Skip to content
2000
image of Osteoporosis: Relevance of Biomolecules for Diagnosis and Treatment

Abstract

Osteoporosis, a metabolic disorder distinguished by decreased bone density and degradation of bone tissue microarchitecture, is a silent disease that evolves without any clinical symptoms or signs. An individual may not be aware of osteoporosis until a fracture occurs. The lifetime risk of osteoporosis is estimated to be between 10 and 20%. The disease can have intrinsic causes, like genetic predisposition, aging, and lack of sex hormones. However, it can also occur secondary to calcium and vitamin D deficiencies due to the influence of various factors. With a global increase in osteoporotic fractures, there is a need for macro-level and micro-level interventions to prevent and treat osteoporosis and its complications. This review highlights the crucial role of various biomolecules in diagnosing and managing osteoporosis and emphasizes the importance of further research in the field.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358991250210111956
2025-02-24
2025-04-01
Loading full text...

Full text loading...

References

  1. Wu Q. Xiao X. Xu Y. Performance of FRAX in predicting fractures in us postmenopausal women with varied race and genetic profiles. J. Clin. Med. 2020 9 1 285 10.3390/jcm9010285 31968614
    [Google Scholar]
  2. Chang Y.F. Chang C.S. Wang M.W. Wu C.F. Chen C.Y. Chang H.J. Kuo P.H. Wu C.H. Effects of age and body mass index on thoracolumbar spine x-ray for diagnosing osteoporosis in elderly women: Tianliao old people (TOP) Study 07. PLoS One 2016 11 9 e0161773 10.1371/journal.pone.0161773 27606706
    [Google Scholar]
  3. Saleh A. Vertebral Compression Fractures in Osteoporotic and Pathologic Bone. Springer 2020 57 62 10.1007/978‑3‑030‑33861‑9_6
    [Google Scholar]
  4. Johnell O. Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006 17 12 1726 1733 10.1007/s00198‑006‑0172‑4 16983459
    [Google Scholar]
  5. Goldhahn J. Little D. Mitchell P. Fazzalari N.L. Reid I.R. Aspenberg P. Marsh D. Evidence for anti-osteoporosis therapy in acute fracture situations--recommendations of a multidisciplinary workshop of the International Society for Fracture Repair. Bone 2010 46 2 267 271
    [Google Scholar]
  6. Curate F. Osteoporosis and paleopathology: A review. J. Anthropol. Sci. 2014 92 119 146 24607995
    [Google Scholar]
  7. v Recklinghausen F. In. Fischer Jena 1910
    [Google Scholar]
  8. Rachner T.D. Khosla S. Hofbauer L.C. Osteoporosis: Now and the future. Lancet 2011 377 9773 1276 1287 10.1016/S0140‑6736(10)62349‑5 21450337
    [Google Scholar]
  9. Kanis J.A. McCloskey E. Johansson H. Oden A. Leslie W.D. FRAX(®) with and without bone mineral density. Calcif. Tissue Int. 2012 90 1 1 13 10.1007/s00223‑011‑9544‑7 22057815
    [Google Scholar]
  10. Nazrun A.S. Tzar M.N. Mokhtar S.A. Mohamed I.N. A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: Morbidity, subsequent fractures, and mortality. Ther. Clin. Risk Manag. 2014 10 937 948 25429224
    [Google Scholar]
  11. Edwards C.J. Hart D.J. Spector T.D. Oral statins and increased bone-mineral density in postmenopausal women. Lancet 2000 355 9222 2218 2219 10.1016/S0140‑6736(00)02408‑9 10881898
    [Google Scholar]
  12. Tang Y. Xie H. Chen J. Geng L. Chen H. Li X. Hou Y. Lu L. Shi S. Zeng X. Sun L. Activated NF-κB in bone marrow mesenchymal stem cells from systemic lupus erythematosus patients inhibits osteogenic differentiation through downregulating Smad signaling. Stem Cells Dev. 2013 22 4 668 678 10.1089/scd.2012.0226 22897816
    [Google Scholar]
  13. Weiss R.J. Wick M.C. Ackermann P.W. Montgomery S.M. Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases -- A case-control study with 53,108 patients with fracture. J. Rheumatol. 2010 37 11 2247 2250 10.3899/jrheum.100363 20889599
    [Google Scholar]
  14. Amouzougan A. Lafaie L. Marotte H. Dẻnariẻ D. Collet P. Pallot-Prades B. Thomas T. High prevalence of dementia in women with osteoporosis. Joint Bone Spine 2017 84 5 611 614 10.1016/j.jbspin.2016.08.002 27697401
    [Google Scholar]
  15. Adler R.A. Osteoporosis in men: A review. Bone Res. 2014 2 1 14001 10.1038/boneres.2014.1 26273515
    [Google Scholar]
  16. Looker A.C. Frenk S.M. Percentage of Adults Aged 65 and Over With Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine: United States, 2005–2010. 2015 Available from: https://www.cdc.gov/nchs/data/hestat/osteoporsis/osteoporosis2005_2010.htm
  17. Hernlund E. Svedbom A. Ivergård M. Compston J. Cooper C. Stenmark J. McCloskey E.V. Jönsson B. Kanis J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. Arch. Osteoporos. 2013 8 1-2 136 10.1007/s11657‑013‑0136‑1 24113837
    [Google Scholar]
  18. Beck B.R. Daly R.M. Singh M.A.F. Taaffe D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport 2017 20 5 438 445 10.1016/j.jsams.2016.10.001 27840033
    [Google Scholar]
  19. Baccaro L.F. Conde D. Costa-Paiva L. Pinto-Neto A.M. The epidemiology and management of postmenopausal osteoporosis: A viewpoint from Brazil. Clin. Interv. Aging 2015 10 583 591 10.2147/CIA.S54614 25848234
    [Google Scholar]
  20. Paruk F. Tsabasvi M. Kalla A.A. Osteoporosis in Africa—Where are we now. Clin. Rheumatol. 2021 40 9 3419 3428 10.1007/s10067‑020‑05335‑6 32797362
    [Google Scholar]
  21. Ebeling P.R. Vitamin D. Elsevier 2018 203 220 10.1016/B978‑0‑12‑809963‑6.00068‑7
    [Google Scholar]
  22. Emkey R. Koltun W. Beusterien K. Seidman L. Kivitz A. Devas V. Masanauskaite D. Patient preference for once-monthly ibandronate versus once-weekly alendronate in a randomized, open-label, cross-over trial: The Boniva Alendronate Trial in Osteoporosis (BALTO). Curr. Med. Res. Opin. 2005 21 12 1895 1903 10.1185/030079905X74862 16368038
    [Google Scholar]
  23. Grados F. Depriester C. Cayrolle G. Hardy N. Deramond H. Fardellone P. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology 2000 39 12 1410 1414 10.1093/rheumatology/39.12.1410 11136886
    [Google Scholar]
  24. Blake G.M. Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad. Med. J. 2007 83 982 509 517 10.1136/pgmj.2007.057505 17675543
    [Google Scholar]
  25. Ward L.M. Ma J. In Pediatric endocrinology. Springer 2018 525 565 10.1007/978‑3‑319‑73782‑9_24
    [Google Scholar]
  26. Nishizawa Y. Miura M. Ichimura S. Inaba M. Imanishi Y. Shiraki M. Takada J. Chaki O. Hagino H. Fukunaga M. Fujiwara S. Miki T. Yoshimura N. Ohta H. Executive summary of the Japan osteoporosis society guide for the use of bone turnover markers in the diagnosis and treatment of osteoporosis (2018 Edition). Clin. Chim. Acta 2019 498 101 107 10.1016/j.cca.2019.08.012 31425674
    [Google Scholar]
  27. Boonen S. Singer A.J. Osteoporosis management: Impact of fracture type on cost and quality of life in patients at risk for fracture I. Curr. Med. Res. Opin. 2008 24 6 1781 1788 10.1185/03007990802115796 18489813
    [Google Scholar]
  28. Gorthi C. Koduganti R.R. Reddy P.V. Sandeep N. Osteoporosis: “A risk factor for periodontitis”. J. Indian Soc. Periodontol. 2009 13 2 90 96 10.4103/0972‑124X.55841 20407657
    [Google Scholar]
  29. Park Y.S. Kim H.S. Prevention and treatment of multiple osteoporotic compression fracture. Asian Spine J. 2014 8 3 382 390 10.4184/asj.2014.8.3.382 24967055
    [Google Scholar]
  30. Aspray T.J. Hill T.R. Osteoporosis and the ageing skeleton. Subcell. Biochem. 2019 91 453 476 10.1007/978‑981‑13‑3681‑2_16 30888662
    [Google Scholar]
  31. Bjørklund G. Pivina L. Dadar M. Semenova Y. Chirumbolo S. Aaseth J. Long-term accumulation of metals in the skeleton as related to osteoporotic derangements. Curr. Med. Chem. 2020 27 40 6837 6848 10.2174/0929867326666190722153305 31333081
    [Google Scholar]
  32. Miller P.D. Management of severe osteoporosis. Expert Opin. Pharmacother. 2016 17 4 473 488 10.1517/14656566.2016.1124856 26605922
    [Google Scholar]
  33. Kenny A.M. Raisz L.G. Mechanisms of bone remodeling: Implications for clinical practice. J. Reprod. Med. 2002 47 1 Suppl. 63 70 11829079
    [Google Scholar]
  34. Armas L.A.G. Recker R.R. Pathophysiology of Osteoporosis. Endocrinol. Metab. Clin. North Am. 2012 41 3 475 486 10.1016/j.ecl.2012.04.006 22877425
    [Google Scholar]
  35. Anthamatten A. Parish A. Clinical update on Osteoporosis. J. Midwifery Womens Health 2019 64 3 265 275 10.1111/jmwh.12954 30869832
    [Google Scholar]
  36. Kenkre J.S. Bassett J.H.D. The bone remodelling cycle. Ann. Clin. Biochem. 2018 55 3 308 327 10.1177/0004563218759371 29368538
    [Google Scholar]
  37. Buckley L. Humphrey M.B. Glucocorticoid-Induced Osteoporosis. N. Engl. J. Med. 2018 379 26 2547 2556 10.1056/NEJMcp1800214 30586507
    [Google Scholar]
  38. Ding Z. Shi H. Yang W. Osteoprotective effect of cimiracemate in glucocorticoid-induced osteoporosis by Osteoprotegerin/Receptor activator of nuclear factor κ B/Receptor activator of nuclear factor Kappa-Β ligand signaling. Pharmacology 2019 103 3-4 163 172 10.1159/000495509 30695776
    [Google Scholar]
  39. Tobeiha M. Moghadasian M.H. Amin N. Jafarnejad S. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling. Biomed. Res. Int. 2020 2020 6910312
    [Google Scholar]
  40. Jiang J. Pang X. Liu H. Yang X. Zhang Y. Xiang X. Li J. Li T. Zhao P. Reduced TIPE2 expression is inversely associated with proinflammatory cytokines and positively correlated with bone mineral density in patients with osteoporosis. Life Sci. 2019 216 227 232 10.1016/j.lfs.2018.11.054 30496728
    [Google Scholar]
  41. Bordoni V. Reina G. Orecchioni M. Furesi G. Thiele S. Gardin C. Zavan B. Cuniberti G. Bianco A. Rauner M. Delogu L.G. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale 2019 11 41 19408 19421 10.1039/C9NR03975A 31386739
    [Google Scholar]
  42. Mukaiyama K. Kamimura M. Uchiyama S. Ikegami S. Nakamura Y. Kato H. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin. Exp. Res. 2015 27 4 413 418 10.1007/s40520‑014‑0296‑x 25534961
    [Google Scholar]
  43. Giri T.K. Newton D. Chaudhary O. Deych E. Napoli N. Villareal R. Diemer K. Milligan P.E. Gage B.F. Maximal dose-response of vitamin-K2 (menaquinone-4) on undercarboxylated osteocalcin in women with osteoporosis. Int. J. Vitam. Nutr. Res. 2019 30816822
    [Google Scholar]
  44. Rossi M. Battafarano G. Pepe J. Minisola S. Del Fattore A. The endocrine function of osteocalcin regulated by bone resorption: A lesson from reduced and increased bone mass diseases. Int. J. Mol. Sci. 2019 20 18 4502 10.3390/ijms20184502 31514440
    [Google Scholar]
  45. Chen Y.N. Wei P. Yu Bs J. Higher concentration of serum C-terminal cross-linking telopeptide of type I collagen is positively related with inflammatory factors in postmenopausal women with H-type hypertension and osteoporosis. Orthop. Surg. 2019 11 6 1135 1141 10.1111/os.12567 31823500
    [Google Scholar]
  46. Simsek B. Karacaer O. Karaca I. Urine products of bone breakdown as markers of bone resorption and clinical usefulness of urinary hydroxyproline: An overview. Chin. Med. J. 2004 117 2 291 295 14975218
    [Google Scholar]
  47. Eastell R. Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017 5 11 908 923 10.1016/S2213‑8587(17)30184‑5 28689768
    [Google Scholar]
  48. Yang Y. Huang Y. Zhang L. Zhang C. Transcriptional regulation of bone sialoprotein gene expression by Osx. Biochem. Biophys. Res. Commun. 2016 476 4 574 579 10.1016/j.bbrc.2016.05.164 27261434
    [Google Scholar]
  49. Solberg L.B. Stang E. Brorson S.H. Andersson G. Reinholt F.P. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochem. Cell Biol. 2015 143 2 195 207 10.1007/s00418‑014‑1272‑4 25201349
    [Google Scholar]
  50. Stone J.A. McCrea J.B. Witter R. Zajic S. Stoch S.A. Clinical and translational pharmacology of the cathepsin K inhibitor odanacatib studied for osteoporosis. Br. J. Clin. Pharmacol. 2019 85 6 1072 1083 10.1111/bcp.13869 30663085
    [Google Scholar]
  51. Drake M.T. Clarke B.L. Oursler M.J. Khosla S. Cathepsin K inhibitors for osteoporosis: Biology, potential clinical utility, and lessons learned. Endocr. Rev. 2017 38 4 325 350 10.1210/er.2015‑1114 28651365
    [Google Scholar]
  52. Johnston C.B. Dagar M. Osteoporosis in older adults. Med. Clin. North Am. 2020 104 5 873 884 10.1016/j.mcna.2020.06.004 32773051
    [Google Scholar]
  53. Spotorno L. Romagnoli S. Ivaldo N. Grappiolo G. Bibbiani E. Blaha D.J. Guen T.A. The CLS system. Theoretical concept and results. Acta Orthop. Belg. 1993 59 Suppl. 1 144 148 8116390
    [Google Scholar]
  54. Ensrud K.E. Crandall C.J. Osteoporosis. Ann. Intern. Med. 2017 167 3 ITC17 ITC32 10.7326/AITC201708010 28761958
    [Google Scholar]
  55. Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 2011 154 5 356 364 10.7326/0003‑4819‑154‑5‑201103010‑00307 21242341
    [Google Scholar]
  56. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 1994 843 1 129 7941614
    [Google Scholar]
  57. Nayak S. Olkin I. Liu H. Grabe M. Gould M.K. Allen I.E. Owens D.K. Bravata D.M. Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann. Intern. Med. 2006 144 11 832 841 10.7326/0003‑4819‑144‑11‑200606060‑00009 16754925
    [Google Scholar]
  58. Linari S. Montorzi G. Bartolozzi D. Borderi M. Melchiorre D. Benelli M. Morfini M. Hypovitaminosis D and osteopenia/osteoporosis in a haemophilia population: a study in HCV / HIV or HCV infected patients. Haemophilia 2013 19 1 126 133 10.1111/j.1365‑2516.2012.02899.x 22776099
    [Google Scholar]
  59. Rodriguez-Merchan E.C. Osteoporosis in hemophilia. International Blood Research & Reviews 2014 48 55
    [Google Scholar]
  60. Wallny T.A. Scholz D.T. Oldenburg J. Nicolay C. Ezziddin S. Pennekamp P.H. Stoffel-Wagner B. Kraft C.N. Osteoporosis in haemophilia – An underestimated comorbidity? Haemophilia 2007 13 1 79 84 10.1111/j.1365‑2516.2006.01405.x 17212729
    [Google Scholar]
  61. Fitzpatrick L.A. Secondary causes of osteoporosis. Mayo Clin. Proc. 2002 77 5 453 468 10.1016/S0025‑6196(11)62214‑3 12004995
    [Google Scholar]
  62. Sweet M.G. Sweet J.M. Jeremiah M.P. Galazka S.S. Diagnosis and treatment of osteoporosis. Am. Fam. Physician 2009 79 3 193 200 19202966
    [Google Scholar]
  63. Bae D.C. Stein B.S. The diagnosis and treatment of osteoporosis in men on androgen deprivation therapy for advanced carcinoma of the prostate. J. Urol. 2004 172 6 Part 1 2137 2144 10.1097/01.ju.0000141515.67372.e5 15538219
    [Google Scholar]
  64. Giusti A. In Arthritis research & therapy. BioMed Central 2012 14 1 8
    [Google Scholar]
  65. Karinkanta S. Piirtola M. Sievänen H. Uusi-Rasi K. Kannus P. Physical therapy approaches to reduce fall and fracture risk among older adults. Nat. Rev. Endocrinol. 2010 6 7 396 407 10.1038/nrendo.2010.70 20517287
    [Google Scholar]
  66. Giangregorio L.M. Papaioannou A. MacIntyre N.J. Ashe M.C. Heinonen A. Shipp K. Wark J. McGill S. Keller H. Jain R. Laprade J. Cheung A.M. Too Fit To Fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos. Int. 2014 25 3 821 835 10.1007/s00198‑013‑2523‑2 24281053
    [Google Scholar]
  67. Maurel D.B. Boisseau N. Benhamou C.L. Jaffre C. Alcohol and bone: Review of dose effects and mechanisms. Osteoporos. Int. 2012 23 1 1 16 10.1007/s00198‑011‑1787‑7 21927919
    [Google Scholar]
  68. Body J.J. Bergmann P. Boonen S. Boutsen Y. Bruyere O. Devogelaer J.P. Goemaere S. Hollevoet N. Kaufman J.M. Milisen K. Rozenberg S. Reginster J.Y. Non-pharmacological management of osteoporosis: A consensus of the Belgian Bone Club. Osteoporos. Int. 2011 22 11 2769 2788 10.1007/s00198‑011‑1545‑x 21360219
    [Google Scholar]
  69. Eastell R. Walsh J.S. Watts N.B. Siris E. Bisphosphonates for postmenopausal osteoporosis. Bone 2011 49 1 82 88 10.1016/j.bone.2011.02.011 21349354
    [Google Scholar]
  70. Geusens P. Bisphosphonates for postmenopausal osteoporosis: Determining duration of treatment. Curr. Osteoporos. Rep. 2009 7 1 12 17 10.1007/s11914‑009‑0003‑6 19239824
    [Google Scholar]
  71. Papapoulos S.E. In Osteoporosis. Elsevier 2001 631 650 10.1016/B978‑012470862‑4/50073‑8
    [Google Scholar]
  72. Boonen S. Laan R.F. Barton I.P. Watts N.B. Effect of osteoporosis treatments on risk of non-vertebral fractures: Review and meta-analysis of intention-to-treat studies. Osteoporos. Int. 2005 16 10 1291 1298 10.1007/s00198‑005‑1945‑x 15986101
    [Google Scholar]
  73. Silverman S.L. Watts N.B. Delmas P.D. Lange J.L. Lindsay R. Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: The risedronate and alendronate (REAL) cohort study. Osteoporos. Int. 2007 18 1 25 34 10.1007/s00198‑006‑0274‑z 17106785
    [Google Scholar]
  74. Papapoulos S.E. Ibandronate: A potent new bisphosphonate in the management of postmenopausal osteoporosis. Int. J. Clin. Pract. 2003 57 5 417 422 10.1111/j.1742‑1241.2003.tb10518.x 12846348
    [Google Scholar]
  75. Delmas P.D. Recker R.R. Chesnut C.H. III Skag A. Stakkestad J.A. Emkey R. Gilbride J. Schimmer R.C. Christiansen C. Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: Results from the BONE study. Osteoporos. Int. 2004 15 10 792 798 10.1007/s00198‑004‑1602‑9 15071723
    [Google Scholar]
  76. Reginster J.Y. Wilson K.M. Dumont E. Bonvoisin B. Barrett J. Monthly oral ibandronate is well tolerated and efficacious in postmenopausal women: Results from the monthly oral pilot study. J. Clin. Endocrinol. Metab. 2005 90 9 5018 5024 10.1210/jc.2004‑1750 15972582
    [Google Scholar]
  77. Miller P.D. Mcclung M.R. Macovei L. Stakkestad J.A. Luckey M. Bonvoisin B. Reginster J.Y. Recker R.R. Hughes C. Lewiecki E.M. Felsenberg D. Delmas P.D. Kendler D.L. Bolognese M.A. Mairon N. Cooper C. Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J. Bone Miner. Res. 2005 20 8 1315 1322 10.1359/JBMR.050313 16007327
    [Google Scholar]
  78. Delmas P.D. Adami S. Strugala C. Stakkestad J.A. Reginster J.Y. Felsenberg D. Christiansen C. Civitelli R. Drezner M.K. Recker R.R. Bolognese M. Hughes C. Masanauskaite D. Ward P. Sambrook P. Reid D.M. Intravenous ibandronate injections in postmenopausal women with osteoporosis: One-year results from the dosing intravenous administration study. Arthritis Rheum. 2006 54 6 1838 1846 10.1002/art.21918 16729277
    [Google Scholar]
  79. Reginster J-Y. Adami S. Lakatos P. Greenwald M. Stepan J.J. Silverman S.L. Christiansen C. Rowell L. Mairon N. Bonvoisin B. Drezner M.K. Emkey R. Felsenberg D. Cooper C. Delmas P.D. Miller P.D. Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann. Rheum. Dis. 2006 65 5 654 661 10.1136/ard.2005.044958 16339289
    [Google Scholar]
  80. Hadji P. Benhamou C-L. Devas V. Masanauskaite D. Barrett-Connor E. In Osteoporosis international; Springer London Ltd Ashbourne House, The Guildway. Old Portsmouth Road 2006 17 S69 S69
    [Google Scholar]
  81. Lata P.F. Elliott M.E. Patient assessment in the diagnosis, prevention, and treatment of osteoporosis. Nutr. Clin. Pract. 2007 22 3 261 275 10.1177/0115426507022003261 17507727
    [Google Scholar]
  82. Schurman L. Bagur A. Claus-Hermberg H. Messina O.D. Negri A.L. Sánchez A. González C. Diehl M. Rey P. Gamba J. Chiarpenello J. Moggia M.S. Mastaglia S. Guidelines for the diagnosis, prevention and treatment of osteoporosis, 2012. Medicina 2013 73 1 55 74 23335710
    [Google Scholar]
  83. Nunkoo S. Krissheeven M. Chitravanshi A. Ramanah M. Robinson J. Banerjee I. Clinical efficacy and safety of teriparatide versus alendronate in postmenopausal osteoporosis: A systematic review of randomized controlled trials. Cureus 2024 16 11 e73068 10.7759/cureus.73068 39640163
    [Google Scholar]
  84. Bessueille L. Briolay A. Guillot N. Mebarek S. Viallon S. Laroche N. Lafage-Proust M.H. Magne D. Teriparatide administration is osteoanabolic but does not impact atherosclerotic plaque calcification and progression in a mouse model of menopause. Bone 2025 190 117316 10.1016/j.bone.2024.117316 39491714
    [Google Scholar]
  85. Tabatabai L Cosman F Curtis JR DeSapri KT LaBaume CT Reginster JY Rizzoli R Cortet B Wang Y Chiodo J 3rd Mitlak BH Comparative effectiveness of abaloparatide and teriparatide in women 50 years of age and older: Update of a real-world retrospective analysis. Endocr. Pract. 2024 10.1016/j.eprac.2024.10.017
    [Google Scholar]
  86. Kobayakawa T. Kanayama Y. Hirano Y. Yukishima T. Nakamura Y. Therapy with transitions from one bone-forming agent to another: A retrospective cohort study on teriparatide and romosozumab. JBMR Plus 2024 8 12 ziae131 10.1093/jbmrpl/ziae131 39605880
    [Google Scholar]
  87. Kobayakawa T. Nakamura Y. Verifying the effectiveness of romosozumab re-administration on bone mineral density. J. Bone Miner. Res. 2024 zjae196 10.1093/jbmr/zjae196 39657234
    [Google Scholar]
  88. Li S. Zou J. Ran J. Wang L. Nie G. Liu Y. Tian C. Yang X. Liu Y. Wan J. Peng W. Advances in the study of denosumab treatment for osteoporosis and Sarcopenia in the Chinese middle-Aged and elderly population. Int. J. Gen. Med. 2024 17 6089 6099 10.2147/IJGM.S494759 39678680
    [Google Scholar]
  89. Krishnan J. Santhanam S. Singh B. Patel S. Bhojwani D.G. Muchhala S. Denosumab: A useful addition to the armamentarium for the management of male osteoporosis. Cureus 2024 16 6 e62736 10.7759/cureus.62736 39036230
    [Google Scholar]
  90. Shangguan L. Ding M. Wang Y. Xu H. Liao B. Denosumab ameliorates osteoarthritis by protecting cartilage against degradation and modulating subchondral bone remodeling. Regen. Ther. 2024 27 181 190 10.1016/j.reth.2024.03.019 38840731
    [Google Scholar]
  91. Kato K. Yaginuma T. Kobayashi A. Nakashima A. Ohkido I. Yokoo T. Long-term effects of denosumab on bone mineral density and turnover markers in patients undergoing hemodialysis. J. Bone Miner. Metab. 2024 42 2 264 270 10.1007/s00774‑024‑01505‑7 38512458
    [Google Scholar]
  92. Ghani A. Arfee S. Role of calcitonin and strontium ranelate in osteoporosis. Indian J. Orthop. 2023 57 S1 Suppl. 1 115 119 10.1007/s43465‑023‑01034‑x 38107820
    [Google Scholar]
  93. Tomczyk-Warunek A. Turżańska K. Posturzyńska A. Kowal F. Blicharski T. Pano I.T. Winiarska-Mieczan A. Nikodem A. Dresler S. Sowa I. Wójciak M. Dobrowolski P. Influence of various strontium formulations (Ranelate, Citrate, and Chloride) on bone mineral density, morphology, and microarchitecture: A comparative study in an ovariectomized female mouse model of Osteoporosis. Int. J. Mol. Sci. 2024 25 7 4075 10.3390/ijms25074075 38612883
    [Google Scholar]
  94. Sun Q. Liu F. Fang J. Lian Q. Hu Y. Nan X. Tian F.M. Zhang G. Qi D. Zhang L. Zhang J. Luo Y. Zhang Z. Zhou Z. Strontium ranelate retards disc degradation and improves endplate and bone micro-architecture in ovariectomized rats with lumbar fusion induced – Adjacent segment disc degeneration. Bone Rep. 2024 20 101744 10.1016/j.bonr.2024.101744 38404727
    [Google Scholar]
  95. Turżańska K. Tomczyk-Warunek A. Dobrzyński M. Jarzębski M. Patryn R. Niezbecka-Zając J. Wojciechowska M. Mela A. Zarębska-Mróz A. Strontium ranelate and strontium chloride supplementation influence on bone microarchitecture and bone turnover markers—A preliminary study. Nutrients 2023 16 1 91 10.3390/nu16010091 38201922
    [Google Scholar]
  96. Sun R. Zhu J. Sun K. Gao L. Zheng B. Shi J. Strontium ranelate ameliorates intervertebral disc degeneration via regulating TGF-β1/NF-κB axis. Int. J. Med. Sci. 2023 20 13 1679 1697 10.7150/ijms.86665 37928874
    [Google Scholar]
  97. Prestwood K.M. Pilbeam C.C. Raisz L.G. Carol C. Raisz M. Lawrence G. Treatment of osteoporosis. Annu. Rev. Med. 1995 46 1 249 256 10.1146/annurev.med.46.1.249 7598461
    [Google Scholar]
  98. Mathis J.M. Percutaneous vertebroplasty: Complication avoidance and technique optimization. AJNR Am. J. Neuroradiol. 2003 24 8 1697 1706 13679295
    [Google Scholar]
  99. Kawanishi M. Morimoto A. Okuda Y. Satoh D. Matsuda N. Itoh Y. Handa H. Percutaneous vertebroplasty for vertebral compression fracture: Indication, technique, and review of the literature. Neurosurg. Q. 2005 15 3 172 177 10.1097/01.wnq.0000174598.91817.mL
    [Google Scholar]
  100. Kumar K. Verma A.K. Wilson J. LaFontaine A. Vertebroplasty in osteoporotic spine fractures: A quality of life assessment. Can. J. Neurol. Sci. 2005 32 4 487 495 10.1017/S0317167100004492 16408580
    [Google Scholar]
  101. Ryu K.S. Park C.K. The prognostic factors influencing on the therapeutic effect of percutaneous vertebroplasty in treating osteoporotic vertebral compression fractures. J. Korean Neurosurg. Soc. 2009 45 1 16 23 10.3340/jkns.2009.45.1.16 19242566
    [Google Scholar]
  102. Barr J.D. Barr M.S. Lemley T.J. McCann R.M. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 2000 25 8 923 928 10.1097/00007632‑200004150‑00005 10767803
    [Google Scholar]
  103. Afzal S. Dhar S. Vasavada N.B. Akbar S. Percutaneous vertebroplasty for osteoporotic fractures. Pain Physician 2007 4 10 559 663 10.36076/ppj.2007/10/559 17660854
    [Google Scholar]
  104. Li K.C. Li A.F.Y. Hsieh C.H. Chen H.H. Transpedicle body augmenter in painful osteoporotic compression fractures. Eur. Spine J. 2007 16 5 589 598 10.1007/s00586‑006‑0197‑6 16957946
    [Google Scholar]
  105. Gromova O. Doschanova A. Lokshin V. Tuletova A. Grebennikova G. Daniyarova L. Kaishibayeva G. Nurpeissov T. Khan V. Semenova Y. Chibisova A. Suzdalskaya N. Aitaly Z. Glushkova N. Vitamin D deficiency in Kazakhstan: Cross-sectional study. J. Steroid Biochem. Mol. Biol. 2020 199 105565 10.1016/j.jsbmb.2019.105565 31812522
    [Google Scholar]
  106. Gasmi A. Bjørklund G. Peana M. Mujawdiya P.K. Pivina L. Ongenae A. Piscopo S. Severin B. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation. Crit. Rev. Food Sci. Nutr. 2022 62 25 7062 7071 10.1080/10408398.2021.1910481 33966563
    [Google Scholar]
  107. Jackson R.D. LaCroix A.Z. Gass M. Wallace R.B. Robbins J. Lewis C.E. Bassford T. Beresford S.A.A. Black H.R. Blanchette P. Bonds D.E. Brunner R.L. Brzyski R.G. Caan B. Cauley J.A. Chlebowski R.T. Cummings S.R. Granek I. Hays J. Heiss G. Hendrix S.L. Howard B.V. Hsia J. Hubbell F.A. Johnson K.C. Judd H. Kotchen J.M. Kuller L.H. Langer R.D. Lasser N.L. Limacher M.C. Ludlam S. Manson J.E. Margolis K.L. McGowan J. Ockene J.K. O’Sullivan M.J. Phillips L. Prentice R.L. Sarto G.E. Stefanick M.L. Van Horn L. Wactawski-Wende J. Whitlock E. Anderson G.L. Assaf A.R. Barad D. Calcium plus vitamin D supplementation and the risk of fractures. N. Engl. J. Med. 2006 354 7 669 683 10.1056/NEJMoa055218 16481635
    [Google Scholar]
  108. Cashman K.D. Calcium intake, calcium bioavailability and bone health. Br. J. Nutr. 2002 87 S2 Suppl. 2 S169 S177 10.1079/BJN/2002534 12088515
    [Google Scholar]
  109. Oliai Araghi S. Kiefte-de Jong J.C. Trajanoska K. Koromani F. Rivadeneira F. Zillikens M.C. van Schoor N.M. de Groot L.C.P.G.M. Ikram M.A. Uitterlinden A.G. Stricker B.H. van der Velde N. Do vitamin D level and dietary calcium intake modify the association between loop diuretics and bone health? Calcif. Tissue Int. 2020 106 2 104 114 10.1007/s00223‑019‑00621‑1 31608419
    [Google Scholar]
  110. Anderson P.H. Atkins G.J. Turner A.G. Kogawa M. Findlay D.M. Morris H.A. Vitamin D metabolism within bone cells: Effects on bone structure and strength. Mol. Cell. Endocrinol. 2011 347 1-2 42 47 10.1016/j.mce.2011.05.024 21664230
    [Google Scholar]
  111. Seibel M.J. Robins S.P. Bilezikian J.P. Dynamics of bone and cartilage metabolism: Principles and clinical applications. Elsevier 2006
    [Google Scholar]
  112. Daly R.M. Dalla Via J. Duckham R.L. Fraser S.F. Helge E.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. Ther. 2019 23 2 170 180 10.1016/j.bjpt.2018.11.011 30503353
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358991250210111956
Loading
/content/journals/cmc/10.2174/0109298673358991250210111956
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: treatment ; bone mineral density ; diagnosis ; risk factors ; Osteoporosis ; prevention
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test