Skip to content
2000
Volume 33, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

G-quadruplexes (G4s) are non-classical high-level structures that are formed by DNA/RNA sequences and have been a promising target for developing antitumor drugs. However, it is still a challenge to find a ligand that binds to a particular G4 with selectivity. Telomeric multimeric G4s are more accessible for screening for specific ligands due to their higher-order structure compared with telomeric monomeric G4s.

Methods

In this study, the natural product berberine was found to exhibit a higher selectivity for telomeric multimeric G4 in comparison with other G4s. The mechanism of interaction between telomeric G4s and berberine was further investigated by fluorescence spectra measurements, job plot analysis, and UV titrations. We found that there are three binding sites for berberine on telomeric dimeric G-quadruplex Tel45, which are located at the 5' and 3' terminal G-quartet surfaces and the pocket between the two quadruplex units of Tel45. It was worth noting that the berberine preferred to interact within the interfacial cavity between two G4 units.

Results

Moreover, dynamic light scattering (DLS) and native polyacrylamide gel electrophoresis (Native-PAGE) assays, it was found that the particle size of the telomeric multimeric G4s conformation was significantly increased by the addition of berberine. In contrast, the particle sizes of Tel21 did not change significantly after the addition of berberine. An immunofluorescence assay indicated that berberine induced the formation of endogenous telomeric G4 structures along with the related telomeric DNA damage response.

Conclusion

This study provides a hypothetical basis for the development of natural products targeting telomeric G4 as antitumor drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345414241202094409
2025-02-06
2026-02-16
Loading full text...

Full text loading...

References

  1. LeeJ.J. KimH. ParkH. LeeU. KimC. LeeM. ShinY. JungJ.J. LeeH.B. HanW. LeeH. Disruption of G-quadruplex dynamicity by BRCA2 abrogation instigates phase separation and break-induced replication at telomeres.Nucleic Acids Res.202452105756577310.1093/nar/gkae25138587189
    [Google Scholar]
  2. WangC. XuG. LiuX. JiangL. ZhouX. LiuM. LiC. 19 F nuclear magnetic resonance fingerprinting technique for identifying and quantifying G-quadruplex topology in human telomeric overhangs.J. Am. Chem. Soc.202414674741475110.1021/jacs.3c1224738346932
    [Google Scholar]
  3. ZouM. LiJ.Y. ZhangM.J. LiJ.H. HuangJ.T. YouP.D. LiuS.W. ZhouC.Q. G-quadruplex binder pyridostatin as an effective multi-target ZIKV inhibitor.Int. J. Biol. Macromol.202119017818810.1016/j.ijbiomac.2021.08.12134461156
    [Google Scholar]
  4. LiuY. LiJ. ZhangY. WangY. ChenJ. BianY. XiaY. YangM.H. ZhengK. WangK.B. KongL.Y. Structure of the major G-quadruplex in the human EGFR oncogene promoter adopts a unique folding topology with a distinctive snap-back loop.J. Am. Chem. Soc.202314529162281623710.1021/jacs.3c0521437460135
    [Google Scholar]
  5. BernerA. DasR.N. BhumaN. GolebiewskaJ. AbrahamssonA. AndréassonM. ChaudhariN. DoimoM. BoseP.P. ChandK. StrömbergR. WanrooijS. ChorellE. G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures.J. Am. Chem. Soc.2024146106926693510.1021/jacs.3c1440838430200
    [Google Scholar]
  6. QinY. HurleyL.H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions.Biochimie20089081149117110.1016/j.biochi.2008.02.02018355457
    [Google Scholar]
  7. Hänsel-HertschR. Di AntonioM. BalasubramanianS. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential.Nat. Rev. Mol. Cell Biol.201718527928410.1038/nrm.2017.328225080
    [Google Scholar]
  8. LiangH. YanJ. YaoH. ZhangX. XingZ. LiuL. ChenY. LiG. HuangJ. HeY. ZhengK. G-quadruplexes on chromosomal DNA negatively regulates topoisomerase 1 activity.Nucleic Acids Res.20245252142215610.1093/nar/gkae07338340342
    [Google Scholar]
  9. TurnerM. DaninoY.M. BarshaiM. YacovzadaN.S. CohenY. OlenderT. RotkopfR. MonchaudD. HornsteinE. OrensteinY. rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation.Nucleic Acids Res.20225020114261144110.1093/nar/gkac95036350614
    [Google Scholar]
  10. AbiriA. LavigneM. RezaeiM. NikzadS. ZareP. MergnyJ.L. RahimiH.R. Unlocking G-quadruplexes as antiviral targets.Pharmacol. Rev.202173389792310.1124/pharmrev.120.00023034045305
    [Google Scholar]
  11. WangR.X. OuY. ChenY. RenT.B. YuanL. ZhangX.B. Rational design of NIR-II G-quadruplex fluorescent probes for accurate in vivo tumor metastasis imaging.J. Am. Chem. Soc.202414617116691167810.1021/jacs.3c1385138644738
    [Google Scholar]
  12. GiraudG. RodàM. HuchonP. MicheletM. MaadadiS. JutziD. MontserretR. RueppM.D. ParentR. CombetC. ZoulimF. TestoniB. G-quadruplexes control hepatitis B virus replication by promoting cccDNA transcription and phase separation in hepatocytes.Nucleic Acids Res.20245252290230510.1093/nar/gkad120038113270
    [Google Scholar]
  13. FangP. XieC. PanT. ChengT. ChenW. XiaS. DingT. FangJ. ZhouY. FangL. WeiD. XiaoS. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication.Nucleic Acids Res.20235119107521076710.1093/nar/gkad75937739415
    [Google Scholar]
  14. YinS. LanW. HouX. LiuZ. XueH. WangC. TangG.L. CaoC. TrioxacarcinA. Trioxacarcin a interactions with G-Quadruplex DNA reveal its potential new targets as an anticancer agent.J. Med. Chem.202366106798681010.1021/acs.jmedchem.3c0017837154782
    [Google Scholar]
  15. OlsonC.L. BarbourA.T. WieserT.A. WuttkeD.S. RPA engages telomeric G-quadruplexes more effectively than CST.Nucleic Acids Res.202351105073508610.1093/nar/gkad31537140062
    [Google Scholar]
  16. WangX.D. WangJ.X. HuM.H. Novel phenanthrene imidazoles as telomeric G-quadruplex ligands trigger potent immunogenic cell death in triple-negative breast cancer.Int. J. Biol. Macromol.202324912606810.1016/j.ijbiomac.2023.12606837524278
    [Google Scholar]
  17. GaoC. LiuZ. HouH. DingJ. ChenX. XieC. SongZ. HuZ. FengM. MohamedH.I. XuS. ParkinsonG.N. HaiderS. WeiD. BMPQ-1 binds selectively to (3+1) hybrid topologies in human telomeric G-quadruplex multimers.Nucleic Acids Res.20204820112591126910.1093/nar/gkaa87033080032
    [Google Scholar]
  18. HuM.H. ChenS.B. WangB. OuT.M. GuL.Q. TanJ.H. HuangZ.S. Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole.Nucleic Acids Res.20174541606161810.1093/nar/gkw119527923993
    [Google Scholar]
  19. ZhengB.X. LongW. ZhengW. ZengY. GuoX.C. ChanK.H. SheM.T. LeungA.S.L. LuY.J. WongW.L. Mitochondria-selective dicationic small-molecule ligand targeting G-quadruplex structures for human colorectal cancer therapy.J. Med. Chem.20246786292631210.1021/acs.jmedchem.3c0224038624086
    [Google Scholar]
  20. JiD. YuanJ.H. ChenS.B. TanJ.H. KwokC.K. Selective targeting of parallel G-quadruplex structure using L-RNA aptamer.Nucleic Acids Res.20235121114391145210.1093/nar/gkad90037870474
    [Google Scholar]
  21. DeianaM. ChandK. JamroskovicJ. DasR.N. ObiI. ChorellE. SabouriN. A site-specific self-assembled light-up rotor probe for selective recognition and stabilization of c-MYC G-quadruplex DNA.Nanoscale20201224129501295710.1039/D0NR03404E32525170
    [Google Scholar]
  22. DeianaM. ChandK. JamroskovicJ. ObiI. ChorellE. SabouriN. A light-up logic platform for selective recognition of parallel G-quadruplex structures via disaggregation-induced emission.Angew. Chem. Int. Ed.202059289690210.1002/anie.20191202731644837
    [Google Scholar]
  23. DeianaM. ObiI. AndreassonM. TamilselviS. ChandK. ChorellE. SabouriN. A minimalistic coumarin turn-on probe for selective recognition of parallel G-quadruplex DNA structures.ACS Chem. Biol.20211681365137610.1021/acschembio.1c0013434328300
    [Google Scholar]
  24. DeianaM. ChandK. ChorellE. SabouriN. Parallel G-quadruplex DNA structures from nuclear and mitochondrial genomes trigger emission enhancement in a nonfluorescent nano-aggregated fluorine–boron-based dye.J. Phys. Chem. Lett.20231471862186910.1021/acs.jpclett.2c0330136779779
    [Google Scholar]
  25. TassinariM. ZuffoM. NadaiM. PirotaV. Sevilla MontalvoA.C. DoriaF. FrecceroM. RichterS.N. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model.Nucleic Acids Res.20204894627464210.1093/nar/gkaa18632282912
    [Google Scholar]
  26. LiangX. FuY. QuL. ZhangP. ChenY. Prediction of drug side effects with transductive matrix co-completion.Bioinformatics2023391btad00610.1093/bioinformatics/btad00636655793
    [Google Scholar]
  27. Torab-MiandoabA. Poursheikh AsghariM. HashemzadehN. FerdousiR. Analysis and identification of drug similarity through drug side effects and indications data.BMC Med. Inform. Decis. Mak.20232313510.1186/s12911‑023‑02133‑336788528
    [Google Scholar]
  28. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  29. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  30. DickerhoffJ. BrundridgeN. McLuckeyS.A. YangD. Berberine molecular recognition of the parallel MYC G-quadruplex in solution.J. Med. Chem.20216421162051621210.1021/acs.jmedchem.1c0150834677968
    [Google Scholar]
  31. LiaoT.C. MaT.Z. ChenS.B. CilibrizziA. ZhangM.J. LiJ.H. ZhouC.Q. Human telomere double G-quadruplex recognition by berberine-bisquinolinium imaging conjugates in vitro and in cells.Int. J. Biol. Macromol.20201581299130910.1016/j.ijbiomac.2020.04.17132339571
    [Google Scholar]
  32. PradhanS.K. DasguptaD. BasuG. Human telomere d[(TTAGGG)4] undergoes a conformational transition to the Na+-form upon binding with sanguinarine in presence of K+.Biochem. Biophys. Res. Commun.2011404113914210.1016/j.bbrc.2010.11.08121108926
    [Google Scholar]
  33. BessiI. BazzicalupiC. RichterC. JonkerH.R.A. SaxenaK. SissiC. ChioccioliM. BiancoS. BiliaA.R. SchwalbeH. GratteriP. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-quadruplex DNA.ACS Chem. Biol.2012761109111910.1021/cb300096g22486369
    [Google Scholar]
  34. PapiF. FerraroniM. RigoR. Da RosS. BazzicalupiC. SissiC. GratteriP. Role of the benzodioxole group in the interactions between the natural alkaloids chelerythrine and coptisine and the human telomeric G-Quadruplex DNA. A multiapproach investigation.J. Nat. Prod.201780123128313510.1021/acs.jnatprod.7b0035029148767
    [Google Scholar]
  35. YangS. XiangJ. YangQ. ZhouQ. ZhangX. LiQ. TangY. XuG. Distinct G-quadruplex structures of human telomeric DNA formed by the induction of sanguinarine and nitidine under salt-deficient condition.Fitoterapia20108181026103210.1016/j.fitote.2010.06.02420624448
    [Google Scholar]
  36. CushmanM. Design and synthesis of indenoisoquinolines targeting topoisomerase I and other biological macromolecules for cancer chemotherapy.J. Med. Chem.20216424175721760010.1021/acs.jmedchem.1c0149134879200
    [Google Scholar]
  37. SunY. XunK. WangY. ChenX. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs.Anticancer Drugs200920975776910.1097/CAD.0b013e328330d95b19704371
    [Google Scholar]
  38. MachireddyB. KalraG. JonnalagaddaS. RamanujacharyK. WuC. Probing the binding pathway of BRACO19 to a parallel-stranded human telomeric g-quadruplex using molecular dynamics binding simulation with AMBER DNA OL15 and ligand GAFF2 force fields.J. Chem. Inf. Model.201757112846286410.1021/acs.jcim.7b0028729028340
    [Google Scholar]
  39. NadaiM. DoriaF. FrassonI. PerroneR. PirotaV. BergamaschiG. FrecceroM. RichterS.N. Naphthalene diimide–tetraazacycloalkane conjugates are G-quadruplex-based HIV-1 inhibitors with a dual mode of action.ACS Infect. Dis.202410248949910.1021/acsinfecdis.3c0045338175706
    [Google Scholar]
  40. DibitettoD. LiptayM. VivaldaF. DoganH. GogolaE. González FernándezM. DuarteA. SchmidJ.A. DecollognyM. FrancicaP. PrzetockaS. DurantS.T. FormentJ.V. KlebicI. SiffertM. de BruijnR. KousholtA.N. MartiN.A. DettwilerM. SørensenC.S. TilleJ.C. UndurragaM. Labidi-GalyI. LopesM. SartoriA.A. JonkersJ. RottenbergS. H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours.Nat. Commun.2024151443010.1038/s41467‑024‑48715‑138789420
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345414241202094409
Loading
/content/journals/cmc/10.2174/0109298673345414241202094409
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test