Skip to content
2000
image of Near-infrared (NIR) Fluorophores in Cancer Bioimaging and Therapy

Abstract

The development of multiple fluorescent agents has contributed to cancer diagnosis and therapy. Near-infrared (NIR) dyes have already been well studied and displayed significant potential in cancer bioimaging and therapy due to their unique characteristics. In the present literature, we illustrated the updated NIR classification and characteristics as well as their applications in (pre-) clinical cancer imaging and treatment. The NIR-based photodynamic therapy (PDT) and photothermal therapy (PTT) were also discussed, including their present limitations. Taken together, the future development of NIR fluorophores would greatly improve cancer precision diagnosis and targeted therapy as one of the promising approaches in this field.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362477250226115238
2025-03-12
2025-06-27
Loading full text...

Full text loading...

References

  1. Siegel R. Ma J. Zou Z. Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014 64 1 9 29 10.3322/caac.21208 24399786
    [Google Scholar]
  2. Luo S. Zhang E. Su Y. Cheng T. Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011 32 29 7127 7138 10.1016/j.biomaterials.2011.06.024 21724249
    [Google Scholar]
  3. Vahrmeijer A.L. Hutteman M. van der Vorst J.R. van de Velde C.J.H. Frangioni J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013 10 9 507 518 10.1038/nrclinonc.2013.123 23881033
    [Google Scholar]
  4. Bruns O.T. Bischof T.S. Harris D.K. Franke D. Shi Y. Riedemann L. Bartelt A. Jaworski F.B. Carr J.A. Rowlands C.J. Wilson M.W.B. Chen O. Wei H. Hwang G.W. Montana D.M. Coropceanu I. Achorn O.B. Kloepper J. Heeren J. So P.T.C. Fukumura D. Jensen K.F. Jain R.K. Bawendi M.G. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017 1 4 0056 10.1038/s41551‑017‑0056 29119058
    [Google Scholar]
  5. Hong G. Antaris A.L. Dai H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017 1 10 10.1038/s41551‑016‑0010
    [Google Scholar]
  6. Gao D. Luo Z. He Y. Yang L. Hu D. Liang Y. Zheng H. Liu X. Sheng Z. Low-dose NIR-II preclinical bioimaging using liposome-encapsulated cyanine dyes. Small 2023 19 17 2206544 10.1002/smll.202206544 36710248
    [Google Scholar]
  7. Singh S. Giammanco G. Hu C.H. Bush J. Cordova L.S. Lawrence D.J. Moran J.L. Chitnis P.V. Veneziano R. Size-tunable ICG-based contrast agent platform for targeted near-infrared photoacoustic imaging. Photoacoustics 2023 29 100437 10.1016/j.pacs.2022.100437 36570471
    [Google Scholar]
  8. Choi H.S. Nasr K. Alyabyev S. Feith D. Lee J.H. Kim S.H. Ashitate Y. Hyun H. Patonay G. Strekowski L. Henary M. Frangioni J.V. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem. Int. Ed. 2011 50 28 6258 6263 10.1002/anie.201102459 21656624
    [Google Scholar]
  9. Chen X. Peng X. Cui A. Wang B. Wang L. Photostabilities of novel heptamethine 3H-indolenine cyanine dyes with different N-substituents. A-Chem. 2006 181 1 79 85 10.1016/j.jphotochem.2005.11.004
    [Google Scholar]
  10. Mishra A. Behera R.K. Behera P.K. Mishra B.K. Behera G.B. Cyanines during the 1990s: A review. Chem. Rev. 2000 100 6 1973 2012 10.1021/cr990402t 11749281
    [Google Scholar]
  11. Ballou B. Ernst L. Waggoner A. Fluorescence imaging of tumors in vivo. Curr. Med. Chem. 2005 12 7 795 805 10.2174/0929867053507324 15853712
    [Google Scholar]
  12. Lavis L.D. Raines R.T. Bright ideas for chemical biology. ACS Chem. Biol. 2008 3 3 142 155 10.1021/cb700248m 18355003
    [Google Scholar]
  13. Zhang C. Liu T. Su Y. Luo S. Zhu Y. Tan X. Fan S. Zhang L. Zhou Y. Cheng T. Shi C. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 2010 31 25 6612 6617 10.1016/j.biomaterials.2010.05.007 20542559
    [Google Scholar]
  14. Delaey E. van Laar F. De Vos D. Kamuhabwa A. Jacobs P. de Witte P. A comparative study of the photosensitizing characteristics of some cyanine dyes. J. Photochem. Photobiol. B 2000 55 1 27 36 10.1016/S1011‑1344(00)00021‑X 10877064
    [Google Scholar]
  15. Tan X. Luo S. Wang D. Su Y. Cheng T. Shi C. A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 2012 33 7 2230 2239 10.1016/j.biomaterials.2011.11.081 22182749
    [Google Scholar]
  16. Yang X. Shi C. Tong R. Qian W. Zhau H.E. Wang R. Zhu G. Cheng J. Yang V.W. Cheng T. Henary M. Strekowski L. Chung L.W.K. Near IR heptamethine cyanine dye-mediated cancer imaging. Clin. Cancer Res. 2010 16 10 2833 2844 10.1158/1078‑0432.CCR‑10‑0059 20410058
    [Google Scholar]
  17. Luo S. Tan X. Qi Q. Guo Q. Ran X. Zhang L. Zhang E. Liang Y. Weng L. Zheng H. Cheng T. Su Y. Shi C. A multifunctional heptamethine near-infrared dye for cancer theranosis. Biomaterials 2013 34 9 2244 2251 10.1016/j.biomaterials.2012.11.057 23261220
    [Google Scholar]
  18. Trivedi E.R. Harney A.S. Olive M.B. Podgorski I. Moin K. Sloane B.F. Barrett A.G.M. Meade T.J. Hoffman B.M. Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation. Proc. Natl. Acad. Sci. USA 2010 107 4 1284 1288 10.1073/pnas.0912811107 20080563
    [Google Scholar]
  19. Hong G. Robinson J.T. Zhang Y. Diao S. Antaris A.L. Wang Q. Dai H. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012 51 39 9818 9821 10.1002/anie.201206059 22951900
    [Google Scholar]
  20. Wang F. Ren F. Ma Z. Qu L. Gourgues R. Xu C. Baghdasaryan A. Li J. Zadeh I.E. Los J.W.N. Fognini A. Qin-Dregely J. Dai H. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 2022 17 6 653 660 10.1038/s41565‑022‑01130‑3 35606441
    [Google Scholar]
  21. Zhang M. Yue J. Cui R. Ma Z. Wan H. Wang F. Zhu S. Zhou Y. Kuang Y. Zhong Y. Pang D.W. Dai H. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 2018 115 26 6590 6595 10.1073/pnas.1806153115 29891702
    [Google Scholar]
  22. Welsher K. Liu Z. Sherlock S.P. Robinson J.T. Chen Z. Daranciang D. Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009 4 11 773 780 10.1038/nnano.2009.294 19893526
    [Google Scholar]
  23. Cosco E.D. Spearman A.L. Ramakrishnan S. Lingg J.G.P. Saccomano M. Pengshung M. Arús B.A. Wong K.C.Y. Glasl S. Ntziachristos V. Warmer M. McLaughlin R.R. Bruns O.T. Sletten E.M. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 2020 12 12 1123 1130 10.1038/s41557‑020‑00554‑5 33077925
    [Google Scholar]
  24. Xie H. Zhang C. Li T. Hu L. Zhang J. Guo H. Liu Z. Peng D. Li Z. Wu W. Gao J. Bi Z. Wang J. Zhang P. Kwok R.T.K. Lam J.W.Y. Guo Z. Xi L. Li K. Tang B.Z. Fast delivery of multifunctional NIR-II theranostic nanoaggregates enabled by the photoinduced thermoacoustic process. Adv. Sci. (Weinh.) 2023 10 19 2301104 10.1002/advs.202301104 37088786
    [Google Scholar]
  25. Yao C. Chen Y. Zhao M. Wang S. Wu B. Yang Y. Yin D. Yu P. Zhang H. Zhang F. A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging. Angew. Chem. Int. Ed. 2022 61 5 e202114273 10.1002/anie.202114273 34850517
    [Google Scholar]
  26. Godard A. Kalot G. Privat M. Bendellaa M. Busser B. Wegner K.D. Denat F. Le Guével X. Coll J.L. Paul C. Bodio E. Goze C. Sancey L. NIR-II Aza-bodipy dyes bioconjugated to monoclonal antibody trastuzumab for selective imaging of HER2-positive ovarian cancer. J. Med. Chem. 2023 66 7 5185 5195 10.1021/acs.jmedchem.3c00100 36996803
    [Google Scholar]
  27. Antaris A.L. Chen H. Cheng K. Sun Y. Hong G. Qu C. Diao S. Deng Z. Hu X. Zhang B. Zhang X. Yaghi O.K. Alamparambil Z.R. Hong X. Cheng Z. Dai H. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016 15 2 235 242 10.1038/nmat4476 26595119
    [Google Scholar]
  28. Gao S. Wei G. Zhang S. Zheng B. Xu J. Chen G. Li M. Song S. Fu W. Xiao Z. Lu W. Albumin tailoring fluorescence and photothermal conversion effect of near-infrared-II fluorophore with aggregation-induced emission characteristics. Nat. Commun. 2019 10 1 2206 10.1038/s41467‑019‑10056‑9 31101816
    [Google Scholar]
  29. Xu W. Wang D. Tang B.Z. NIR-II AIEgens: A win–win integration towards bioapplications. Angew. Chem. Int. Ed. 2021 60 14 7476 7487 10.1002/anie.202005899 32515530
    [Google Scholar]
  30. Wu D. Liu S. Zhou J. Chen R. Wang Y. Feng Z. Lin H. Qian J. Tang B.Z. Cai X. Organic dots with large π-conjugated planar for cholangiography beyond 1500 nm in rabbits: A non-radioactive strategy. ACS Nano 2021 15 3 5011 5022 10.1021/acsnano.0c09981 33706510
    [Google Scholar]
  31. Bao J. Liu R. Yu Z. Cheng Z. Chang B. Activatable janus nanoparticles for precise NIR-II bioimaging and synergistic cancer therapy. Adv. Funct. Mater. 2024 34 27 2316646 10.1002/adfm.202316646
    [Google Scholar]
  32. Zhao X. Jiang Y. Chen Y. Yang B. Li Y. Liu Z. Liu C. A new “off-on” NIR fluorescence probe for determination and bio-imaging of mitochondrial hypochlorite in living cells and zebrafish. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 219 509 516 10.1016/j.saa.2019.05.001 31078818
    [Google Scholar]
  33. Wang Y. Zhang Y. Li M. Gao X. Su D. An efficient strategy for constructing fluorescent nanoprobes for prolonged and accurate tumor imaging. Anal. Chem. 2024 96 6 2481 2490 10.1021/acs.analchem.3c04495 38293931
    [Google Scholar]
  34. Rao S.R. Snaith A.E. Marino D. Cheng X. Lwin S.T. Orriss I.R. Hamdy F.C. Edwards C.M. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br. J. Cancer 2017 116 2 227 236 10.1038/bjc.2016.402 28006818
    [Google Scholar]
  35. Shen Z. Prasai B. Nakamura Y. Kobayashi H. Jackson M.S. McCarley R.L. A near-infrared, wavelength-shiftable, turn-on fluorescent probe for the detection and imaging of cancer tumor cells. ACS Chem. Biol. 2017 12 4 1121 1132 10.1021/acschembio.6b01094 28240865
    [Google Scholar]
  36. Lal S. Clare S.E. Halas N.J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008 41 12 1842 1851 10.1021/ar800150g 19053240
    [Google Scholar]
  37. Riley R.S. Day E.S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 4 e1449 10.1002/wnan.1449 28160445
    [Google Scholar]
  38. Lee S. Jung J.S. Jo G. Yang D.H. Koh Y.S. Hyun H. Near-infrared fluorescent sorbitol probe for targeted photothermal cancer therapy. Cancers (Basel) 2019 11 9 1286 10.3390/cancers11091286 31480639
    [Google Scholar]
  39. Tang Z. Zhang H. Liu Y. Ni D. Zhang H. Zhang J. Yao Z. He M. Shi J. Bu W. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017 29 47 1701683 10.1002/adma.201701683 29094389
    [Google Scholar]
  40. Cai K. Zhang W. Zhang J. Li H. Han H. Zhai T. Design of gold hollow nanorods with controllable aspect ratio for multimodal imaging and combined chemo-photothermal therapy in the second near-infrared window. ACS Appl. Mater. Interfaces 2018 10 43 36703 36710 10.1021/acsami.8b12758 30284807
    [Google Scholar]
  41. Zhang W. Lin W. Wang X. Li C. Liu S. Xie Z. Hybrid nanomaterials of conjugated polymers and albumin for precise photothermal therapy. ACS Appl. Mater. Interfaces 2019 11 1 278 287 10.1021/acsami.8b17922 30520633
    [Google Scholar]
  42. Zhang Y. Bo S. Feng T. Qin X. Wan Y. Jiang S. Li C. Lin J. Wang T. Zhou X. Jiang Z.X. Huang P. A versatile theranostic nanoemulsion for architecture-dependent multimodal imaging and dually augmented photodynamic therapy. Adv. Mater. 2019 31 21 1806444 10.1002/adma.201806444 30907469
    [Google Scholar]
  43. Li F. Du Y. Liu J. Sun H. Wang J. Li R. Kim D. Hyeon T. Ling D. Responsive assembly of upconversion nanoparticles for ph-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater. 2018 30 35 1802808 10.1002/adma.201802808 29999559
    [Google Scholar]
  44. Lim W. Jo G. Kim E.J. Cho H. Park M.H. Hyun H. Zwitterionic near-infrared fluorophore for targeted photothermal cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2020 8 13 2589 2597 10.1039/D0TB00275E 32129419
    [Google Scholar]
  45. Zhou H. Zeng X. Li A. Zhou W. Tang L. Hu W. Fan Q. Meng X. Deng H. Duan L. Li Y. Deng Z. Hong X. Xiao Y. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat. Commun. 2020 11 1 6183 10.1038/s41467‑020‑19945‑w 33273452
    [Google Scholar]
  46. Peng C.L. Shih Y.H. Chiang P.F. Chen C.T. Chang M.C. Multifunctional cyanine-based theranostic probe for cancer imaging and therapy. Int. J. Mol. Sci. 2021 22 22 12214 10.3390/ijms222212214 34830094
    [Google Scholar]
  47. Jogdand A. Alvi S.B. Rajalakshmi P.S. Rengan A.K. NIR-dye based mucoadhesive nanosystem for photothermal therapy in breast cancer cells. J. Photochem. Photobiol. B 2020 208 111901 10.1016/j.jphotobiol.2020.111901 32480202
    [Google Scholar]
  48. Qian H. Cheng Q. Tian Y. Dang H. Teng C. Yan L. An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy. J. Mater. Chem. B Mater. Biol. Med. 2021 9 11 2688 2696 10.1039/D1TB00018G 33667292
    [Google Scholar]
  49. Feng Z. Yu X. Jiang M. Zhu L. Zhang Y. Yang W. Xi W. Li G. Qian J. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 2019 9 19 5706 5719 10.7150/thno.31332 31534513
    [Google Scholar]
  50. Cao J. Chi J. Xia J. Zhang Y. Han S. Sun Y. Iodinated cyanine dyes for fast near-infrared-guided deep tissue synergistic phototherapy. ACS Appl. Mater. Interfaces 2019 11 29 25720 25729 10.1021/acsami.9b07694 31246000
    [Google Scholar]
  51. Yang X. Bai J. Qian Y. The investigation of unique water-soluble heptamethine cyanine dye for use as NIR photosensitizer in photodynamic therapy of cancer cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 228 117702 10.1016/j.saa.2019.117702 31748160
    [Google Scholar]
  52. Noh I. Lee D. Kim H. Jeong C.U. Lee Y. Ahn J.O. Hyun H. Park J.H. Kim Y.C. Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores. Adv. Sci. (Weinh.) 2018 5 3 1700481 10.1002/advs.201700481 29593951
    [Google Scholar]
  53. Kong F. Liang Z. Luan D. Liu X. Xu K. Tang B. A glutathione (GSH)-responsive near-infrared (NIR) theranostic prodrug for cancer therapy and imaging. Anal. Chem. 2016 88 12 6450 6456 10.1021/acs.analchem.6b01135 27216623
    [Google Scholar]
  54. Ciubini B. Visentin S. Serpe L. Canaparo R. Fin A. Barbero N. Design and synthesis of symmetrical pentamethine cyanine dyes as NIR photosensitizers for PDT. Dyes Pigments 2019 160 806 813 10.1016/j.dyepig.2018.09.009
    [Google Scholar]
  55. Gao Z Zheng S Kamei K-i Tian C Recent progress in cancer therapy based on the combination of ferroptosis with photodynamic therapy. Acta Materia. Medica. 2022 1 4 411 426 10.15212/AMM‑2022‑0025
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362477250226115238
Loading
/content/journals/cmc/10.2174/0109298673362477250226115238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test