Skip to content
2000
image of Theoretical Modeling of the Interactions of CoFe2O4-BaTiO3 Magnetoelectric Nanoparticles with Cancer and Healthy Cells

Abstract

Introduction

The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.

Methods

Magnetoelectric Nanostructures (MENs) have both targeting and nano-electroporation effects due to their ferroic properties. Among these structures, the most used nanoparticles as targeting mechanisms are CoFeO-BaTiO structures. For this purpose, the electrical field produced by MENs was modeled using MATLAB R2023b, and a theoretical data pool of appropriate physical properties was created. Testing and applying other magnetoelectric materials defined in the literature may be costly and time-consuming.

Results

The problems with MENs can be eliminated by performing theoretical simulations of each material before proceeding with laboratory tests.

Conclusion

By simulating the interaction of CoFeO-BaTiO MENs with cancer cells, physical properties affecting drug targeting were theoretically identified and a data pool of MENs with these properties was created.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348662241210111400
2025-01-14
2025-04-19
Loading full text...

Full text loading...

References

  1. Ferlay J. Colombet M. Soerjomataram I. Parkin D.M. Piñeros M. Znaor A. Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021 149 4 778 789 10.1002/ijc.33588 33818764
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  3. Greenlee R.T. Murray T. Bolden S. Wingo P.A. Cancer statistics, 2000. CA Cancer J. Clin. 2000 50 1 7 33 10.3322/canjclin.50.1.7 10735013
    [Google Scholar]
  4. Wardle J. Robb K. Vernon S. Waller J. Screening for prevention and early diagnosis of cancer. Am. Psychol. 2015 70 2 119 133 10.1037/a0037357 25730719
    [Google Scholar]
  5. Siegel R. DeSantis C. Virgo K. Stein K. Mariotto A. Smith T. Cooper D. Gansler T. Lerro C. Fedewa S. Lin C. Leach C. Cannady R.S. Cho H. Scoppa S. Hachey M. Kirch R. Jemal A. Ward E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012 62 4 220 241 10.3322/caac.21149 22700443
    [Google Scholar]
  6. Minko T. Rodriguez R.L. Pozharov V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv. Drug Deliv. Rev. 2013 65 13-14 1880 1895 10.1016/j.addr.2013.09.017 24120655
    [Google Scholar]
  7. Estanqueiro M. Amaral M.H. Conceição J. Lobo S.J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B Biointerfaces 2015 126 631 648 10.1016/j.colsurfb.2014.12.041 25591851
    [Google Scholar]
  8. Monsuez J.J. Charniot J.C. Vignat N. Artigou J.Y. Cardiac side-effects of cancer chemotherapy. Int. J. Cardiol. 2010 144 1 3 15 10.1016/j.ijcard.2010.03.003 20399520
    [Google Scholar]
  9. van den Boogaard W.M.C. Komninos D.S.J. Vermeij W.P. Chemotherapy side-effects: Not all DNA damage is equal. Cancers 2022 14 3 627 10.3390/cancers14030627 35158895
    [Google Scholar]
  10. McKnight J.A. Principles of chemotherapy. Clin. Tech. Small Anim. Pract. 2003 18 2 67 72 10.1053/svms.2003.36617 12831063
    [Google Scholar]
  11. Bazak R. Houri M. Achy E.S. Kamel S. Refaat T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015 141 5 769 784 10.1007/s00432‑014‑1767‑3 25005786
    [Google Scholar]
  12. Bertrand N. Wu J. Xu X. Kamaly N. Farokhzad O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014 66 2 25 10.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  13. Cravo A.S. Mrsny R.J. A time travel journey through cancer therapies. Canc. Targ. Drug Del. Elu. Dream 2013 9781461478768 3 35 10.1007/978‑1‑4614‑7876‑8_1
    [Google Scholar]
  14. López B.M. Teijeiro A. Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother. 2013 18 6 397 400 10.1016/j.rpor.2013.09.011 24416585
    [Google Scholar]
  15. Beik J. Abed Z. Ghoreishi F.S. Nami H.S. Mehrzadi S. Zadeh S.A. Kamrava S.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control. Release 2016 235 205 221 10.1016/j.jconrel.2016.05.062 27264551
    [Google Scholar]
  16. Khan I. Khan M. Umar M.N. Oh D.H. Nanobiotechnology and its applications in drug delivery system: A review. IET Nanobiotechnol. 2015 9 6 396 400 10.1049/iet‑nbt.2014.0062 26647817
    [Google Scholar]
  17. Rodzinski A. Guduru R. Liang P. Hadjikhani A. Stewart T. Stimphil E. Runowicz C. Cote R. Altman N. Datar R. Khizroev S. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci. Rep. 2016 6 1 20867 10.1038/srep20867 26875783
    [Google Scholar]
  18. Stimphil E. Nagesetti A. Guduru R. Stewart T. Rodzinski A. Liang P. Khizroev S. Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles. Appl. Phys. Rev. 2017 4 2 021101 10.1063/1.4978642
    [Google Scholar]
  19. Stewart T.S. Nagesetti A. Guduru R. Liang P. Stimphil E. Hadjikhani A. Salgueiro L. Horstmyer J. Cai R. Schally A. Khizroev S. Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields. Nanomedicine 2018 13 4 423 438 10.2217/nnm‑2017‑0300 29345190
    [Google Scholar]
  20. Wang A.Z. Langer R. Farokhzad O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012 63 1 185 198 10.1146/annurev‑med‑040210‑162544 21888516
    [Google Scholar]
  21. Brigger I. Dubernet C. Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2012 64 24 36 10.1016/j.addr.2012.09.006 12204596
    [Google Scholar]
  22. Jurgons R. Seliger C. Hilpert A. Trahms L. Odenbach S. Alexiou C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter 2006 18 38 S2893 S2902 10.1088/0953‑8984/18/38/S24
    [Google Scholar]
  23. Vasir J.K. Labhasetwar V. Targeted drug delivery in cancer therapy. Technol. Canc. Res. Treat. 2005 4 4 363 374
    [Google Scholar]
  24. Petrak K. Essential properties of drug-targeting delivery systems. Drug Discov. Today 2005 10 23-24 1667 1673 10.1016/S1359‑6446(05)03698‑6 16376827
    [Google Scholar]
  25. Mills J.K. Needham D. Targeted drug delivery. Expert Opin. Ther. Pat. 1999 9 11 1499 1513 10.1517/13543776.9.11.1499
    [Google Scholar]
  26. Bae Y.H. Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release 2011 153 3 198 205 10.1016/j.jconrel.2011.06.001 21663778
    [Google Scholar]
  27. Whiteside T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008 27 45 5904 5912 10.1038/onc.2008.271 18836471
    [Google Scholar]
  28. Anderson N.M. Simon M.C. The tumor microenvironment. Curr. Biol. 2020 30 16 R921 R925 10.1016/j.cub.2020.06.081 32810447
    [Google Scholar]
  29. Arneth B. Tumor microenvironment. Medicina 2019 56 1 15 10.3390/medicina56010015 31906017
    [Google Scholar]
  30. Yang S. Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol. Res. 2017 126 97 108 10.1016/j.phrs.2017.05.004 28501517
    [Google Scholar]
  31. He Q. Chen J. Yan J. Cai S. Xiong H. Liu Y. Peng D. Mo M. Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J. Pharm. Sci. 2020 15 4 416 448 10.1016/j.ajps.2019.08.003 32952667
    [Google Scholar]
  32. Khawar I.A. Kim J.H. Kuh H.J. Improving drug delivery to solid tumors: Priming the tumor microenvironment. J. Control. Release 2015 201 78 89 10.1016/j.jconrel.2014.12.018 25526702
    [Google Scholar]
  33. Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007 3 4 413 438 10.1016/j.actbio.2007.04.002 17540628
    [Google Scholar]
  34. Yadav S. Barton M.J. Nguyen N.T. Biophysical properties of cells for cancer diagnosis. J. Biomech. 2019 86 1 7 10.1016/j.jbiomech.2019.02.006 30803699
    [Google Scholar]
  35. Wang M. Thanou M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010 62 2 90 99 10.1016/j.phrs.2010.03.005 20380880
    [Google Scholar]
  36. Attia M.F. Anton N. Wallyn J. Omran Z. Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019 71 8 1185 1198 10.1111/jphp.13098 31049986
    [Google Scholar]
  37. Patel J.K. Patel A.P. Passive targeting of nanoparticles to cancer. Surface Modification of Nanoparticles for Targeted Drug Delivery 2019 125 143
    [Google Scholar]
  38. Matsumura Y. Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986 46 12 Pt 1 6387 6392 2946403
    [Google Scholar]
  39. Pattni B.S. Torchilin V.P. Targeted drug delivery systems: Strategies and challenges. Targeted Drug Delivery Concepts and Design 2015 3 38
    [Google Scholar]
  40. Iyer A.K. Khaled G. Fang J. Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006 11 17-18 812 818 10.1016/j.drudis.2006.07.005 16935749
    [Google Scholar]
  41. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001 41 1 189 207 10.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  42. Heldin C.H. Rubin K. Pietras K. Östman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer 2004 4 10 806 813 10.1038/nrc1456 15510161
    [Google Scholar]
  43. Cairns R. Papandreou I. Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol. Cancer Res. 2006 4 2 61 70 10.1158/1541‑7786.MCR‑06‑0002 16513837
    [Google Scholar]
  44. Libutti S.K. Tamarkin L. Nilubol N. Targeting the invincible barrier for drug delivery in solid cancers: Interstitial fluid pressure. Oncotarget 2018 9 87 35723 35725 10.18632/oncotarget.26267 30515264
    [Google Scholar]
  45. Vasir J. Reddy M. Labhasetwar V. Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci. 2005 1 1 47 64 10.2174/1573413052953110
    [Google Scholar]
  46. Basile L. Pignatello R. Passirani C. Active targeting strategies for anticancer drug nanocarriers. Curr. Drug Deliv. 2012 9 3 255 268 10.2174/156720112800389089 22452402
    [Google Scholar]
  47. Dutta B. Barick K.C. Hassan P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci. 2021 296 102509 10.1016/j.cis.2021.102509 34455211
    [Google Scholar]
  48. Torchilin V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol. 2010 197 197 3 53 10.1007/978‑3‑642‑00477‑3_1 20217525
    [Google Scholar]
  49. Anarjan S.F. Active targeting drug delivery nanocarriers: Ligands. Nano-Structures & Nano-Objects 2019 19 100370 10.1016/j.nanoso.2019.100370
    [Google Scholar]
  50. Liang X. Chen H. Sun N.X. Magnetoelectric materials and devices. APL Mater. 2021 9 4 041114 10.1063/5.0044532
    [Google Scholar]
  51. Spaldin N.A. Fiebig M. Materials science. The renaissance of magnetoelectric multiferroics. Science 2005 309 5733 391 392 10.1126/science.1113357 16020720
    [Google Scholar]
  52. Eerenstein W. Mathur N.D. Scott J.F. Multiferroic and magnetoelectric materials. Nature 2006 442 7104 759 765 10.1038/nature05023 16915279
    [Google Scholar]
  53. Spaldin N.A. Ramesh R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019 18 3 203 212 10.1038/s41563‑018‑0275‑2 30783227
    [Google Scholar]
  54. Yue K. Guduru R. Hong J. Liang P. Nair M. Khizroev S. Magneto-electric nanoparticles for non-invasive brain stimulation. PLoS One 2012 7 9 e44040 e44040 10.1371/journal.pone.0044040 22957042
    [Google Scholar]
  55. Guduru R. Liang P. Runowicz C. Nair M. Atluri V. Khizroev S. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep. 2013 3 1 2953 10.1038/srep02953 24129652
    [Google Scholar]
  56. Hu J.M. Nan C.W. Opportunities and challenges for magnetoelectric devices. APL Mater. 2019 7 8 080905 10.1063/1.5112089
    [Google Scholar]
  57. Bibes M. Barthélémy A. Towards a magnetoelectric memory. Nat. Mater. 2008 7 6 425 426 10.1038/nmat2189 18497843
    [Google Scholar]
  58. Betal S. Dutta M. Shrestha B. Cotica L. Tang L. Bhalla A. Guo R. Cell permeation using core-shell magnetoelectric nanoparticles. Integr. Ferroelectr. 2016 174 1 186 194 10.1080/10584587.2016.1196332
    [Google Scholar]
  59. Kaushik A. Moshaie N.R. Sinha R. Bhardwaj V. Atluri V. Jayant R.D. Yndart A. Kateb B. Pala N. Nair M. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells. Sci. Rep. 2017 7 1 45663 10.1038/srep45663 28374799
    [Google Scholar]
  60. Khizroev S. Magneto-electric nanoparticles as field-controlled nano-electroporation sites for high specificity. Gynecol. Oncol. 2014 133 105 10.1016/j.ygyno.2014.03.279
    [Google Scholar]
  61. Smith I.T. Zhang E. Yildirim Y.A. Campos M.A. Mottaleb A.M. Yildirim B. Ramezani Z. Andre V.L. Vandeusen S.A. Liang P. Khizroev S. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 2 e1849 10.1002/wnan.1849 36056752
    [Google Scholar]
  62. Poompavai S. Sree G.V. Dielectric property measurement of breast—tumor phantom model under pulsed electric field treatment. IEEE Trans. Radiat. Plasma Med. Sci. 2018 2 6 608 617 10.1109/TRPMS.2018.2868818
    [Google Scholar]
  63. Brooks S.A. Browne L.H.J. Carter T.M. Kinch C.E. Hall D.M.S. Molecular interactions in cancer cell metastasis. Acta Histochem. 2010 112 1 3 25 10.1016/j.acthis.2008.11.022 19162308
    [Google Scholar]
  64. Hassanpour S.H. Dehghani M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017 4 4 127 129 10.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  65. Bertram J.S. The molecular biology of cancer. Mol. Aspects Med. 2000 21 6 167 223 10.1016/S0098‑2997(00)00007‑8 11173079
    [Google Scholar]
  66. Lee J.S. Oh S.J. Choi H.J. Kang J.H. Lee S.H. Ha J.S. Woo S.M. Jang H. Lee H. Kim S.Y. ATP production relies on fatty acid oxidation rather than glycolysis in pancreatic ductal adenocarcinoma. Cancers 2020 12 9 2477 10.3390/cancers12092477 32882923
    [Google Scholar]
  67. Fiorillo M. Ózsvári B. Sotgia F. Lisanti M.P. High ATP production fuels cancer drug resistance and metastasis: Implications for mitochondrial ATP depletion therapy. Front. Oncol. 2021 11 740720 10.3389/fonc.2021.740720 34722292
    [Google Scholar]
  68. O’Grady S.M. Lee S.Y. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int. J. Biochem. Cell Biol. 2005 37 8 1578 1594 10.1016/j.biocel.2005.04.002 15882958
    [Google Scholar]
  69. Kunzelmann K. Ion channels and cancer. J. Membr. Biol. 2005 205 3 159 173 10.1007/s00232‑005‑0781‑4 16362504
    [Google Scholar]
  70. Honary S. Zahir F. Effect of Zeta potential on the properties of nano-drug delivery systems - a review (Part 1). Trop. J. Pharm. Res. 2013 12 2 255 264
    [Google Scholar]
  71. Mok Z.H. The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances 2023 2 100031 10.1016/j.pscia.2023.100031
    [Google Scholar]
  72. Wang J. Multiferroic materials: Properties, techniques, and applications. Multiferroic materials: Properties. Techniques and Applications 2016 1 392 10.1201/9781315372532
    [Google Scholar]
  73. Etier M. Gao Y. Shvartsman V.V. Elsukova A. Landers J. Wende H. Lupascu D.C. Cobalt Ferrite/Barium titanate Core/Shell nanoparticles. 2012 438 1 115 122
    [Google Scholar]
  74. Wolfram J. Zhu M. Yang Y. Shen J. Gentile E. Paolino D. Fresta M. Nie G. Chen C. Shen H. Ferrari M. Zhao Y. Safety of nanoparticles in medicine. Curr. Drug Targets 2015 16 14 1671 1681 10.2174/1389450115666140804124808 26601723
    [Google Scholar]
  75. Patnaik S. Gorain B. Padhi S. Choudhury H. Gabr G.A. Md S. Mishra K.D. Kesharwani P. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur. J. Pharm. Biopharm. 2021 161 100 119 10.1016/j.ejpb.2021.02.010 33639254
    [Google Scholar]
  76. Sevim G. Development and evaluation of multiferroic nanoparticle-based drug delivery system. PhD Thesis, Eskişehir Technical University: Eskişehir 2023
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348662241210111400
Loading
/content/journals/cmc/10.2174/0109298673348662241210111400
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test