Skip to content
2000
image of A Review on Branched-Chain Amino Acid Aminotransferase (BCAT) Inhibitors: Current Status, Challenges and Perspectives

Abstract

Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases. There are two isoforms of BCAT, , cytoplasmic BCAT1 (or BCATc) and mitochondrial BCAT2 (or BCATm). The discovery of BCAT inhibitors was initiated by Warner-Lambert, a subsidiary of Pfizer, in 2000, followed by many other pharmaceutical companies, such as GlaxoSmithKline (GSK), Ergon, Icagen, Agios, and Bayer. Strategies of high-throughput screening (HTS), DNA-Encoded library technology (ELT), and fragment-based screening (FBS) have been employed for hit identification, followed by structural optimization. Despite low selectivity, both BCAT1 and BCAT2 selective inhibitors were individually developed, each with a few chemical structural classes. The most advanced BCAT1 inhibitor is BAY-069, discovered by Bayer, which has a potent enzymatic inhibitory activity against BCAT1 and a decent and pharmacokinetic profile but displayed weaker cellular inhibitory activity and almost no anti-proliferative activity. There are no BCAT inhibitors currently under investigation in clinical trials. Further studies are still needed to discover BCAT inhibitors with a more druggable profile for proof of concept. This review focuses on the latest progress of studies on the understanding of the physiology and pathology of BCAT and the discovery and development of BCAT inhibitors. The structure-activity relationship (SAR) and the druggability, and the challenges of BCAT inhibitors are discussed, with the aim of inspiring the discovery and development of BCAT inhibitors in the future.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673320136241024054435
2025-01-08
2025-04-21
Loading full text...

Full text loading...

References

  1. Layman D.K. The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 2003 133 1 261S 267S 10.1093/jn/133.1.261S 12514305
    [Google Scholar]
  2. Holeček M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018 15 1 33 10.1186/s12986‑018‑0271‑1 29755574
    [Google Scholar]
  3. Zhang S. Zeng X. Ren M. Mao X. Qiao S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017 8 1 10 10.1186/s40104‑016‑0139‑z 28127425
    [Google Scholar]
  4. Kimball S.R. Jefferson L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 2006 136 1 227S 231S 10.1093/jn/136.1.227S 16365087
    [Google Scholar]
  5. Lynch C.J. Adams S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014 10 12 723 736 10.1038/nrendo.2014.171 25287287
    [Google Scholar]
  6. Yudkoff M. Brain metabolism of branched-chain amino acids. Glia 1997 21 1 92 98 10.1002/(SICI)1098‑1136(199709)21:1<92::AID‑GLIA10>3.0.CO;2‑W 9298851
    [Google Scholar]
  7. Ye L. Wen X. Qin J. Zhang X. Wang Y. Wang Z. Zhou T. Di Y. He W. Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis. 2024 15 3 196 10.1038/s41419‑024‑06584‑y 38459004
    [Google Scholar]
  8. Dent C.E. Rose G.A. Aminoacid metabolism in cystinuria 1. QJM 1951 20 79 205 219 10.1093/oxfordjournals.qjmed.a066614 14883297
    [Google Scholar]
  9. Suzuki A. Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 2021 146 115881 10.1016/j.bone.2021.115881 33578033
    [Google Scholar]
  10. Chen J. Cui L. Lu S. Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 2024 15 1 42 10.1038/s41419‑024‑06435‑w 38218942
    [Google Scholar]
  11. Li J. Chen M. Lu L. Wang J. Tan L. Branched-chain amino acid transaminase 1 inhibition attenuates childhood asthma in mice by effecting airway remodeling and autophagy. Respir. Physiol. Neurobiol. 2022 306 103961 10.1016/j.resp.2022.103961 35961527
    [Google Scholar]
  12. Toyokawa Y. Koonthongkaew J. Takagi H. An overview of branched-chain amino acid aminotransferases: Functional differences between mitochondrial and cytosolic isozymes in yeast and human. Appl. Microbiol. Biotechnol. 2021 105 21-22 8059 8072 10.1007/s00253‑021‑11612‑4 34622336
    [Google Scholar]
  13. Ananieva E.A. Wilkinson A.C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care 2018 21 1 64 70 10.1097/MCO.0000000000000430 29211698
    [Google Scholar]
  14. Wang H. Wang F. Ouyang W. Jiang X. Wang Y. BCAT1 overexpression regulates proliferation and c-Myc/GLUT1 signaling in head and neck squamous cell carcinoma. Oncol. Rep. 2021 45 5 52 10.3892/or.2021.8003 33760210
    [Google Scholar]
  15. Hutson S. Structure and function of branched chain aminotransferases. Prog. Nucleic Acid Res. Mol. Biol. 2001 70 175 206 10.1016/S0079‑6603(01)70017‑7 11642362
    [Google Scholar]
  16. Zhao H. Zhang F. Sun D. Wang X. Zhang X. Zhang J. Yan F. Huang C. Xie H. Lin C. Liu Y. Fan M. Yan W. Chen Y. Lian K. Li Y. Zhang L. Wang S. Tao L. Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling. Diabetes 2020 69 6 1164 1177 10.2337/db19‑0920 32184272
    [Google Scholar]
  17. Wallace E.R. Koehl L.M. Neurocognitive effects of Moyamoya disease and concomitant epilepsy. Cerebral Circulation - Cognition and Behavior 2021 2 100003 10.1016/j.cccb.2020.100003 36324731
    [Google Scholar]
  18. Tönjes M. Barbus S. Park Y.J. Wang W. Schlotter M. Lindroth A.M. Pleier S.V. Bai A.H.C. Karra D. Piro R.M. Felsberg J. Addington A. Lemke D. Weibrecht I. Hovestadt V. Rolli C.G. Campos B. Turcan S. Sturm D. Witt H. Chan T.A. Mende H.C. Kemkemer R. König R. Schmidt K. Hull W.E. Pfister S.M. Jugold M. Hutson S.M. Plass C. Okun J.G. Reifenberger G. Lichter P. Radlwimmer B. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 2013 19 7 901 908 10.1038/nm.3217 23793099
    [Google Scholar]
  19. Wang Z.Q. Faddaoui A. Bachvarova M. Plante M. Gregoire J. Renaud M.C. Sebastianelli A. Guillemette C. Gobeil S. Macdonald E. Vanderhyden B. Bachvarov D. BCAT1 expression associates with ovarian cancer progression: Possible implications in altered disease metabolism. Oncotarget 2015 6 31 31522 31543 10.18632/oncotarget.5159 26372729
    [Google Scholar]
  20. Zheng Y.H. Hu W.J. Chen B.C. Grahn T.H.M. Zhao Y.R. Bao H.L. Zhu Y.F. Zhang Q.Y. BCAT 1, a key prognostic predictor of hepatocellular carcinoma, promotes cell proliferation and induces chemoresistance to cisplatin. Liver Int. 2016 36 12 1836 1847 10.1111/liv.13178 27246112
    [Google Scholar]
  21. Thewes V. Simon R. Hlevnjak M. Schlotter M. Schroeter P. Schmidt K. Wu Y. Anzeneder T. Wang W. Windisch P. Kirchgäßner M. Melling N. Kneisel N. Büttner R. Deuschle U. Sinn H.P. Schneeweiss A. Heck S. Kaulfuss S. Stumpp H.H. Okun J.G. Sauter G. Lykkesfeldt A.E. Zapatka M. Radlwimmer B. Lichter P. Tönjes M. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene 2017 36 29 4124 4134 10.1038/onc.2017.32 28319069
    [Google Scholar]
  22. Mayers J.R. Torrence M.E. Danai L.V. Papagiannakopoulos T. Davidson S.M. Bauer M.R. Lau A.N. Ji B.W. Dixit P.D. Hosios A.M. Muir A. Chin C.R. Freinkman E. Jacks T. Wolpin B.M. Vitkup D. Heiden V.M.G. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras -driven cancers. Science 2016 353 6304 1161 1165 10.1126/science.aaf5171 27609895
    [Google Scholar]
  23. Hattori A. Tsunoda M. Konuma T. Kobayashi M. Nagy T. Glushka J. Tayyari F. McSkimming D. Kannan N. Tojo A. Edison A.S. Ito T. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 2017 545 7655 500 504 10.1038/nature22314 28514443
    [Google Scholar]
  24. Rudin C.M. Brambilla E. Finn F.C. Sage J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021 7 1 3 10.1038/s41572‑020‑00235‑0 33446664
    [Google Scholar]
  25. Zhu W. Shao Y. Peng Y. MicroRNA-218 inhibits tumor growth and increases chemosensitivity to CDDP treatment by targeting BCAT1 in prostate cancer. Mol. Carcinog. 2017 56 6 1570 1577 10.1002/mc.22612 28052414
    [Google Scholar]
  26. She P. Zhou Y. Zhang Z. Griffin K. Gowda K. Lynch C.J. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J. Appl. Physiol. 2010 108 4 941 949 10.1152/japplphysiol.01248.2009 20133434
    [Google Scholar]
  27. Newgard C.B. An J. Bain J.R. Muehlbauer M.J. Stevens R.D. Lien L.F. Haqq A.M. Shah S.H. Arlotto M. Slentz C.A. Rochon J. Gallup D. Ilkayeva O. Wenner B.R. Yancy W.S. Jr Eisenson H. Musante G. Surwit R.S. Millington D.S. Butler M.D. Svetkey L.P. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009 9 4 311 326 10.1016/j.cmet.2009.02.002 19356713
    [Google Scholar]
  28. Loomba R. Abraham M. Unalp A. Wilson L. Lavine J. Doo E. Bass N.M. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 2012 56 3 943 951 10.1002/hep.25772 22505194
    [Google Scholar]
  29. Kusminski C.M. Shetty S. Orci L. Unger R.H. Scherer P.E. Diabetes and apoptosis: Lipotoxicity. Apoptosis 2009 14 12 1484 1495 10.1007/s10495‑009‑0352‑8 19421860
    [Google Scholar]
  30. Loomba R. Sanyal A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013 10 11 686 690 10.1038/nrgastro.2013.171 24042449
    [Google Scholar]
  31. Greco D. Kotronen A. Westerbacka J. Puig O. Arkkila P. Kiviluoto T. Laitinen S. Kolak M. Fisher R.M. Hamsten A. Auvinen P. Järvinen Y.H. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 2008 294 5 G1281 G1287 10.1152/ajpgi.00074.2008 18388185
    [Google Scholar]
  32. Chen C. Naveed H. Chen K. Research progress on branched-chain amino acid aminotransferases. Front. Genet. 2023 14 1233669 10.3389/fgene.2023.1233669 38028625
    [Google Scholar]
  33. Huang W. Hao Z. Mao F. Guo D. Small molecule inhibitors in adult high-grade glioma: From the past to the future. Front. Oncol. 2022 12 911876 10.3389/fonc.2022.911876 35785151
    [Google Scholar]
  34. Holeček M. Why are branched-chain amino acids increased in starvation and diabetes? Nutrients 2020 12 10 3087 10.3390/nu12103087 33050579
    [Google Scholar]
  35. Sperringer J.E. Addington A. Hutson S.M. Branched-chain amino acids and brain metabolism. Neurochem. Res. 2017 42 6 1697 1709 10.1007/s11064‑017‑2261‑5 28417264
    [Google Scholar]
  36. Yudkoff M. Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem. Res. 2017 42 1 10 18 10.1007/s11064‑016‑2057‑z 27696119
    [Google Scholar]
  37. Hull J. Patel V.B. Hutson S.M. Conway M.E. New insights into the role of the branched-chain aminotransferase proteins in the human brain. J. Neurosci. Res. 2015 93 7 987 998 10.1002/jnr.23558 25639459
    [Google Scholar]
  38. Adams S.H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2011 2 6 445 456 10.3945/an.111.000737 22332087
    [Google Scholar]
  39. Bezsudnova E.Y. Stekhanova T.N. Suplatov D.A. Mardanov A.V. Ravin N.V. Popov V.O. Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis. Arch. Biochem. Biophys. 2016 607 27 36 10.1016/j.abb.2016.08.009 27523731
    [Google Scholar]
  40. Hull J. Patel V. Hindy E.M. Lee C. Odeleye E. Hezwani M. Love S. Kehoe P. Chalmers K. Conway M. Regional increase in the expression of the BCAT proteins in Alzheimer’s disease brain: Implications in glutamate toxicity. J. Alzheimers Dis. 2015 45 3 891 905 10.3233/JAD‑142970 25633671
    [Google Scholar]
  41. Conway M.E. Emerging moonlighting functions of the branched-chain aminotransferase proteins. Antioxid. Redox Signal. 2021 34 13 1048 1067 10.1089/ars.2020.8118 32635740
    [Google Scholar]
  42. Suryawan A. Hawes J.W. Harris R.A. Shimomura Y. Jenkins A.E. Hutson S.M. A molecular model of human branched-chain amino acid metabolism. Am. J. Clin. Nutr. 1998 68 1 72 81 10.1093/ajcn/68.1.72 9665099
    [Google Scholar]
  43. Yudkoff M. Daikhin Y. Nissim I. Horyn O. Luhovyy B. Lazarow A. Nissim I. Nissim I. Brain amino acid requirements and toxicity: The example of leucine. J. Nutr. 2005 135 6 1531S 1538S 10.1093/jn/135.6.1531S 15930465
    [Google Scholar]
  44. Ananieva E.A. Powell J.D. Hutson S.M. Leucine metabolism in T cell activation: MTOR signaling and beyond. Adv. Nutr. 2016 7 4 798S 805S 10.3945/an.115.011221 27422517
    [Google Scholar]
  45. Ichihara A. Koyama E. Transaminase of branched chain amino acids. I. Branched chain amino acids-α-ketoglutarate transaminase. J. Biochem. 1966 59 2 160 169 10.1093/oxfordjournals.jbchem.a128277 5943594
    [Google Scholar]
  46. Wetzel T.J. Erfan S.C. Ananieva E.A. The emerging role of the branched chain aminotransferases, BCATc and BCATm, for anti-tumor T-cell immunity. Immunometabolism 2023 5 1 e00014 10.1097/IN9.0000000000000014 36644500
    [Google Scholar]
  47. Sivanand S. Heiden V.M.G. Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell 2020 37 2 147 156 10.1016/j.ccell.2019.12.011 32049045
    [Google Scholar]
  48. Dimou A. Tsimihodimos V. Bairaktari E. The critical role of the branched chain amino acids (BCAAs) catabolism-regulating enzymes, branched-chain aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD), in human pathophysiology. Int. J. Mol. Sci. 2022 23 7 4022 10.3390/ijms23074022 35409380
    [Google Scholar]
  49. Costanzo M. VanderSluis B. Koch E.N. Baryshnikova A. Pons C. Tan G. Wang W. Usaj M. Hanchard J. Lee S.D. Pelechano V. Styles E.B. Billmann M. Leeuwen V.J. Dyk V.N. Lin Z.Y. Kuzmin E. Nelson J. Piotrowski J.S. Srikumar T. Bahr S. Chen Y. Deshpande R. Kurat C.F. Li S.C. Li Z. Usaj M.M. Okada H. Pascoe N. San Luis B.J. Sharifpoor S. Shuteriqi E. Simpkins S.W. Snider J. Suresh H.G. Tan Y. Zhu H. Dognin M.N. Janjic V. Przulj N. Troyanskaya O.G. Stagljar I. Xia T. Ohya Y. Gingras A.C. Raught B. Boutros M. Steinmetz L.M. Moore C.L. Rosebrock A.P. Caudy A.A. Myers C.L. Andrews B. Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science 2016 353 6306 aaf1420 10.1126/science.aaf1420 27708008
    [Google Scholar]
  50. Yu A.Q. Juwono P.N.K. Foo J.L. Leong S.S.J. Chang M.W. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab. Eng. 2016 34 36 43 10.1016/j.ymben.2015.12.005 26721212
    [Google Scholar]
  51. Campos R.M. Moscat J. Meco D.M. Metabolism shapes the tumor microenvironment. Curr. Opin. Cell Biol. 2017 48 47 53 10.1016/j.ceb.2017.05.006 28605656
    [Google Scholar]
  52. DeBerardinis R.J. Chandel N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016 2 5 e1600200 10.1126/sciadv.1600200 27386546
    [Google Scholar]
  53. Xu W. Yang H. Liu Y. Yang Y. Wang P. Kim S.H. Ito S. Yang C. Wang P. Xiao M.T. Liu L. Jiang W. Liu J. Zhang J. Wang B. Frye S. Zhang Y. Xu Y. Lei Q. Guan K.L. Zhao S. Xiong Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011 19 1 17 30 10.1016/j.ccr.2010.12.014 21251613
    [Google Scholar]
  54. Dang L. White D.W. Gross S. Bennett B.D. Bittinger M.A. Driggers E.M. Fantin V.R. Jang H.G. Jin S. Keenan M.C. Marks K.M. Prins R.M. Ward P.S. Yen K.E. Liau L.M. Rabinowitz J.D. Cantley L.C. Thompson C.B. Heiden V.M.G. Su S.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009 462 7274 739 744 10.1038/nature08617 19935646
    [Google Scholar]
  55. Dey P. Baddour J. Muller F. Wu C.C. Wang H. Liao W.T. Lan Z. Chen A. Gutschner T. Kang Y. Fleming J. Satani N. Zhao D. Achreja A. Yang L. Lee J. Chang E. Genovese G. Viale A. Ying H. Draetta G. Maitra A. Wang Y.A. Nagrath D. DePinho R.A. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 2017 542 7639 119 123 10.1038/nature21052 28099419
    [Google Scholar]
  56. Hu L.Y. Boxer P.A. Kesten S.R. Lei H.J. Wustrow D.J. Moreland D.W. Zhang L. Ahn K. Ryder T.R. Liu X. Rubin J.R. Fahnoe K. Carroll R.T. Dutta S. Fahnoe D.C. Probert A.W. Roof R.L. Rafferty M.F. Kostlan C.R. Scholten J.D. Hood M. Ren X.D. Schielke G.P. Su T.Z. Taylor C.P. Mistry A. McConnell P. Hasemann C. Ohren J. The design and synthesis of human branched-chain amino acid aminotransferase inhibitors for treatment of neurodegenerative diseases. Bioorg. Med. Chem. Lett. 2006 16 9 2337 2340 10.1016/j.bmcl.2005.07.058 16143519
    [Google Scholar]
  57. Raffel S. Falcone M. Kneisel N. Hansson J. Wang W. Lutz C. Bullinger L. Poschet G. Nonnenmacher Y. Barnert A. Bahr C. Zeisberger P. Przybylla A. Sohn M. Tönjes M. Erez A. Adler L. Jensen P. Scholl C. Fröhling S. Cocciardi S. Wuchter P. Thiede C. Flörcken A. Westermann J. Ehninger G. Lichter P. Hiller K. Hell R. Herrmann C. Ho A.D. Krijgsveld J. Radlwimmer B. Trumpp A. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 2017 551 7680 384 388 10.1038/nature24294 29144447
    [Google Scholar]
  58. Raffel S. Falcone M. Kneisel N. Hansson J. Wang W. Lutz C. Bullinger L. Poschet G. Nonnenmacher Y. Barnert A. Bahr C. Zeisberger P. Przybylla A. Sohn M. Tönjes M. Erez A. Adler L. Jensen P. Scholl C. Fröhling S. Cocciardi S. Wuchter P. Thiede C. Flörcken A. Westermann J. Ehninger G. Lichter P. Hiller K. Hell R. Herrmann C. Ho A.D. Krijgsveld J. Radlwimmer B. Trumpp A. Author correction: BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 2018 560 7718 E28 10.1038/s41586‑018‑0403‑9 30069041
    [Google Scholar]
  59. Chattopadhyay I. Wang J. Qin M. Gao L. Holtz R. Vessella R.L. Leach R.W. Gelman I.H. Src promotes castration-recurrent prostate cancer through androgen receptor-dependent canonical and non-canonical transcriptional signatures. Oncotarget 2017 8 6 10324 10347 10.18632/oncotarget.14401 28055971
    [Google Scholar]
  60. Shafei M.A. Flemban A. Daly C. Kendrick P. White P. Dean S. Qualtrough D. Conway M.E. Differential expression of the BCAT isoforms between breast cancer subtypes. Breast Cancer 2021 28 3 592 607 10.1007/s12282‑020‑01197‑7 33367952
    [Google Scholar]
  61. Li J.T. Yin M. Wang D. Wang J. Lei M.Z. Zhang Y. Liu Y. Zhang L. Zou S.W. Hu L.P. Zhang Z.G. Wang Y.P. Wen W.Y. Lu H.J. Chen Z.J. Su D. Lei Q.Y. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat. Cell Biol. 2020 22 2 167 174 10.1038/s41556‑019‑0455‑6 32029896
    [Google Scholar]
  62. Halbrook C.J. Lyssiotis C.A. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 2017 31 1 5 19 10.1016/j.ccell.2016.12.006 28073003
    [Google Scholar]
  63. Wang Y.T. Zhang J. Ren S.X. Sun D. Huang H.Y. Wang H. Jin Y.J. Li F.M. Zheng C. Yang L. Deng L. Jiang Z.L. Jiang T. Han X.K. Hou S.D. Guo C.C. Li F. Gao D. Qin J. Gao D.M. Chen L.N. Lin S.H. Wong K.K. Li C. Hu L. Zhou C.C. Ji H.B. Branched-chain amino acid metabolic reprogramming orchestrates drug resistance to EGFR tyrosine kinase inhibitors. Cell Rep. 2019 28 2 512 525.E6 10.1016/j.celrep.2019.06.026
    [Google Scholar]
  64. Silva L.S. Poschet G. Nonnenmacher Y. Becker H.M. Sapcariu S. Gaupel A.C. Schlotter M. Wu Y. Kneisel N. Seiffert M. Hell R. Hiller K. Lichter P. Radlwimmer B. Branched-chain ketoacids secreted by glioblastoma cells via MCT 1 modulate macrophage phenotype. EMBO Rep. 2017 18 12 2172 2185 10.15252/embr.201744154 29066459
    [Google Scholar]
  65. Chen J. Barrett L. Lin Z. Kendrick S. Mu S. Dai L. Qin Z. Identification of natural compounds tubercidin and lycorine HCl against small-cell lung cancer and BCAT1 as a therapeutic target. J. Cell. Mol. Med. 2022 26 9 2557 2565 10.1111/jcmm.17246 35318805
    [Google Scholar]
  66. Tseng Y.H. Yang R.C. Chiou S.S. Shieh T.M. Shih Y.H. Lin P.C. Curcumin induces apoptosis by inhibiting BCAT1 expression and mTOR signaling in cytarabine-resistant myeloid leukemia cells. Mol. Med. Rep. 2021 24 2 565 10.3892/mmr.2021.12204 34109436
    [Google Scholar]
  67. Herman M.A. She P. Peroni O.D. Lynch C.J. Kahn B.B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 2010 285 15 11348 11356 10.1074/jbc.M109.075184 20093359
    [Google Scholar]
  68. Pietiläinen K.H. Naukkarinen J. Rissanen A. Saharinen J. Ellonen P. Keränen H. Suomalainen A. Götz A. Suortti T. Järvinen Y.H. Orešič M. Kaprio J. Peltonen L. Global transcript profiles of fat in monozygotic twins discordant for BMI: Pathways behind acquired obesity. PLoS Med. 2008 5 3 e51 10.1371/journal.pmed.0050051 18336063
    [Google Scholar]
  69. Vanweert F. Ligt D.M. Hoeks J. Hesselink M.K.C. Schrauwen P. Phielix E. Elevated plasma branched-chain amino acid levels correlate with type 2 diabetes-related metabolic disturbances. J. Clin. Endocrinol. Metab. 2021 106 4 e1827 e1836 10.1210/clinem/dgaa751 33079174
    [Google Scholar]
  70. She P. Reid T.M. Bronson S.K. Vary T.C. Hajnal A. Lynch C.J. Hutson S.M. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 2007 6 3 181 194 10.1016/j.cmet.2007.08.003 17767905
    [Google Scholar]
  71. Borthwick J.A. Ancellin N. Bertrand S.M. Bingham R.P. Carter P.S. Chung C. Churcher I. Dodic N. Fournier C. Francis P.L. Hobbs A. Jamieson C. Pickett S.D. Smith S.E. Somers D.O.N. Spitzfaden C. Suckling C.J. Young R.J. Structurally diverse mitochondrial branched chain aminotransferase (BCATm) leads with varying binding modes identified by fragment screening. J. Med. Chem. 2016 59 6 2452 2467 10.1021/acs.jmedchem.5b01607 26938474
    [Google Scholar]
  72. Lu Z. Sun G.F. Pan X.A. Qu X.H. Yang P. Chen Z.P. Han X.J. Wang T. BCATc inhibitor 2 ameliorated mitochondrial dysfunction and apoptosis in oleic acid-induced non-alcoholic fatty liver disease model. Front. Pharmacol. 2022 13 1025551 10.3389/fphar.2022.1025551 36386234
    [Google Scholar]
  73. Lieth E. LaNoue K.F. Berkich D.A. Xu B. Ratz M. Taylor C. Hutson S.M. Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J. Neurochem. 2001 76 6 1712 1723 10.1046/j.1471‑4159.2001.00156.x 11259489
    [Google Scholar]
  74. Kholodilov N.G. Neystat M. Oo T.F. Hutson S.M. Burke R.E. Upregulation of cytosolic branched chain aminotransferase in substantia nigra following developmental striatal target injury. Brain Res. Mol. Brain Res. 2000 75 2 281 286 10.1016/S0169‑328X(99)00318‑6 10686349
    [Google Scholar]
  75. Jouvet P. Rustin P. Taylor D.L. Pocock J.M. Mueser F.U. Mazarakis N.D. Sarraf C. Joashi U. Kozma M. Greenwood K. Edwards A.D. Mehmet H. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: Implications for neurological impairment associated with maple syrup urine disease. Mol. Biol. Cell 2000 11 5 1919 1932 10.1091/mbc.11.5.1919 10793161
    [Google Scholar]
  76. Harris M. Hindy E.M. Moraes U.M. Hudd F. Shafei M. Dong M. Hezwani M. Clark P. House M. Forshaw T. Kehoe P. Conway M.E. BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer’s disease. Free Radic. Biol. Med. 2020 152 755 766 10.1016/j.freeradbiomed.2020.01.019 31982508
    [Google Scholar]
  77. Mor D.E. Sohrabi S. Kaletsky R. Keyes W. Tartici A. Kalia V. Miller G.W. Murphy C.T. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc. Natl. Acad. Sci. 2020 117 42 26438 26447 10.1073/pnas.2009838117 33024014
    [Google Scholar]
  78. Caballero J. Jaque V.A. Fernández M. Coll D. Docking and quantitative structure–activity relationship studies for sulfonyl hydrazides as inhibitors of cytosolic human branched-chain amino acid aminotransferase. Mol. Divers. 2009 13 4 493 500 10.1007/s11030‑009‑9140‑1 19350404
    [Google Scholar]
  79. Bora K.M. Hu L-Y. Kesten S.R. Lei H. Moreland D.W. Rafferty M.F. Ryder T.R. Scholten J.D. Wustrow D.J. Branched chain amino acid-dependent aminotransferase inhibitors and their use in the treatment of neurodegenerative diseases. Patent: WO, 02/24672, A2, 2003
  80. Hu L.Y. Kesten S.R. Lei H. Ryder T.R. Wustrow D.J. Branched chain amino acid-dependent aminotransferase inhibitors and their use in the treatment of neurodegenerative diseases. Patent: WO, 03/045902, A1, 2003
  81. Kukkar A. Bali A. Singh N. Jaggi A.S. Implications and mechanism of action of gabapentin in neuropathic pain. Arch. Pharm. Res. 2013 36 3 237 251 10.1007/s12272‑013‑0057‑y 23435945
    [Google Scholar]
  82. Chen Y. Wu Q. Jin Z. Qin Y. Meng F. Zhao G. Review of voltage-gated calcium channel α2δ subunit ligands for the treatment of chronic neuropathic pain and insight into structure-activity relationship (SAR) by pharmacophore modeling. Curr. Med. Chem. 2022 29 30 5097 5112 10.2174/0929867329666220407093727 35392779
    [Google Scholar]
  83. Hutson S.M. Berkich D. Drown P. Xu B. Aschner M. LaNoue K.F. Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J. Neurochem. 1998 71 2 863 874 10.1046/j.1471‑4159.1998.71020863.x 9681479
    [Google Scholar]
  84. Goto M. Miyahara I. Hirotsu K. Conway M. Yennawar N. Islam M.M. Hutson S.M. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J. Biol. Chem. 2005 280 44 37246 37256 10.1074/jbc.M506486200 16141215
    [Google Scholar]
  85. Radlwimmer B. Barbus S. Tönjes M. Tödt G. Lichter P. Reifenberger G. Methods for the diagnosis and prognosis of a tumor using BCAT1 protein. Patent: WO, 2011/141153, A1, 2011
  86. Radlwimmer B. Tönjes M. Barbus S. Lichter P. Inhibitors of branched-chain aminotransferase 1 (BCAT1) for the treatment of brain tumors. Patent: WO, 2012/100957, A1, 2012
  87. Grankvist N. Lagerborg K.A. Jain M. Nilsson R. Gabapentin can suppress cell proliferation independent of the cytosolic branched-chain amino acid transferase 1 (BCAT1). Biochem. 2018 57 49 6762 6766 10.1021/acs.biochem.8b01031 30427175
    [Google Scholar]
  88. Bryans J.S. Hu L.Y. Hutson S.M. LaNoue K.F. Lieth E. Rafferty M.F. Ryder T.R. Branched chain amino acid-dependent aminotransferase inhibitors and their use in the treatment of diabetic retinopathy. Patent: WO, 01/42191, A1, 2001
  89. Papathanassiu A.E. Methods of treatment using a BCAT1 inhibitor. Patent: WO, 2012/173987, A2 2012
  90. Papathanassiu A.E. Compositions and methods of treatment using a BCAT1 inhibitor. Patent: US, 2016/0368862, A1, 2016
  91. Günther J. Hillig R.C. Zimmermann K. Kaulfuss S. Lemos C. Nguyen D. Rehwinkel H. Habgood M. Lechner C. Neuhaus R. Ganzer U. Drewes M. Chai J. Bouché L. BAY-069, a novel (trifluoromethyl) pyrimidinedione-based BCAT1/2 inhibitor and chemical probe. J. Med. Chem. 2022 65 21 14366 14390 10.1021/acs.jmedchem.2c00441 36261130
    [Google Scholar]
  92. Bouche L.A. Kaulfuss S. Zimmermann K. Rehwinkel H. Neuhaus R. Hillig R. Nguyen D. Günther J. Lemos F.A.D.C.A. Pyrimidinedione derivatives. Patent: WO, 2021/063821, A1, 2021
  93. Hays S.J. Hu L.-Y. Lei H. Scholten J.D. Wustrow D.J. Branched chain amino acid-dependent aminotransferase inhibitors and their use in the treatment of neurodegenerative diseases. Patent: WO, 03/045384, A1, 2003
  94. Deng H. Zhou J. Sundersingh F. Messer J.A. Somers D.O. Ajakane M. Muendel A.C.C. Beljean A. Belyanskaya S.L. Bingham R. Blazensky E. Boullay A.B. Boursier E. Chai J. Carter P. Chung C.W. Daugan A. Ding Y. Herry K. Hobbs C. Humphries E. Kollmann C. Nguyen V.L. Nicodeme E. Smith S.E. Dodic N. Ancellin N. Discovery and optimization of potent, selective, and in vivo efficacious 2-aryl benzimidazole BCATm inhibitors. ACS Med. Chem. Lett. 2016 7 4 379 384 10.1021/acsmedchemlett.5b00389 27096045
    [Google Scholar]
  95. August P.R. Kenney M. Mauger J. Drew M. Kong W. BCAT modulation. Patent: WO, 2021/007350, A1, 2021
  96. Barberis C. Liu P. BCAT2 inhibitors. Patent: WO, 2023/086539, A2, 2023
  97. Deng H. Zhou J. Sundersingh F.S. Summerfield J. Somers D. Messer J.A. Satz A.L. Ancellin N. Muendel A.C.C. Bedard S.K.L. Beljean A. Belyanskaya S.L. Bingham R. Smith S.E. Boursier E. Carter P. Centrella P.A. Clark M.A. Chung C.W. Davie C.P. Delorey J.L. Ding Y. Franklin G.J. Grady L.C. Herry K. Hobbs C. Kollmann C.S. Morgan B.A. Kaushansky P.L.J. Zhou Q. Discovery, SAR, and X-ray binding mode study of BCATm inhibitors from a novel DNA-encoded library. ACS Med. Chem. Lett. 2015 6 8 919 924 10.1021/acsmedchemlett.5b00179 26288694
    [Google Scholar]
  98. Bertrand S.M. Ancellin N. Beaufils B. Bingham R.P. Borthwick J.A. Boullay A.B. Boursier E. Carter P.S. Chung C. Churcher I. Dodic N. Fouchet M.H. Fournier C. Francis P.L. Gummer L.A. Herry K. Hobbs A. Hobbs C.I. Homes P. Jamieson C. Nicodeme E. Pickett S.D. Reid I.H. Simpson G.L. Sloan L.A. Smith S.E. Somers D.O.N. Spitzfaden C. Suckling C.J. Valko K. Washio Y. Young R.J. The discovery of in vivo active mitochondrial branched-chain aminotransferase (BCATm) inhibitors by hybridizing fragment and HTS hits. J. Med. Chem. 2015 58 18 7140 7163 10.1021/acs.jmedchem.5b00313 26090771
    [Google Scholar]
  99. Lei Q. Ma Q. Yin M. Application of BCAT2 inhibitor in preparation of medicine for preventing and/or treating BCAT2-mediated related metabolic diseases. Patent: CN, 114073697, 2022
  100. Qian L. Li N. Lu X.C. Xu M. Liu Y. Li K. Zhang Y. Hu K. Qi Y.T. Yao J. Wu Y.L. Wen W. Huang S. Chen Z.J. Yin M. Lei Q.Y. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression. Nat. Metab. 2023 5 7 1159 1173 10.1038/s42255‑023‑00818‑7 37337119
    [Google Scholar]
  101. Ray P.K. Salahuddin S. Mazumder A. Kumar R. Ahsan M.J. Yar S.M. Salahuddin Mazumder A. Kumar R. Ahsan M.J. Yar M.S. Synthesis, anticonvulsant, and molecular docking studies of (3,5-disubstituted-4,5-dihydro-1H-pyrazol-1-yl) (4-chlorophenyl) methanone derivatives. Indian J. Pharm. Edu. Res. 2023 57 1 202 209 10.5530/001954641727
    [Google Scholar]
  102. Fu F. Lai Q. Hu J. Zhang L. Zhu X. Kou J. Yu B. Li F. Ruscogenin alleviates myocardial ischemia-induced ferroptosis through the activation of BCAT1/BCAT2. Antioxidants 2022 11 3 583 10.3390/antiox11030583 35326233
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673320136241024054435
Loading
/content/journals/cmc/10.2174/0109298673320136241024054435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test