS: an accurate machine learning-based scoring function for virtual screening. J. Cheminform. 2023 15 1 63 10.1186/s13321‑023‑00731‑x 37403155
    [Google Scholar]
  45. Stafford K.A. Anderson B.M. Sorenson J. van den Bedem H. AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens. J. Chem. Inf. Model. 2022 62 5 1178 1189 10.1021/acs.jcim.1c01250 35235748
    [Google Scholar]
  46. Ragoza M. Hochuli J. Idrobo E. Sunseri J. Koes D.R. Protein–Ligand Scoring with Convolutional Neural Networks. J. Chem. Inf. Model. 2017 57 4 942 957 10.1021/acs.jcim.6b00740 28368587
    [Google Scholar]
  47. Volkov M. Turk J.A. Drizard N. Martin N. Hoffmann B. Gaston-Mathé Y. Rognan D. On the Frustration to Predict Binding Affinities from Protein–Ligand Structures with Deep Neural Networks. J. Med. Chem. 2022 65 11 7946 7958 10.1021/acs.jmedchem.2c00487 35608179
    [Google Scholar]
  48. Chen L. Cruz A. Ramsey S. Dickson C.J. Duca J.S. Hornak V. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. Plos one 2019 14 8 e0220113 10.1371/journal.pone.0220113
    [Google Scholar]
  49. Morris C.J. Stern J.A. Stark B. Christopherson M. Della Corte D. MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery. J. Chem. Inf. Model. 2022 62 22 5342 5350 10.1021/acs.jcim.2c00705 36342217
    [Google Scholar]
  50. Sieg J. Flachsenberg F. Rarey M. In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening. J. Chem. Inf. Model. 2019 59 3 947 961 10.1021/acs.jcim.8b00712 30835112
    [Google Scholar]
  51. Ashtawy H.M. Mahapatra N.R. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment. J. Chem. Inf. Model. 2018 58 1 119 133 10.1021/acs.jcim.7b00309 29190087
    [Google Scholar]
  52. Gabel J. Desaphy J. Rognan D. Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inf. Model. 2014 54 10 2807 2815 10.1021/ci500406k 25207678
    [Google Scholar]
  53. Méndez-Lucio O. Ahmad M. del Rio-Chanona E.A. Wegner J.K. A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat. Mach. Intell. 2021 3 12 1033 1039 10.1038/s42256‑021‑00409‑9
    [Google Scholar]
  54. Stark H. Ganea O.E. Pattanaik L. Barzilay R. Jaakkola T. EQUIBIND: Geometric deep learning for drug binding structure prediction. arXiv: 2202.05146 2023
    [Google Scholar]
  55. Lu W. Wu Q. Zhang J. Rao J. Li C. Zheng S. TANKBind: trigonometry-aware neural networks for drug-protein binding structure prediction. Proceedings of the 36th International Conference on Neural Information Processing Systems 28 Nov- 9 Dec, 2022, New Orleans, LA, USA, pp. 1-14.
    [Google Scholar]
  56. Corso G. Stark H. Jing B. Barzilay R. Jaakkola T. DiffDock: Diffusion steps, twists, and turns for molecular docking. 2023 Available from:https://openreview.net/forum?id=kKF8_K-mBbS(accessed on 2-10-2024)
  57. Zhou G. Gao Z. Ding Q. Zheng H. Xu H. Wei Z. Uni-mol: A universal 3d molecular representation learning framework. 2023 Available from:https://openreview.net/forum?id=6K2RM6wVqKu(accessed on 2-10-2024)
  58. Buttenschoen M. Morris G.M. Deane C.M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. (Camb.) 2024 15 9 3130 3139 10.1039/D3SC04185A 38425520
    [Google Scholar]
  59. Brocidiacono M. Popov K.I. Koes D.R. Tropsha A. PLANTAIN: Diffusion-inspired pose score minimization for fast and accurate molecular docking arxiv. 2307.12090 2023 http://arxiv.org/abs/2307.12090
    [Google Scholar]
  60. Alcaide E. Gao Z. Ke G. Li Y. Zhang L. Zheng H. Uni-Mol docking V2: Towards realistic and accurate binding pose prediction. arxiv. 2405.11769 2024
    [Google Scholar]
  61. Corso G. Deng A. Fry B. Polizzi N. Barzilay R. Jaakkola T. Deep Confident Steps to New Pockets: Strategies for Docking Generalization. arxiv. 2402.18396 2024
    [Google Scholar]
  62. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Ballard A.J. Bambrick J. Bodenstein S.W. Evans D.A. Hung C.C. O’Neill M. Reiman D. Tunyasuvunakool K. Wu Z. Žemgulytė A. Arvaniti E. Beattie C. Bertolli O. Bridgland A. Cherepanov A. Congreve M. Cowen-Rivers A.I. Cowie A. Figurnov M. Fuchs F.B. Gladman H. Jain R. Khan Y.A. Low C.M.R. Perlin K. Potapenko A. Savy P. Singh S. Stecula A. Thillaisundaram A. Tong C. Yakneen S. Zhong E.D. Zielinski M. Žídek A. Bapst V. Kohli P. Jaderberg M. Hassabis D. Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8016 493 500 10.1038/s41586‑024‑07487‑w 38718835
    [Google Scholar]
  63. Xue M. Liu B. Cao S. Huang X. FeatureDock: Protein-ligand docking guided by physicochemical feature-based local environment learning using transformer chemrxiv 2024 10.26434/chemrxiv‑2024‑dh2rw
    [Google Scholar]
  64. Zhang Z. He X. Long D. Luo G. Chen S. Enhancing generalizability and performance in drug–target interaction identification by integrating pharmacophore and pre-trained models. Bioinformatics 2024 40 Suppl. 1 i539 i547 10.1093/bioinformatics/btae240 38940179
    [Google Scholar]
  65. de Magalhães C.S. Almeida D.M. Barbosa H.J.C. Dardenne L.E. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 2014 289 206 224 10.1016/j.ins.2014.08.002
    [Google Scholar]
  66. Debroise T. Shakhnovich E.I. Chéron N. A Hybrid Knowledge-Based and Empirical Scoring Function for Protein–Ligand Interaction: SMoG2016. J. Chem. Inf. Model. 2017 57 3 584 593 10.1021/acs.jcim.6b00610 28191941
    [Google Scholar]
  67. Baek M. Shin W.H. Chung H.W. Seok C. GalaxyDock BP2 score: a hybrid scoring function for accurate protein–ligand docking. J. Comput. Aided Mol. Des. 2017 31 7 653 666 10.1007/s10822‑017‑0030‑9 28623486
    [Google Scholar]
  68. Li Y. Lin H. Yang H. Yuan Y. Zou R. Zhou G. Synergistic application of molecular docking and machine learning for improved binding pose. Natl Sci Open 2024 3 2 0230058 10.1360/nso/20230058
    [Google Scholar]
  69. Wang R. Fang X. Lu Y. Yang C.Y. Wang S. The PDBbind database: methodologies and updates. J. Med. Chem. 2005 48 12 4111 4119 10.1021/jm048957q 15943484
    [Google Scholar]
  70. Cheng T. Li X. Li Y. Liu Z. Wang R. Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model. 2009 49 4 1079 1093 10.1021/ci9000053 19358517
    [Google Scholar]
  71. Mysinger M.M. Carchia M. Irwin J.J. Shoichet B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 2012 55 14 6582 6594 10.1021/jm300687e 22716043
    [Google Scholar]
  72. Su M. Yang Q. Du Y. Feng G. Liu Z. Li Y. Wang R. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019 59 2 895 913 10.1021/acs.jcim.8b00545 30481020
    [Google Scholar]
  73. Lagarde N. Zagury J.F. Montes M. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. J. Chem. Inf. Model. 2015 55 7 1297 1307 10.1021/acs.jcim.5b00090 26038804
    [Google Scholar]
  74. Rohrer S.G. Baumann K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J. Chem. Inf. Model. 2009 49 2 169 184 10.1021/ci8002649 19434821
    [Google Scholar]
  75. Tran-Nguyen V.K. Jacquemard C. Rognan D. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening. J. Chem. Inf. Model. 2020 60 9 4263 4273 10.1021/acs.jcim.0c00155 32282202
    [Google Scholar]
  76. Scantlebury J. Brown N. Von Delft F. Deane C.M. Data Set Augmentation Allows Deep Learning-Based Virtual Screening to Better Generalize to Unseen Target Classes and Highlight Important Binding Interactions. J. Chem. Inf. Model. 2020 60 8 3722 3730 10.1021/acs.jcim.0c00263 32701288
    [Google Scholar]
  77. Zhang X. Shen C. Liao B. Jiang D. Wang J. Wu Z. Du H. Wang T. Huo W. Xu L. Cao D. Hsieh C.Y. Hou T. TocoDecoy: A New Approach to Design Unbiased Datasets for Training and Benchmarking Machine-Learning Scoring Functions. J. Med. Chem. 2022 65 11 7918 7932 10.1021/acs.jmedchem.2c00460 35642777
    [Google Scholar]
  78. Imrie F. Bradley A.R. Deane C.M. Generating property-matched decoy molecules using deep learning. Bioinformatics 2021 37 15 2134 2141 10.1093/bioinformatics/btab080
    [Google Scholar]
  79. Li Y. Han L. Liu Z. Wang R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J. Chem. Inf. Model. 2014 54 6 1717 1736 10.1021/ci500081m 24708446
    [Google Scholar]
  80. Leung S. Bodkin M. Von Delft F. Brennan P. Morris G. SuCOS is better than RMSD for evaluating fragment elaboration and docking poses. chemrxiv 8100203 2019 10.26434/chemrxiv.8100203.v1
    [Google Scholar]
  81. Wójcikowski M. Ballester P.J. Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017 7 1 46710 10.1038/srep46710 28440302
    [Google Scholar]
  82. McGibbon M. Money-Kyrle S. Blay V. Houston D.R. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation. J. Adv. Res. 2023 46 135 147 10.1016/j.jare.2022.07.001 35901959
    [Google Scholar]
  83. Adeshina Y.O. Deeds E.J. Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc. Natl. Acad. Sci. USA 2020 117 31 18477 18488 10.1073/pnas.2000585117 32669436
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334469241017053508
Loading
/content/journals/cmc/10.2174/0109298673334469241017053508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test