Skip to content
2000
Volume 33, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Obesity is a global public health problem that can lead to many health complications or comorbidities. Medication alone or in combination with lifestyle changes or surgery is the main way to combat obesity and its complications. Most anti-obesity drugs are limited by their bioavailability, target-specific, and potentially toxic effects, so there is an urgent need for alternative treatments. Based on the new revelation of the pathogenesis of obesity, as well as the efforts of multidisciplinary integration of materials, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. By analyzing the current status and challenges of natural compounds in obesity treatment, this review systematically summarizes the advanced functions and prospects of carrier delivery of natural ingredients in targeted delivery of obesity, as well as their application in obesity treatment. Finally, on the basis of systematic analysis of anti-obesity, the future prospects and challenges in this field are put forward.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673324660241205114930
2025-01-03
2026-02-20
Loading full text...

Full text loading...

References

  1. MalikS. GuhaA. WangX. WeintraubN.L. HarrisR. DattaB. MooreJ. NainP. PatelS.A. CoughlinS. PolterE. PrizmentA. BlaesA. FloridoR. KuttyS. AlonsoA. JoshuC.E. PlatzE.A. Association between obesity and risk of total and obesity-related cancer in people with incident cardiovascular disease.J. Am. Heart Assoc.20241317e03443810.1161/JAHA.124.03443839189606
    [Google Scholar]
  2. BaysH.E. KirkpatrickC.F. MakiK.C. TothP.P. MorganR.T. TondtJ. ChristensenS.M. DixonD.L. JacobsonT.A. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the obesity medicine association and the national lipid association 2024.J. Clin. Lipidol.2024183e320e35010.1016/j.jacl.2024.04.00138664184
    [Google Scholar]
  3. LuoH. LiuY. TianX. ZhaoY. LiuL. ZhaoZ. LuoL. ZhangY. JiangX. LiuY. LuoY. WangA. Association of obesity with cardiovascular disease in the absence of traditional risk factors.Int. J. Obes.202448226327010.1038/s41366‑023‑01408‑z37938287
    [Google Scholar]
  4. TuccinardiD. WatanabeM. MasiD. MonteL. MeffeL.B. CavallariI. NuscaA. MaddaloniE. GnessiL. NapoliN. ManfriniS. GrigioniF. Rethinking weight loss treatments as cardiovascular medicine in obesity, a comprehensive review.Eur. J. Prev. Cardiol.202431101260127310.1093/eurjpc/zwae17138833329
    [Google Scholar]
  5. BalanA.I. HalațiuV.B. ScridonA. Oxidative stress, inflammation, and mitochondrial dysfunction: A link between obesity and atrial fibrillation.Antioxidants2024131117
    [Google Scholar]
  6. GoudisC.A. KorantzopoulosP. NtalasI.V. KallergisE.M. KetikoglouD.G. Obesity and atrial fibrillation: A comprehensive review of the pathophysiological mechanisms and links.J. Cardiol.201566536136910.1016/j.jjcc.2015.04.00225959929
    [Google Scholar]
  7. ScridonA. DobreanuD. ChevalierP. ŞerbanR.C. Inflammation, a link between obesity and atrial fibrillation.Inflamm. Res.201564638339310.1007/s00011‑015‑0827‑825929437
    [Google Scholar]
  8. AdesunloyeB.A. Mechanistic insights into the link between obesity and prostate cancer.Int. J. Mol. Sci.2021228393510.3390/ijms22083935
    [Google Scholar]
  9. GlassmanI. LeN. AsifA. GouldingA. AlcantaraC.A. VuA. ChorbajianA. MirhosseiniM. SinghM. VenketaramanV. The role of obesity in breast cancer pathogenesis.Cells20231216206110.3390/cells12162061
    [Google Scholar]
  10. GuhaA. WangX. HarrisR.A. NelsonA.G. SteppD. KlaassenZ. RavalP. CortesJ. CoughlinS.S. BogdanovV.Y. MooreJ.X. DesaiN. MillerD.D. LuX.Y. KimH.W. WeintraubN.L. Obesity and the bidirectional risk of cancer and cardiovascular diseases in African Americans: Disparity vs. ancestry.Front. Cardiovasc. Med.2021876148810.3389/fcvm.2021.76148834733899
    [Google Scholar]
  11. HopkinsB.D. GoncalvesM.D. CantleyL.C. Obesity and cancer mechanisms: Cancer metabolism.J. Clin. Oncol.201634354277428310.1200/JCO.2016.67.971227903152
    [Google Scholar]
  12. JovanovićM. KovačevićS. BrkljačićJ. DjordjevicA. Oxidative stress linking obesity and cancer: Is obesity a ‘Radical Trigger’ to cancer?Int. J. Mol. Sci.20232498452
    [Google Scholar]
  13. KakkatS. SumanP. HerreraT.E.A. SinghS. ChakrobortyD. SarkarC. Exploring the multifaceted role of obesity in breast cancer progression.Front. Cell Dev. Biol.2024121408844
    [Google Scholar]
  14. LaurentV. GuérardA. MazerollesC. Le GonidecS. TouletA. NietoL. ZaidiF. MajedB. GarandeauD. SocrierY. GolzioM. CadoudalT. ChaouiK. DrayC. MonsarratB. SchiltzO. WangY.Y. CoudercB. ValetP. MalavaudB. MullerC. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity.Nat. Commun.2016711023010.1038/ncomms1023026756352
    [Google Scholar]
  15. ProusiG.S. JoshiA.M. AttiV. AddisonD. BrownS.A. GuhaA. PatelB. Vascular inflammation, cancer, and cardiovascular diseases.Curr. Oncol. Rep.202325995596310.1007/s11912‑023‑01426‑037261651
    [Google Scholar]
  16. WilsonR.L. TaaffeD.R. NewtonR.U. HartN.H. Lyons-WallP. GalvãoD.A. Obesity and prostate cancer: A narrative review.Crit. Rev. Oncol. Hematol.202216910354310.1016/j.critrevonc.2021.10354334808374
    [Google Scholar]
  17. ZouY. PitchumoniC.S. Obesity, obesities and gastrointestinal cancers.Dis. Mon.2023691210159210.1016/j.disamonth.2023.10159237308362
    [Google Scholar]
  18. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.01226823198
    [Google Scholar]
  19. LimaS.I. KimH.J. JonesJ. KimY.B. Rho-kinase as a therapeutic target for nonalcoholic fatty liver diseases.Diabetes Metab. J.202145565567410.4093/dmj.2021.019734610720
    [Google Scholar]
  20. ZhangY. XiangL. QiF. CaoY. ZhangW. LvT. ZhouX. The metabolic profiles and body composition of non-obese metabolic associated fatty liver disease.Front. Endocrinol.202415132256310.3389/fendo.2024.132256338375190
    [Google Scholar]
  21. TaoJ. LiH. WangH. TanJ. YangX. Metabolic dysfunction–associated fatty liver disease and osteoporosis: The mechanisms and roles of adiposity.Osteoporos. Int.202435122087209810.1007/s00198‑024‑07217‑y39136721
    [Google Scholar]
  22. NetoA. FernandesA. BarateiroA. The complex relationship between obesity and neurodegenerative diseases: An updated review.Front. Cell. Neurosci.202317129442010.3389/fncel.2023.129442038026693
    [Google Scholar]
  23. MazonJ.N. de MelloA.H. FerreiraG.K. RezinG.T. The impact of obesity on neurodegenerative diseases.Life Sci.2017182222810.1016/j.lfs.2017.06.00228583368
    [Google Scholar]
  24. MitoloM. MeneghelloF. IaiaV. LevedianosG. CosentinoE. BurgioF. DuzziD. VenneriA. P4-181: Obesity as a risk factor in the early stage of neurodegeneration: Relationship between body mass index and brain structure.Alzheimer's Dement.2016127S_Part_22P1089P1089
    [Google Scholar]
  25. MullardA. New hope for anti-obesity drugs.Nat. Rev. Drug Discov.202120857510.1038/d41573‑021‑00109‑434127838
    [Google Scholar]
  26. SavovaM.S. MihaylovaL.V. TewsD. WabitschM. GeorgievM.I. Targeting PI3K/Akt signaling pathway in obesity.Biomed. Pharmacother.202315911424410.1016/j.biopha.2023.11424436638594
    [Google Scholar]
  27. WangJ.Y. WangQ.W. YangX.Y. YangW. LiD.R. JinJ.Y. ZhangH.C. ZhangX.F. GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach.Front. Endocrinol.202314108579910.3389/fendo.2023.108579936843578
    [Google Scholar]
  28. DaneschvarH.L. AronsonM.D. SmetanaG.W. FDA-approved anti-obesity drugs in the United States.Am. J. Med.20161298879.e1879.e610.1016/j.amjmed.2016.02.00926949003
    [Google Scholar]
  29. DaviesM.J. BergenstalR. BodeB. KushnerR.F. LewinA. SkjøthT.V. AndreasenA.H. JensenC.B. DeFronzoR.A. For the, N.N.S.G., Efficacy of liraglutide for weight loss among patients with Type 2 diabetes: The scale diabetes randomized clinical trial.JAMA2015314768769910.1001/jama.2015.967626284720
    [Google Scholar]
  30. RubinoD. AbrahamssonN. DaviesM. HesseD. GreenwayF.L. JensenC. LingvayI. MosenzonO. RosenstockJ. RubioM.A. RudofskyG. TadayonS. WaddenT.A. DickerD. FribergM. SjödinA. DickerD. SegalG. MosenzonO. SabbahM. SoferY. VishlitzkyV. MeestersE.W. SerlieM. van BonA. CardosoH. FreitasP. MeloC.P. MonteiroM. MonteiroM. RodriguesD. BadatA. JoshiP. LatiffG. MithaE.A. SnymanH.H. van NieuwenhuizenE. AlbarránG.O. CaixasA. de al CuestaC. LunaG.P.P. PortilloM.C. RayaM.P. RubioM.A. AbrahamssonN. HoffstedtJ. von WowernF. UddmanE. KliegelB.B. BeuschleinF. BilzS. GolayA. RudofskyG. StreyC. FadieienkoG. KoseiN. TatarchukT. VelychkoV. ZinychO. AronoffS.L. BaysH.E. BrockmyreA.P. CallR.S. CrumpC. DesouzaC.V. EspinosaV. FreeA.L. GandyW.H. GellerS.A. GottschlichG.M. GreenwayF.L. ConradH.L. HarperW. HermanL. HewittM. HollanderP. KasterS.R. ManessisA. MartinF.A. McNeillR.E. MurrayA.V. NorwoodP.C. ReedJ.C.H. RosenstockJ. RubinoD.M. SchearM.J. WarrenM.L. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: The STEP 4 randomized clinical trial.JAMA2021325141414142510.1001/jama.2021.322433755728
    [Google Scholar]
  31. TahaM.B. YahyaT. SatishP. LairdR. AgatstonA.S. AchiricaC.M. PatelK.V. NasirK. Glucagon-like peptide 1 receptor agonists: A medication for obesity management.Curr. Atheroscler. Rep.202224864365410.1007/s11883‑022‑01041‑735624390
    [Google Scholar]
  32. SyedY.Y. Tirzepatide: First approval.Drugs202282111213122010.1007/s40265‑022‑01746‑835830001
    [Google Scholar]
  33. KimK.J. JeongE.S. LeeK.H. NaJ.R. ParkS. KimJ.S. NaC.S. KimY.R. KimS. Unripe Rubus coreanus Miquel extract containing ellagic acid promotes lipolysis and thermogenesis in vitro and in vivo.Molecules20202524595410.3390/molecules2524595433339214
    [Google Scholar]
  34. JinQ. YuH. LiP. The evaluation and utilization of marine-derived bioactive compounds with anti-obesity effect.Curr. Med. Chem.201825786187810.2174/092986732466617060208262028571534
    [Google Scholar]
  35. XuS. LiaoY. WangQ. LiuL. YangW. Current studies and potential future research directions on biological effects and related mechanisms of allicin.Crit. Rev. Food Sci. Nutr.202363257722774810.1080/10408398.2022.204969135293826
    [Google Scholar]
  36. GoktasZ. ZuY. AbbasiM. GalyeanS. WuD. FanZ. WangS. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities.J. Agric. Food Chem.202068318119813110.1021/acs.jafc.0c0013132633507
    [Google Scholar]
  37. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.01633609621
    [Google Scholar]
  38. SibuyiN.R.S. MoabeloK.L. MeyerM. OnaniM.O. DubeA. MadieheA.M. Nanotechnology advances towards development of targeted-treatment for obesity.J. Nanobiotechnology201917112210.1186/s12951‑019‑0554‑331842876
    [Google Scholar]
  39. GonzálezV.M. WillnerI. Aptamer-functionalized micro- and nanocarriers for controlled release.ACS Appl. Mater. Interfaces20211389520954110.1021/acsami.0c1712133395247
    [Google Scholar]
  40. ZhuJ. TangX. JiaY. HoC.T. HuangQ. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review.Int. J. Pharm.202057811912710.1016/j.ijpharm.2020.11912732036009
    [Google Scholar]
  41. KumariA. YadavS.K. PakadeY.B. SinghB. YadavS.C. Development of biodegradable nanoparticles for delivery of quercetin.Colloids Surf. B Biointerfaces201080218419210.1016/j.colsurfb.2010.06.00220598513
    [Google Scholar]
  42. TrandafirL.M. DodiG. FrasinariuO. LucaA.C. ButnariuL.I. TarcaE. MoisaS.M. Tackling dyslipidemia in obesity from a nanotechnology perspective.Nutrients20221418377410.3390/nu1418377436145147
    [Google Scholar]
  43. ZhouY. FengX. XuH. GuoJ. YangC. KongL. ZhangZ. The application of natural product-delivering micro/nano systems in the treatment of inflammatory bowel disease.J. Mater. Chem. B Mater. Biol. Med.202311224426010.1039/D2TB01965E36512384
    [Google Scholar]
  44. LiJ. DuanH. LiuY. WangL. ZhouX. Biomaterial-based therapeutic strategies for obesity and its comorbidities.Pharmaceutics2022147144510.3390/pharmaceutics1407144535890340
    [Google Scholar]
  45. SakaR. ChellaN. Nanotechnology for delivery of natural therapeutic substances: A review.Environ. Chem. Lett.20211921097110610.1007/s10311‑020‑01103‑9
    [Google Scholar]
  46. TilgH. ZmoraN. AdolphT.E. ElinavE. The intestinal microbiota fuelling metabolic inflammation.Nat. Rev. Immunol.2020201405410.1038/s41577‑019‑0198‑431388093
    [Google Scholar]
  47. ChengZ. ZhangL. YangL. ChuH. The critical role of gut microbiota in obesity.Front. Endocrinol.202213102570610.3389/fendo.2022.102570636339448
    [Google Scholar]
  48. WangY. YaoW. LiB. QianS. WeiB. GongS. WangJ. LiuM. WeiM. Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats.Exp. Mol. Med.202052121959197510.1038/s12276‑020‑00534‑233262480
    [Google Scholar]
  49. IslamT. KobozievI. SchulteA.K. MistrettaB. ScogginS. YosofvandM. MoussaH. MoghaddamZ.M. RamalingamL. GunaratneP.H. MoussaM.N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice.Mol. Nutr. Food Res.20216522210027410.1002/mnfr.20210027434510720
    [Google Scholar]
  50. ChangC.J. LinC.S. LuC.C. MartelJ. KoY.F. OjciusD.M. TsengS.F. WuT.R. ChenY.Y.M. YoungJ.D. LaiH.C. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota.Nat. Commun.201561748910.1038/ncomms848926102296
    [Google Scholar]
  51. CoxA.J. WestN.P. CrippsA.W. Obesity, inflammation, and the gut microbiota.Lancet Diabetes Endocrinol.20153320721510.1016/S2213‑8587(14)70134‑225066177
    [Google Scholar]
  52. VetraniC. Di NisioA. PaschouS.A. BarreaL. MuscogiuriG. GraziadioC. SavastanoS. ColaoA.R. Assessment OperaG. From gut microbiota through low-grade inflammation to obesity: Key players and potential targets.Nutrients20221410210310.3390/nu1410210335631244
    [Google Scholar]
  53. ChaiittiananR. SutthanutK. RattanathongkomA. Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes.J. Ethnopharmacol.201720191610.1016/j.jep.2017.02.04428257978
    [Google Scholar]
  54. GhabenA.L. SchererP.E. Adipogenesis and metabolic health.Nat. Rev. Mol. Cell Biol.201920424225810.1038/s41580‑018‑0093‑z30610207
    [Google Scholar]
  55. RungsaP. SanH.T. SritularakB. BöttcherC. PrompetcharaE. ChaothamC. LikhitwitayawuidK. Inhibitory effect of isopanduratin a on adipogenesis: A study of possible mechanisms.Foods20231251014
    [Google Scholar]
  56. KimJ.H. LeeS. ChoE.J. Flavonoids from Acer okamotoanum inhibit adipocyte differentiation and promote lipolysis in the 3T3-L1 cells.Molecules2020258192010.3390/molecules2508192032326254
    [Google Scholar]
  57. CamargoA. ZúñigaR.O.A. DíazA.J. DelgadoG.F. ListaD.J. CarpinteroG.S. MarínC. AlmadénY. SerranoY.E.M. MorenoL.J. TinahonesF.J. MartínezP.P. RocheH.M. MirandaL.J. Dietary fat may modulate adipose tissue homeostasis through the processes of autophagy and apoptosis.Eur. J. Nutr.20175641621162810.1007/s00394‑016‑1208‑y27029919
    [Google Scholar]
  58. WangG. WuB. XuW. JinX. WangK. WangH. The inhibitory effects of juglanin on adipogenesis in 3T3-L1 adipocytes.Drug Des. Devel. Ther.2020145349535710.2147/DDDT.S25650433293796
    [Google Scholar]
  59. BetzM.J. EnerbäckS. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease.Nat. Rev. Endocrinol.2018142778710.1038/nrendo.2017.13229052591
    [Google Scholar]
  60. PatilM. SharmaB.K. ElattarS. ChangJ. KapilS. YuanJ. SatyanarayanaA. Id1 promotes obesity by suppressing brown adipose thermogenesis and white adipose browning.Diabetes20176661611162510.2337/db16‑107928270523
    [Google Scholar]
  61. LiuJ. WangY. LinL. Small molecules for fat combustion: Targeting obesity.Acta Pharm. Sin. B20199222023610.1016/j.apsb.2018.09.00730976490
    [Google Scholar]
  62. ChouchaniE.T. KajimuraS. Metabolic adaptation and maladaptation in adipose tissue.Nat. Metab.20191218920010.1038/s42255‑018‑0021‑831903450
    [Google Scholar]
  63. YeJ. GaoC. LiangY. HouZ. ShiY. WangY. Characteristic and fate determination of adipose precursors during adipose tissue remodeling.Cell Regen.20231211310.1186/s13619‑023‑00157‑837138165
    [Google Scholar]
  64. ChengM. ZhangX. MiaoY. CaoJ. WuZ. WengP. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model.Food Res. Int.20179291610.1016/j.foodres.2016.12.00828290302
    [Google Scholar]
  65. SharmaV.K. Prateeksha GuptaS.C. SinghB.N. RaoC.V. BarikS.K. Cinnamomum verum-derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping.Mater. Today Bio20221310020410.1016/j.mtbio.2022.10020435146405
    [Google Scholar]
  66. ZengZ. DengS. LiuY. LiC. FangZ. HuB. ChenH. WangC. ChenS. WuW. LiuY. Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice.Food Hydrocoll.202314210878110.1016/j.foodhyd.2023.108781
    [Google Scholar]
  67. DrozdK.K. OniszczukT. GancarzM. KondrackaA. RusinekR. OniszczukA. Curcumin and weight loss: Does it work?Int. J. Mol. Sci.202223263910.3390/ijms2302063935054828
    [Google Scholar]
  68. ZhaoJ. LuoD. ZhangZ. FanN. WangY. NieH. RongJ. Celastrol-loaded PEG-PCL nanomicelles ameliorate inflammation, lipid accumulation, insulin resistance and gastrointestinal injury in diet-induced obese mice.J. Control. Release201931018819710.1016/j.jconrel.2019.08.02631454532
    [Google Scholar]
  69. HuW. WangL. DuG. GuanQ. DongT. SongL. XiaY. WangX. Effects of microbiota on the treatment of obesity with the natural product celastrol in rats.Diabetes Metab. J.202044574776310.4093/dmj.2019.012432431112
    [Google Scholar]
  70. OliyaeiN. TanidehN. NasabM.M. DehghanianA.R. IrajiA. Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model.Int. J. Biol. Macromol.202323512386710.1016/j.ijbiomac.2023.12386736870664
    [Google Scholar]
  71. LiangD. LiuC. LiJ. LiY. LiJ. TanM. SuW. Engineering probiotics-derived membrane vesicles for encapsulating fucoxanthin: Evaluation of stability, bioavailability, and biosafety.Food Funct.20231483475348710.1039/D2FO04116B37000562
    [Google Scholar]
  72. SharmaP.P. BaskaranV. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice.Algal Res.20215410218710.1016/j.algal.2021.102187
    [Google Scholar]
  73. AriamoghaddamA. HosseinzadehE.B. ZarmiH.A. SahraeianR. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats.Mater. Sci. Eng. C20189216117110.1016/j.msec.2018.06.03030184739
    [Google Scholar]
  74. OskouieN.M. MoghaddamA.N.S. SathyapalanT. SahebkarA. Impact of curcumin on fatty acid metabolism.Phytother. Res.20213594748476210.1002/ptr.710533825246
    [Google Scholar]
  75. KazmiI. ImamS.S. Al-AbbasiF.A. AfzalM. NadeemS.M. AlshehriS. Environment friendly green synthesis method based natural bioactive functional “catechin and gingerol” loaded nanomedicine for the management of obesity.Int. J. Pharm.202262812234010.1016/j.ijpharm.2022.12234036341920
    [Google Scholar]
  76. ShendeP. NarvenkerR. Herbal nanotherapy: A new paradigm over conventional obesity treatment.J. Drug Deliv. Sci. Technol.20216110229110.1016/j.jddst.2020.102291
    [Google Scholar]
  77. PangeniR. KangS.W. OakM. ParkE.Y. ParkJ.W. Oral delivery of quercetin in oil-in-water nanoemulsion: In vitro characterization and in vivo anti-obesity efficacy in mice.J. Funct. Foods20173857158110.1016/j.jff.2017.09.059
    [Google Scholar]
  78. KábelováA. MalínskáH. MarkováI. HűttlM. ChylíkováB. ŠedaO. Quercetin supplementation alters adipose tissue and hepatic transcriptomes and ameliorates adiposity, dyslipidemia, and glucose intolerance in adult male rats.Front. Nutr.2022995206510.3389/fnut.2022.95206536245490
    [Google Scholar]
  79. XianJ. ZhongX. HuangQ. GuH. FengY. SunJ. WangD. LiJ. ZhangC. WuY. ZhangJ. N-Trimethylated chitosan coating white adipose tissue vascular-targeting oral nano-system for the enhanced anti-obesity effects of celastrol.Int. J. Biol. Macromol.202323612402310.1016/j.ijbiomac.2023.12402336924876
    [Google Scholar]
  80. HuangR. GuoF. LiY. LiangY. LiG. FuP. MaL. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis.Phytomedicine20219215373910.1016/j.phymed.2021.15373934592488
    [Google Scholar]
  81. LacatusuI. BadeaN. UdeanuD. CocL. PopA. NegutC.C. TanaseC. StanR. MegheaA. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation.Mater. Sci. Eng. C201999122410.1016/j.msec.2019.01.07130889655
    [Google Scholar]
  82. LiR. LanY. ChenC. CaoY. HuangQ. HoC.T. LuM. Anti-obesity effects of capsaicin and the underlying mechanisms: A review.Food Funct.20201197356737010.1039/D0FO01467B32820787
    [Google Scholar]
  83. El-MenshaweS. AliA. RabehM. KhalilN. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: An approach for acceptable level of evidence of an effective novel herbal weight loss product.Int. J. Nanomedicine20181330731810.2147/IJN.S15342929391791
    [Google Scholar]
  84. KimM. ImS. ChoY. ChoiC. SonY. KwonD. JungY.S. LeeY.H. Anti-obesity effects of soybean embryo extract and enzymatically-modified isoquercitrin.Biomolecules20201010139410.3390/biom1010139433008006
    [Google Scholar]
  85. KouG. LiP. HuY. ChenH. AmoahN.A. TraoreS.S. CuiZ. LyuQ. Nobiletin activates thermogenesis of brown and white adipose tissue in high-fat diet-fed C57BL/6 mice by shaping the gut microbiota.FASEB J.2021352e2126710.1096/fj.202002197R33475201
    [Google Scholar]
  86. ZuY. ZhaoL. HaoL. MechrefY. MoghaddamZ.M. KeyelP.A. AbbasiM. WuD. DawsonJ.A. ZhangR. NieS. MoussaM.N. KoloninM.G. DaquinagA.C. BrandiL. WarraichI. FranciscoS.S.K. SunX. FanZ. WangS. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity.J. Control. Release202133333935110.1016/j.jconrel.2021.03.02233766692
    [Google Scholar]
  87. LuQ. LuP.M. PiaoJ.H. XuX.L. ChenJ. ZhuL. JiangJ.G. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior.Lebensm. Wiss. Technol.201457268669510.1016/j.lwt.2014.01.044
    [Google Scholar]
  88. ChenX. HeX. GaoR. LanX. ZhuL. ChenK. HuY. HuangK. XuW. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy.ACS Nano20221611036105010.1021/acsnano.1c0869034967620
    [Google Scholar]
  89. TianJ. HeX. LanX. LiangX. ZhongZ. ZhuL. ChenK. ChangQ. XuW. One-pot controllable assembly of a baicalin-condensed aptamer nanodrug for synergistic anti-obesity.Small2023196220593310.1002/smll.20220593336461678
    [Google Scholar]
  90. BaoC. LiZ. LiangS. HuY. WangX. FangB. WangP. ChenS. LiY. Microneedle patch delivery of capsaicin-containing α-lactalbumin nanomicelles to adipocytes achieves potent anti-obesity effects.Adv. Funct. Mater.20213120201113010.1002/adfm.202011130
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673324660241205114930
Loading
/content/journals/cmc/10.2174/0109298673324660241205114930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test