Skip to content
2000
image of Higher Selective Targeting of Telomeric Multimeric G-quadruplex by Natural Product Berberine

Abstract

Introduction

G-quadruplexes (G4s) are non-classical high-level structures that are formed by DNA/RNA sequences and have been a promising target for developing antitumor drugs. However, it is still a challenge to find a ligand that binds to a particular G4 with selectivity. Telomeric multimeric G4s are more accessible for screening for specific ligands due to their higher-order structure compared with telomeric monomeric G4s.

Methods

In this study, the natural product berberine was found to exhibit a higher selectivity for telomeric multimeric G4 in comparison with other G4s. The mechanism of interaction between telomeric G4s and berberine was further investigated by fluorescence spectra measurements, job plot analysis, and UV titrations. We found that there are three binding sites for berberine on telomeric dimeric G-quadruplex Tel45, which are located at the 5' and 3' terminal G-quartet surfaces and the pocket between the two quadruplex units of Tel45. It was worth noting that the berberine preferred to interact within the interfacial cavity between two G4 units.

Results

Moreover, dynamic light scattering (DLS) and native polyacrylamide gel electrophoresis (Native-PAGE) assays, it was found that the particle size of the telomeric multimeric G4s conformation was significantly increased by the addition of berberine. In contrast, the particle sizes of Tel21 did not change significantly after the addition of berberine. An immunofluorescence assay indicated that berberine induced the formation of endogenous telomeric G4 structures along with the related telomeric DNA damage response.

Conclusion

This study provides a hypothetical basis for the development of natural products targeting telomeric G4 as antitumor drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345414241202094409
2025-02-06
2025-04-01
Loading full text...

Full text loading...

References

  1. Lee J.J. Kim H. Park H. Lee U. Kim C. Lee M. Shin Y. Jung J.J. Lee H.B. Han W. Lee H. Disruption of G-quadruplex dynamicity by BRCA2 abrogation instigates phase separation and break-induced replication at telomeres. Nucleic Acids Res. 2024 52 10 5756 5773 10.1093/nar/gkae251 38587189
    [Google Scholar]
  2. Wang C. Xu G. Liu X. Jiang L. Zhou X. Liu M. Li C. 19 F nuclear magnetic resonance fingerprinting technique for identifying and quantifying G-quadruplex topology in human telomeric overhangs. J. Am. Chem. Soc. 2024 146 7 4741 4751 10.1021/jacs.3c12247 38346932
    [Google Scholar]
  3. Zou M. Li J.Y. Zhang M.J. Li J.H. Huang J.T. You P.D. Liu S.W. Zhou C.Q. G-quadruplex binder pyridostatin as an effective multi-target ZIKV inhibitor. Int. J. Biol. Macromol. 2021 190 178 188 10.1016/j.ijbiomac.2021.08.121 34461156
    [Google Scholar]
  4. Liu Y. Li J. Zhang Y. Wang Y. Chen J. Bian Y. Xia Y. Yang M.H. Zheng K. Wang K.B. Kong L.Y. Structure of the major G-quadruplex in the human EGFR oncogene promoter adopts a unique folding topology with a distinctive snap-back loop. J. Am. Chem. Soc. 2023 145 29 16228 16237 10.1021/jacs.3c05214 37460135
    [Google Scholar]
  5. Berner A. Das R.N. Bhuma N. Golebiewska J. Abrahamsson A. Andréasson M. Chaudhari N. Doimo M. Bose P.P. Chand K. Strömberg R. Wanrooij S. Chorell E. G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures. J. Am. Chem. Soc. 2024 146 10 6926 6935 10.1021/jacs.3c14408 38430200
    [Google Scholar]
  6. Qin Y. Hurley L.H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 2008 90 8 1149 1171 10.1016/j.biochi.2008.02.020 18355457
    [Google Scholar]
  7. Hänsel-Hertsch R. Di Antonio M. Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017 18 5 279 284 10.1038/nrm.2017.3 28225080
    [Google Scholar]
  8. Liang H. Yan J. Yao H. Zhang X. Xing Z. Liu L. Chen Y. Li G. Huang J. He Y. Zheng K. G-quadruplexes on chromosomal DNA negatively regulates topoisomerase 1 activity. Nucleic Acids Res. 2024 52 5 2142 2156 10.1093/nar/gkae073 38340342
    [Google Scholar]
  9. Turner M. Danino Y.M. Barshai M. Yacovzada N.S. Cohen Y. Olender T. Rotkopf R. Monchaud D. Hornstein E. Orenstein Y. rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation. Nucleic Acids Res. 2022 50 20 11426 11441 10.1093/nar/gkac950 36350614
    [Google Scholar]
  10. Abiri A. Lavigne M. Rezaei M. Nikzad S. Zare P. Mergny J.L. Rahimi H.R. Unlocking G-quadruplexes as antiviral targets. Pharmacol. Rev. 2021 73 3 897 923 10.1124/pharmrev.120.000230 34045305
    [Google Scholar]
  11. Wang R.X. Ou Y. Chen Y. Ren T.B. Yuan L. Zhang X.B. Rational design of NIR-II G-quadruplex fluorescent probes for accurate in vivo tumor metastasis imaging. J. Am. Chem. Soc. 2024 146 17 11669 11678 10.1021/jacs.3c13851 38644738
    [Google Scholar]
  12. Giraud G. Rodà M. Huchon P. Michelet M. Maadadi S. Jutzi D. Montserret R. Ruepp M.D. Parent R. Combet C. Zoulim F. Testoni B. G-quadruplexes control hepatitis B virus replication by promoting cccDNA transcription and phase separation in hepatocytes. Nucleic Acids Res. 2024 52 5 2290 2305 10.1093/nar/gkad1200 38113270
    [Google Scholar]
  13. Fang P. Xie C. Pan T. Cheng T. Chen W. Xia S. Ding T. Fang J. Zhou Y. Fang L. Wei D. Xiao S. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication. Nucleic Acids Res. 2023 51 19 10752 10767 10.1093/nar/gkad759 37739415
    [Google Scholar]
  14. Yin S. Lan W. Hou X. Liu Z. Xue H. Wang C. Tang G.L. Cao C. Trioxacarcin A. Trioxacarcin a interactions with G-Quadruplex DNA reveal its potential new targets as an anticancer agent. J. Med. Chem. 2023 66 10 6798 6810 10.1021/acs.jmedchem.3c00178 37154782
    [Google Scholar]
  15. Olson C.L. Barbour A.T. Wieser T.A. Wuttke D.S. RPA engages telomeric G-quadruplexes more effectively than CST. Nucleic Acids Res. 2023 51 10 5073 5086 10.1093/nar/gkad315 37140062
    [Google Scholar]
  16. Wang X.D. Wang J.X. Hu M.H. Novel phenanthrene imidazoles as telomeric G-quadruplex ligands trigger potent immunogenic cell death in triple-negative breast cancer. Int. J. Biol. Macromol. 2023 249 126068 10.1016/j.ijbiomac.2023.126068 37524278
    [Google Scholar]
  17. Gao C. Liu Z. Hou H. Ding J. Chen X. Xie C. Song Z. Hu Z. Feng M. Mohamed H.I. Xu S. Parkinson G.N. Haider S. Wei D. BMPQ-1 binds selectively to (3+1) hybrid topologies in human telomeric G-quadruplex multimers. Nucleic Acids Res. 2020 48 20 11259 11269 10.1093/nar/gkaa870 33080032
    [Google Scholar]
  18. Hu M.H. Chen S.B. Wang B. Ou T.M. Gu L.Q. Tan J.H. Huang Z.S. Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole. Nucleic Acids Res. 2017 45 4 1606 1618 10.1093/nar/gkw1195 27923993
    [Google Scholar]
  19. Zheng B.X. Long W. Zheng W. Zeng Y. Guo X.C. Chan K.H. She M.T. Leung A.S.L. Lu Y.J. Wong W.L. Mitochondria-selective dicationic small-molecule ligand targeting G-quadruplex structures for human colorectal cancer therapy. J. Med. Chem. 2024 67 8 6292 6312 10.1021/acs.jmedchem.3c02240 38624086
    [Google Scholar]
  20. Ji D. Yuan J.H. Chen S.B. Tan J.H. Kwok C.K. Selective targeting of parallel G-quadruplex structure using L-RNA aptamer. Nucleic Acids Res. 2023 51 21 11439 11452 10.1093/nar/gkad900 37870474
    [Google Scholar]
  21. Deiana M. Chand K. Jamroskovic J. Das R.N. Obi I. Chorell E. Sabouri N. A site-specific self-assembled light-up rotor probe for selective recognition and stabilization of c-MYC G-quadruplex DNA. Nanoscale 2020 12 24 12950 12957 10.1039/D0NR03404E 32525170
    [Google Scholar]
  22. Deiana M. Chand K. Jamroskovic J. Obi I. Chorell E. Sabouri N. A light-up logic platform for selective recognition of parallel G-quadruplex structures via disaggregation-induced emission. Angew. Chem. Int. Ed. 2020 59 2 896 902 10.1002/anie.201912027 31644837
    [Google Scholar]
  23. Deiana M. Obi I. Andreasson M. Tamilselvi S. Chand K. Chorell E. Sabouri N. A minimalistic coumarin turn-on probe for selective recognition of parallel G-quadruplex DNA structures. ACS Chem. Biol. 2021 16 8 1365 1376 10.1021/acschembio.1c00134 34328300
    [Google Scholar]
  24. Deiana M. Chand K. Chorell E. Sabouri N. Parallel G-quadruplex DNA structures from nuclear and mitochondrial genomes trigger emission enhancement in a nonfluorescent nano-aggregated fluorine–boron-based dye. J. Phys. Chem. Lett. 2023 14 7 1862 1869 10.1021/acs.jpclett.2c03301 36779779
    [Google Scholar]
  25. Tassinari M. Zuffo M. Nadai M. Pirota V. Sevilla Montalvo A.C. Doria F. Freccero M. Richter S.N. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res. 2020 48 9 4627 4642 10.1093/nar/gkaa186 32282912
    [Google Scholar]
  26. Liang X. Fu Y. Qu L. Zhang P. Chen Y. Prediction of drug side effects with transductive matrix co-completion. Bioinformatics 2023 39 1 btad006 10.1093/bioinformatics/btad006 36655793
    [Google Scholar]
  27. Torab-Miandoab A. Poursheikh Asghari M. Hashemzadeh N. Ferdousi R. Analysis and identification of drug similarity through drug side effects and indications data. BMC Med. Inform. Decis. Mak. 2023 23 1 35 10.1186/s12911‑023‑02133‑3 36788528
    [Google Scholar]
  28. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  29. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  30. Dickerhoff J. Brundridge N. McLuckey S.A. Yang D. Berberine molecular recognition of the parallel MYC G-quadruplex in solution. J. Med. Chem. 2021 64 21 16205 16212 10.1021/acs.jmedchem.1c01508 34677968
    [Google Scholar]
  31. Liao T.C. Ma T.Z. Chen S.B. Cilibrizzi A. Zhang M.J. Li J.H. Zhou C.Q. Human telomere double G-quadruplex recognition by berberine-bisquinolinium imaging conjugates in vitro and in cells. Int. J. Biol. Macromol. 2020 158 1299 1309 10.1016/j.ijbiomac.2020.04.171 32339571
    [Google Scholar]
  32. Pradhan S.K. Dasgupta D. Basu G. Human telomere d[(TTAGGG)4] undergoes a conformational transition to the Na+-form upon binding with sanguinarine in presence of K+. Biochem. Biophys. Res. Commun. 2011 404 1 139 142 10.1016/j.bbrc.2010.11.081 21108926
    [Google Scholar]
  33. Bessi I. Bazzicalupi C. Richter C. Jonker H.R.A. Saxena K. Sissi C. Chioccioli M. Bianco S. Bilia A.R. Schwalbe H. Gratteri P. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-quadruplex DNA. ACS Chem. Biol. 2012 7 6 1109 1119 10.1021/cb300096g 22486369
    [Google Scholar]
  34. Papi F. Ferraroni M. Rigo R. Da Ros S. Bazzicalupi C. Sissi C. Gratteri P. Role of the benzodioxole group in the interactions between the natural alkaloids chelerythrine and coptisine and the human telomeric G-Quadruplex DNA. A multiapproach investigation. J. Nat. Prod. 2017 80 12 3128 3135 10.1021/acs.jnatprod.7b00350 29148767
    [Google Scholar]
  35. Yang S. Xiang J. Yang Q. Zhou Q. Zhang X. Li Q. Tang Y. Xu G. Distinct G-quadruplex structures of human telomeric DNA formed by the induction of sanguinarine and nitidine under salt-deficient condition. Fitoterapia 2010 81 8 1026 1032 10.1016/j.fitote.2010.06.024 20624448
    [Google Scholar]
  36. Cushman M. Design and synthesis of indenoisoquinolines targeting topoisomerase I and other biological macromolecules for cancer chemotherapy. J. Med. Chem. 2021 64 24 17572 17600 10.1021/acs.jmedchem.1c01491 34879200
    [Google Scholar]
  37. Sun Y. Xun K. Wang Y. Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 2009 20 9 757 769 10.1097/CAD.0b013e328330d95b 19704371
    [Google Scholar]
  38. Machireddy B. Kalra G. Jonnalagadda S. Ramanujachary K. Wu C. Probing the binding pathway of BRACO19 to a parallel-stranded human telomeric g-quadruplex using molecular dynamics binding simulation with AMBER DNA OL15 and ligand GAFF2 force fields. J. Chem. Inf. Model. 2017 57 11 2846 2864 10.1021/acs.jcim.7b00287 29028340
    [Google Scholar]
  39. Nadai M. Doria F. Frasson I. Perrone R. Pirota V. Bergamaschi G. Freccero M. Richter S.N. Naphthalene diimide–tetraazacycloalkane conjugates are G-quadruplex-based HIV-1 inhibitors with a dual mode of action. ACS Infect. Dis. 2024 10 2 489 499 10.1021/acsinfecdis.3c00453 38175706
    [Google Scholar]
  40. Dibitetto D. Liptay M. Vivalda F. Dogan H. Gogola E. González Fernández M. Duarte A. Schmid J.A. Decollogny M. Francica P. Przetocka S. Durant S.T. Forment J.V. Klebic I. Siffert M. de Bruijn R. Kousholt A.N. Marti N.A. Dettwiler M. Sørensen C.S. Tille J.C. Undurraga M. Labidi-Galy I. Lopes M. Sartori A.A. Jonkers J. Rottenberg S. H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours. Nat. Commun. 2024 15 1 4430 10.1038/s41467‑024‑48715‑1 38789420
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345414241202094409
Loading
/content/journals/cmc/10.2174/0109298673345414241202094409
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test