Skip to content
2000
image of Unveiling the Therapeutic Potential of Small Molecule of SVAK-12: A Comprehensive In Silico, In Vitro, and In Vivo Studies on its Neuroprotective Effects and Molecular Interactions in Parkinson's Disease

Abstract

Introduction

Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic cells and as of now, there is no established definitive treatment available for this condition.

Method

In this study, the focus was on investigating the impact of SVAK-12, a small molecule that can cross the blood-brain barrier and remain stable without structural changes. The effect of SVAK-12 was investigated on neurotoxicity, model of Parkinson's Diseases and .

Result

Through and experiments, as well as molecular docking simulations, it was found that SVAK-12 (375 ng.ml) led to increased cell viability, reduced cellular damage, and decreased production of NO and ROS. Additionally, it boosted levels of important neurotrophic factors like BDNF (130.49%) and GDNF (116.38%), potentially aiding in alleviating motor disability and depression. The study also highlighted SVAK-12's potential as a therapeutic candidate for neurological disorders due to its ability to increase tyrosine hydroxylase expression and dopamine levels (4.84 times). While it did not significantly improve motor symptoms , it did enhance motor asymmetry in the forelimbs and gene expression related to brain regions. Besides, it induced significant BMP-2 gene expression in substantial nigra regions without significant changes in GDNF and Nurr1 gene expression in the striatum expression. The docking of SVAK-12, Levodopa, Amantadine, Biperiden, Selegiline, and Rasagiline to the binding site of GFRα1, sortilin, and TrkB showed that SVAK-12 had greater MolDock score than Selegiline and Amantadine for GFRα1 and greater than amantadine for Sortilin and TrKB.

Conclusion

Overall, the study suggests that SVAK-12's neuro-biocompatibility, ability to reduce free radicals, and enhanced neurotrophic factors make it a promising candidate as a neuroprotective drug.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673329597241006053718
2024-10-23
2024-12-26
Loading full text...

Full text loading...

References

  1. Aarsland D. Batzu L. Halliday G.M. Geurtsen G.J. Ballard C. Ray Chaudhuri K. Weintraub D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021 7 1 47 10.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  2. Sabaei M. Rahimian S. Ketabforoush A.H.M.E. Rasoolijazi H. Zamani B. Hajiakhoundi F. Soleimani M. Shahidi G. Faramarzi M. Salivary levels of disease-related biomarkers in the early stages of Parkinson's and Alzheimer's disease: A cross-sectional study. IBRO Neurosci Rep. 2023 14 285 292 10.1016/j.ibneur.2023.03.004
    [Google Scholar]
  3. Parkinson disease. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
  4. Dorsey E.R. Sherer T. Okun M.S. Bloem B.R. The emerging evidence of the Parkinson pandemic. J. Parkinsons Dis. 2018 8 s1 S3 S8 10.3233/JPD‑181474 30584159
    [Google Scholar]
  5. Kouli A. Torsney K.M. Kuan W-L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Parkinson’s Disease: Pathogenesis and Clinical Aspects Stoker T.B. Greenland J.C. Codon Publications 2018 3 26 10.15586/codonpublications.parkinsonsdisease.2018.ch1.
    [Google Scholar]
  6. Lindholm P. Saarma M. Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism. Mol. Psychiatry 2022 27 3 1310 1321 10.1038/s41380‑021‑01394‑6 34907395
    [Google Scholar]
  7. Maiti P. Manna J. Dunbar G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017 6 1 28 10.1186/s40035‑017‑0099‑z 29090092
    [Google Scholar]
  8. Barker R.A. Björklund A. Gash D.M. Whone A. Van Laar A. Kordower J.H. Bankiewicz K. Kieburtz K. Saarma M. Booms S. Huttunen H.J. Kells A.P. Fiandaca M.S. Stoessl A.J. Eidelberg D. Federoff H. Voutilainen M.H. Dexter D.T. Eberling J. Brundin P. Isaacs L. Mursaleen L. Bresolin E. Carroll C. Coles A. Fiske B. Matthews H. Lungu C. Wyse R.K. Stott S. Lang A.E. GDNF and Parkinson’s disease: Where next? A summary from a recent workshop. J. Parkinsons Dis. 2020 10 3 875 891 10.3233/JPD‑202004 32508331
    [Google Scholar]
  9. Kramer E.R. Liss B. GDNF–Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett. 2015 589 3760 3772 10.1016/j.febslet.2015.11.006 26555190
    [Google Scholar]
  10. Hamidpour S.K. Amiri M. Ketabforoush A.H.M.E. Saeedi S. Angaji A. Tavakol S.J.M.N. Unraveling dysregulated cell signaling pathways, genetic and epigenetic mysteries of Parkinson's disease. Mol Neurobiol 2024 10.1007/s12035‑024‑04128‑1.
    [Google Scholar]
  11. Cortés D. Carballo-Molina O.A. Castellanos-Montiel M.J. Velasco I. The non-survival effects of glial cell line-derived neurotrophic factor on neural cells. Front. Mol. Neurosci. 2017 10 258 10.3389/fnmol.2017.00258 28878618
    [Google Scholar]
  12. Mahato A.K. Sidorova Y.A. RET receptor tyrosine kinase: Role in neurodegeneration, obesity, and cancer. Int. J. Mol. Sci. 2020 21 19 7108 10.3390/ijms21197108 32993133
    [Google Scholar]
  13. Kambey P.A. Kanwore K. Ayanlaja A.A. Nadeem I. Du Y. Buberwa W. Liu W. Gao D. Failure of glial cell-line derived neurotrophic factor (GDNF) in clinical trials orchestrated by reduced NR4A2 (NURR1) transcription factor in Parkinson’s disease. A systematic review. Front. Aging Neurosci. 2021 13 645583 10.3389/fnagi.2021.645583 33716718
    [Google Scholar]
  14. Chu Y. Le W. Kompoliti K. Jankovic J. Mufson E.J. Kordower J.H. Nurr1 in Parkinson’s disease and related disorders. J. Comp. Neurol. 2006 494 3 495 514 10.1002/cne.20828 16320253
    [Google Scholar]
  15. Heuckeroth R.O. Kotzbauer P. Copeland N.G. Gilbert D.J. Jenkins N.A. Zimonjic D.B. Popescu N.C. Johnson E.M. Jr Milbrandt J. Neurturin, a novel neurotrophic factor, is localized to mouse chromosome 17 and human chromosome 19p13.3. Genomics 1997 44 1 137 140 10.1006/geno.1997.4846 9286710
    [Google Scholar]
  16. Tenenbaum L. Humbert-Claude M. Glial cell line-derived neurotrophic factor gene delivery in Parkinson’s disease: A delicate balance between neuroprotection, trophic effects, and unwanted compensatory mechanisms. Front. Neuroanat. 2017 11 29 10.3389/fnana.2017.00029 28442998
    [Google Scholar]
  17. Lee T.K. Yankee E.L. A review on Parkinson’s disease treatment. Neuroimmunol. Neuroinflamm. 2022 8 222 10.20517/2347‑8659.2020.58
    [Google Scholar]
  18. Adhikary R.R. Sandbhor P. Banerjee R. Nanotechnology platforms in Parkinson’s Disease. ADMET DMPK 2015 3 3 155 181 10.5599/admet.3.3.189
    [Google Scholar]
  19. Li Q. Kang C. Mechanisms of action for small molecules revealed by structural biology in drug discovery. Int. J. Mol. Sci. 2020 21 15 5262 10.3390/ijms21155262 32722222
    [Google Scholar]
  20. Han X. Sun S. Sun Y. Song Q. Zhu J. Song N. Chen M. Sun T. Xia M. Ding J. Lu M. Yao H. Hu G. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy 2019 15 11 1860 1881 10.1080/15548627.2019.1596481 30966861
    [Google Scholar]
  21. Zhang H. Tong R. Bai L. Shi J. Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg. Med. Chem. 2016 24 7 1419 1430 10.1016/j.bmc.2016.02.030 26935940
    [Google Scholar]
  22. Wong E. Sangadala S. Boden S.D. Yoshioka K. Hutton W.C. Oliver C. Titus L. A novel low-molecular-weight compound enhances ectopic bone formation and fracture repair. J. Bone Joint Surg. Am. 2013 95 5 454 461 10.2106/JBJS.L.00275 23467869
    [Google Scholar]
  23. Kato S. Sangadala S. Tomita K. Titus L. Boden S.D. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype. Mol. Cell. Biochem. 2011 349 1-2 97 106 10.1007/s11010‑010‑0664‑6 21110071
    [Google Scholar]
  24. Tavakol S. The twofold role of osteogenic small molecules in Parkinson's disease therapeutics: Crosstalk of osteogenesis and neurogenesis. Biomed Res Int 2022 2022 3813541 10.1155/2022/3813541.
    [Google Scholar]
  25. Poormoghadam D. Almasi A. Ashrafizadeh M. Vishkaei A.S. Rezayat S.M. Tavakol S.J.N. The particle size of drug nanocarriers dictates the fate of neurons; critical points in neurological therapeutics. Nanotechnology 2020 31 33 335101 10.1088/1361‑6528/ab8d6b.
    [Google Scholar]
  26. Luciani K.R. Frie J.A. Khokhar J.Y. An open source automated bar test for measuring catalepsy in rats. eNeuro 2020 7 3 10.1523/ENEURO.0488‑19.2020 32198157
    [Google Scholar]
  27. Magno L.A. Collodetti M. Tenza-Ferrer H. Romano-Silva M. Cylinder test to assess sensory-motor function in a mouse model of Parkinson’s disease. Bio Protoc. 2019 9 16 e3337 e3337 10.21769/BioProtoc.3337 33654842
    [Google Scholar]
  28. Shi X. Bai H. Wang J. Wang J. Huang L. He M. Zheng X. Duan Z. Chen D. Zhang J. Chen X. Wang J. Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front. Neurol. 2021 12 667511 10.3389/fneur.2021.667511 34220676
    [Google Scholar]
  29. Huang L. Xiao D. Sun H. Qu Y. Su X. Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Mol. Med. Rep. 2022 25 5 183 10.3892/mmr.2022.12699 35348193
    [Google Scholar]
  30. Miyanishi K. Choudhury M.E. Watanabe M. Kubo M. Nomoto M. Yano H. Tanaka J. Behavioral tests predicting striatal dopamine level in a rat hemi-Parkinson’s disease model. Neurochem. Int. 2019 122 38 46 10.1016/j.neuint.2018.11.005 30419255
    [Google Scholar]
  31. Arjmand B. Hamidpour S.K. Alavi-Moghadam S. Yavari H. Shahbazbadr A. Tavirani M.R. Gilany K. Larijani B. Molecular docking as a therapeutic approach for targeting cancer stem cell metabolic processes. Front. Pharmacol. 2022 13 768556 10.3389/fphar.2022.768556 35264950
    [Google Scholar]
  32. Gumber A. Ramaswamy B. Thongchundee O. Effects of Parkinson’s on employment, cost of care, and quality of life of people with condition and family caregivers in the UK: A systematic literature review. Patient Relat. Outcome Meas. 2019 10 321 333 10.2147/PROM.S160843 31695537
    [Google Scholar]
  33. Carvajal-Oliveros A. Uriostegui-Arcos M. Zurita M. Melchy-Perez E.I. Narváez-Padilla V. Reynaud E. The BE (2)-M17 cell line has a better dopaminergic phenotype than the traditionally used for Parkinson´s research SH-SY5Y, which is mostly serotonergic. IBRO Neuroscience Reports 2022 13 543 551 10.1016/j.ibneur.2022.11.007 36471713
    [Google Scholar]
  34. Cao Y. Wang C. Zhang X. Xing G. Lu K. Gu Y. He F. Zhang L. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci. Rep. 2014 4 1 4965 10.1038/srep04965 24828823
    [Google Scholar]
  35. Albert-Gascó H. Ros-Bernal F. Castillo-Gómez E. Olucha-Bordonau F.E. MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int. J. Mol. Sci. 2020 21 12 4471 10.3390/ijms21124471 32586047
    [Google Scholar]
  36. Liu M. Zuo S. Guo X. Peng J. Xing Y. Guo Y. Li C. Xing H. The study of overexpression of peroxiredoxin-2 reduces MPP+-induced toxicity in the cell model of Parkinson’s disease. Neurochem. Res. 2023 48 7 2129 2137 10.1007/s11064‑023‑03880‑5 36808393
    [Google Scholar]
  37. Molinari C. Morsanuto V. Ruga S. Notte F. Farghali M. Galla R. Uberti F. The role of BDNF on aging-modulation markers. Brain Sci. 2020 10 5 285 10.3390/brainsci10050285 32397504
    [Google Scholar]
  38. Xiong Z.K. Lang J. Xu G. Li H.Y. Zhang Y. Wang L. Su Y. Sun A.J. Excessive levels of nitric oxide in rat model of Parkinson’s disease induced by rotenone. Exp. Ther. Med. 2015 9 2 553 558 10.3892/etm.2014.2099 25574233
    [Google Scholar]
  39. Dias V. Junn E. Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 2013 3 4 461 491 10.3233/JPD‑130230 24252804
    [Google Scholar]
  40. Trist B.G. Hare D.J. Double K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019 18 6 e13031 10.1111/acel.13031 31432604
    [Google Scholar]
  41. Tapia-González S. Giráldez-Pérez R.M. Cuartero M.I. Casarejos M.J. Mena M.Á. Wang X.F. Sánchez-Capelo A. Dopamine and α-synuclein dysfunction in Smad3 null mice. Mol. Neurodegener. 2011 6 1 72 10.1186/1750‑1326‑6‑72 21995845
    [Google Scholar]
  42. Que Z. Zhou Z. Liu S. Zheng W. Lei B. Dihydroartemisinin inhibits EMT of glioma via gene BASP1 in extrachromosomal DNA. Biochem. Biophys. Res. Commun. 2023 675 130 138 10.1016/j.bbrc.2023.07.019 37473527
    [Google Scholar]
  43. Iova O.M. Marin G.E. Lazar I. Stanescu I. Dogaru G. Nicula C.A. Bulboacă A.E. Nitric oxide/nitric oxide synthase system in the pathogenesis of neurodegenerative disorders—An overview. Antioxidants 2023 12 3 753 10.3390/antiox12030753 36979000
    [Google Scholar]
  44. Tolosa A. Zhou X. Spittau B. Krieglstein K. Establishment of a survival and toxic cellular model for Parkinson’s disease from chicken mesencephalon. Neurotox. Res. 2013 24 2 119 129 10.1007/s12640‑012‑9367‑y 23238634
    [Google Scholar]
  45. Bai L. Chang H.M. Zhang L. Zhu Y.M. Leung P.C.K. BMP2 increases the production of BDNF through the upregulation of proBDNF and furin expression in human granulosa‐lutein cells. FASEB J. 2020 34 12 16129 16143 10.1096/fj.202000940R 33047388
    [Google Scholar]
  46. Canossa M. Giordano E. Cappello S. Guarnieri C. Ferri S. Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 2002 99 5 3282 3287 10.1073/pnas.042504299 11867712
    [Google Scholar]
  47. Singh R. Zahra W. Singh S.S. Birla H. Rathore A.S. Keshri P.K. Dilnashin H. Singh S. Singh S.P. Oleuropein confers neuroprotection against rotenone-induced model of Parkinson’s disease via BDNF/CREB/Akt pathway. Sci. Rep. 2023 13 1 2452 10.1038/s41598‑023‑29287‑4 36774383
    [Google Scholar]
  48. Ding Y.M. Jaumotte J.D. Signore A.P. Zigmond M.J. Effects of 6‐hydroxydopamine on primary cultures of substantia nigra: Specific damage to dopamine neurons and the impact of glial cell line‐derived neurotrophic factor. J. Neurochem. 2004 89 3 776 787 10.1111/j.1471‑4159.2004.02415.x 15086533
    [Google Scholar]
  49. Yin J. Chang H.M. Yi Y. Yao Y. Leung P.C.K. TGF-β1 increases GDNF production by upregulating the expression of GDNF and furin in human granulosa-lutein cells. Cells 2020 9 1 185 10.3390/cells9010185 31936902
    [Google Scholar]
  50. Vitic Z. Safory H. Jovanovic V.M. Sarusi Y. Stavsky A. Kahn J. Kuzmina A. Toker L. Gitler D. Taube R. Friedel R.H. Engelender S. Brodski C. BMP5/7 protect dopaminergic neurons in an α-synuclein mouse model of Parkinson’s disease. Brain 2021 144 2 e15 10.1093/brain/awaa368 33253359
    [Google Scholar]
  51. Wang D. Lang Z.C. Wei S.N. Wang W. Zhang H. Targeting brain‐derived neurotrophic factor in the treatment of neurodegenerative diseases: A review. Neuroprotection 2024 2 2 10.1002/nep3.43.
    [Google Scholar]
  52. Cintrón-Colón A.F. Almeida-Alves G. Boynton A.M. Spitsbergen J.M. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res. 2020 382 1 47 56 10.1007/s00441‑020‑03287‑6 32897420
    [Google Scholar]
  53. Yang F. Feng L. Zheng F. Johnson S.W. Du J. Shen L. Wu C. Lu B. GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat. Neurosci. 2001 4 11 1071 1078 10.1038/nn734 11593232
    [Google Scholar]
  54. Schlenker B. Matiasek K. Saur D. Gratzke C. Bauer R.M. Herouy Y. Arndt C. Blesch A. Hartung R. Stief C.G. Weidner N. May F. Effects of cavernous nerve reconstruction on expression of nitric oxide synthase isoforms in rats. BJU Int. 2010 106 11 1726 1731 10.1111/j.1464‑410X.2010.09364.x 20438559
    [Google Scholar]
  55. Kim S.J. Ryu M.J. Han J. Jang Y. Kim J. Lee M.J. Ryu I. Ju X. Oh E. Chung W. Kweon G.R. Heo J.Y. Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation. Biochem. Biophys. Res. Commun. 2017 493 1 358 364 10.1016/j.bbrc.2017.09.017 28887039
    [Google Scholar]
  56. Tavakol S. Musavi S.M.M. Tavakol B. Hoveizi E. Ai J. Rezayat S.M.J.M.n. Noggin along with a self-assembling peptide nanofiber containing long motif of laminin induces tyrosine hydroxylase gene expression. Mol Neurobiol 2017 54 6 4609 4616 10.1007/s12035‑016‑0006‑0.
    [Google Scholar]
  57. Mendes-Pinheiro B. Soares-Cunha C. Marote A. Loureiro-Campos E. Campos J. Barata-Antunes S. Monteiro-Fernandes D. Santos D. Duarte-Silva S. Pinto L. José Salgado A. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: A closer look into non-motor phenotype and glial response. Int. J. Mol. Sci. 2021 22 21 11530 10.3390/ijms222111530 34768962
    [Google Scholar]
  58. Glajch K.E. Fleming S.M. Surmeier D.J. Osten P. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behav. Brain Res. 2012 230 2 309 316 10.1016/j.bbr.2011.12.007 22178078
    [Google Scholar]
  59. Eyhani-Rad S. Mohajjel Nayebi A. Mahmoudi J. Samini M. Babapour V. Role of 5-Hydroxytryptamine 1A receptors in 6-hydroxydopmaine-induced catalepsy-like immobilization in rats: A therapeutic approach for treating catalepsy of Parkinson’s disease. Iran. J. Pharm. Res. 2012 11 4 1175 1181 24250551
    [Google Scholar]
  60. Periodic Reporting for period 1 - BMPARK (Development of BMP2 Neurotrophic Therapy for Parkinson’s Disease). Available from: https://cordis.europa.eu/project/id/890290/reporting
  61. Tokugawa K. Yamamoto K. Nishiguchi M. Sekine T. Sakai M. Ueki T. Chaki S. Okuyama S. XIB4035, a novel nonpeptidyl small molecule agonist for GFRα-1. Neurochem. Int. 2003 42 1 81 86 10.1016/S0197‑0186(02)00053‑0 12441171
    [Google Scholar]
  62. Bespalov M.M. Sidorova Y.A. Suleymanova I. Thompson J. Kambur O. Jokinen V. Lilius T. Karelson G. Puusepp L. Rauhala P. Novel agonist of GDNF family ligand receptor RET for the treatment of experimental neuropathy. BioRxiv 2016 061820 10.1101/061820
    [Google Scholar]
  63. Sidorova Y.A. Bespalov M.M. Wong A.W. Kambur O. Jokinen V. Lilius T.O. Suleymanova I. Karelson G. Rauhala P.V. Karelson M. Osborne P.B. Keast J.R. Kalso E.A. Saarma M. A novel small molecule GDNF receptor RET agonist, BT13, promotes neurite growth from sensory neurons in vitro and attenuates experimental neuropathy in the rat. Front. Pharmacol. 2017 8 365 10.3389/fphar.2017.00365 28680400
    [Google Scholar]
  64. Renko J.M. Mahato A.K. Visnapuu T. Valkonen K. Karelson M. Voutilainen M.H. Saarma M. Tuominen R.K. Sidorova Y.A. Neuroprotective potential of a small molecule RET agonist in cultured dopamine neurons and hemiparkinsonian rats. J. Parkinsons Dis. 2021 11 3 1023 1046 10.3233/JPD‑202400 34024778
    [Google Scholar]
  65. Klein P. Functions of GDNF/Ret signaling in models of autosomal recessive Parkinson’s disease. Thesis, Ludwig Maximilian University of Munich 2012
    [Google Scholar]
  66. Hidalgo-Figueroa M. Bonilla S. Gutiérrez F. Pascual A. López-Barneo J. GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J. Neurosci. 2012 32 3 864 872 10.1523/JNEUROSCI.2693‑11.2012 22262884
    [Google Scholar]
  67. Kasanga E.A. Han Y. Navarrete W. McManus R. Shifflet M.K. Parry C. Barahona A. Manfredsson F.P. Nejtek V.A. Richardson J.R. Salvatore M.F. Differential expression of RET and GDNF family receptor, GFR-α1, between striatum and substantia nigra following nigrostriatal lesion: A case for diminished GDNF-signaling. Exp. Neurol. 2023 366 114435 10.1016/j.expneurol.2023.114435 37178997
    [Google Scholar]
  68. Duarte Azevedo M. Sander S. Tenenbaum L. GDNF, A neuron-derived factor upregulated in glial cells during disease. J. Clin. Med. 2020 9 2 456 10.3390/jcm9020456 32046031
    [Google Scholar]
  69. Kitsis R.N. Leinwand L.A. Discordance between gene regulation in vitro and in vivo . Gene Expr. 1992 2 4 313 318 1472867
    [Google Scholar]
  70. Delgado-Minjares K.M. Martinez-Fong D. Martínez-Dávila I.A. Bañuelos C. Gutierrez-Castillo M.E. Blanco-Alvarez V.M. Cardenas-Aguayo M.C. Luna-Muñoz J. Pacheco-Herrero M. Soto-Rojas L.O. Mechanistic insight from preclinical models of Parkinson’s disease could help redirect clinical trial efforts in GDNF therapy. Int. J. Mol. Sci. 2021 22 21 11702 10.3390/ijms222111702 34769132
    [Google Scholar]
  71. Kramer E.R. Conway J.A. Is activation of GDNF/RET signaling the answer for successful treatment of Parkinson’s disease? A discussion of data from the culture dish to the clinic. Neural Regen. Res. 2022 17 7 1462 1467 10.4103/1673‑5374.327330 34916419
    [Google Scholar]
  72. Ojeda V. Fuentealba J.A. Galleguillos D. Andrés M.E. Rapid increase of Nurr1 expression in the substantia nigra after 6‐hydroxydopamine lesion in the striatum of the rat. J. Neurosci. Res. 2003 73 5 686 697 10.1002/jnr.10705 12929136
    [Google Scholar]
  73. Collins L.M. Goulding S.R. Sullivan A.M. O’Keeffe G.W. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease. Neural Regen. Res. 2020 15 8 1432 1436 10.4103/1673‑5374.274327 31997802
    [Google Scholar]
  74. O’Keeffe G.W. Hegarty S.V. Sullivan A.M. Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson’s disease. Neuronal Signal. 2017 1 2 NS20170027 10.1042/NS20170027 32714578
    [Google Scholar]
  75. Reyes-Corona D. Vázquez-Hernández N. Escobedo L. Orozco-Barrios C.E. Ayala-Davila J. Moreno M.G. Amaro-Lara M.E. Flores-Martinez Y.M. Espadas-Alvarez A.J. Fernandez-Parrilla M.A. Gonzalez-Barrios J.A. Gutierrez-Castillo M.E. González-Burgos I. Martinez-Fong D. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion. PLoS One 2017 12 11 e0188239 10.1371/journal.pone.0188239 29176874
    [Google Scholar]
  76. Sidorova Y.A. Volcho K.P. Salakhutdinov N.F. Neuroregeneration in Parkinson’s disease: from proteins to small molecules. Curr. Neuropharmacol. 2019 17 3 268 287 10.2174/1570159X16666180905094123 30182859
    [Google Scholar]
  77. Ivanova L. Tammiku-Taul J. Sidorova Y. Saarma M. Karelson M. Small-molecule ligands as potential GDNF family receptor agonists. ACS Omega 2018 3 1 1022 1030 10.1021/acsomega.7b01932 30023796
    [Google Scholar]
  78. Anand A. Jain M. Shah A. Medhi B. Discovery of novel small molecule inhibitors targeting progranulin-sortilin: A virtual high throughput screening approach. Res Sq 2023 10.21203/rs.3.rs‑2559741/v1
    [Google Scholar]
  79. Jin W. Regulation of BDNF-TrkB signaling and potential therapeutic strategies for Parkinson’s disease. J. Clin. Med. 2020 9 1 257 10.3390/jcm9010257 31963575
    [Google Scholar]
  80. Chitranshi N. Gupta V. Dheer Y. Gupta V. Vander Wall R. Graham S. Molecular determinants and interaction data of cyclic peptide inhibitor with the extracellular domain of TrkB receptor. Data Brief 2016 6 776 782 10.1016/j.dib.2016.01.016 26909388
    [Google Scholar]
  81. Nikolaus S. Wittsack H.J. Beu M. Antke C. Hautzel H. Wickrath F. Müller-Lutz A. De Souza Silva M.A. Huston J.P. Antoch G. Müller H.W. Amantadine enhances nigrostriatal and mesolimbic dopamine function in the rat brain in relation to motor and exploratory activity. Pharmacol. Biochem. Behav. 2019 179 156 170 10.1016/j.pbb.2018.12.010 30639878
    [Google Scholar]
  82. Caroff S.N. Jain R. Morley J.F. Revisiting amantadine as a treatment for drug-induced movement disorders. Ann. Clin. Psychiatry 2020 32 3 198 208 32722730
    [Google Scholar]
  83. Rascol O. Fabbri M. Poewe W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021 20 12 1048 1056 10.1016/S1474‑4422(21)00249‑0 34678171
    [Google Scholar]
  84. Feng L. Cook B. Tsai S.Y. Zhou T. LaFlamme B. Evans T. Chen S. Discovery of a small-molecule BMP sensitizer for human embryonic stem cell differentiation. Cell Rep. 2016 15 9 2063 2075 10.1016/j.celrep.2016.04.066 27210748
    [Google Scholar]
  85. Tagliaferro P. Burke R.E. Retrograde axonal degeneration in Parkinson disease. J. Parkinsons Dis. 2016 6 1 1 15 10.3233/JPD‑150769 27003783
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673329597241006053718
Loading
/content/journals/cmc/10.2174/0109298673329597241006053718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test