Skip to content
2000
image of 
The Impact of Mercury from Dental Amalgams on Pregnancy and Childhood: A Health and Risk Assessment Evaluation

Abstract

Mercury is a pervasive global pollutant, with primary anthropogenic sources including mining, industrial processes, and mercury-containing products such as dental amalgams. These sources release mercury into the environment, where it accumulates in ecosystems and enters the food chain, notably through bioamplification in marine life, posing a risk to human health. Dental amalgams, widely used for over a century, serve as a significant endogenous source of inorganic mercury. Studies have demonstrated that mercury vapor can be released from amalgams at room temperature due to material corrosion, potentially leading to chronic exposure. Pregnant women and children are particularly susceptible to mercury’s toxic effects, with research linking prenatal mercury exposure to developmental delays, neurocognitive deficits, and conditions such as autism spectrum disorder. Moreover, the long-term accumulation of mercury in the body raises concerns about delayed health impacts in individuals exposed during childhood. Recent findings suggest even low levels of mercury exposure may contribute to kidney damage mediated by oxidative stress, highlighting the importance of monitoring mercury levels in vulnerable populations. Prenatal mercury transfer and postnatal exposure through breastfeeding further amplify the risks. This review critically assesses the health implications of mercury exposure from dental amalgams, focusing on its impact on pregnancy and childhood development. It underscores the need for updated regulatory measures to mitigate mercury-related risks and calls for further research to clarify the extent of mercury’s long-term effects on human health.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334663250101101006
2025-01-28
2025-04-09
Loading full text...

Full text loading...

References

  1. Kirtana A. Seetharaman B. Comprehending the role of endocrine disruptors in inducing epigenetic toxicity. Endocr. Metab. Immune Disord. Drug Targets 2022 22 11 1059 1072 10.2174/1871530322666220411082656 35410624
    [Google Scholar]
  2. Peana M. Zoroddu M.A. Pelucelli A. Medici S. Cappai R. Nurchi V.M. Metal toxicity and speciation: A review. Curr. Med. Chem. 2021 28 35 7190 7208 10.2174/0929867328666210324161205 33761850
    [Google Scholar]
  3. Clifton J.C. II Mercury exposure and public health. Pediatr. Clin. North Am. 2007 54 2 237.e1 237.e45, viii 10.1016/j.pcl.2007.02.005 17448359
    [Google Scholar]
  4. Richardson G.M. Wilson R. Allard D. Purtill C. Douma S. Gravière J. Mercury exposure and risks from dental amalgam in the US population, post-2000. Sci. Total Environ. 2011 409 20 4257 4268 10.1016/j.scitotenv.2011.06.035 21782213
    [Google Scholar]
  5. Schmalz G. Widbiller M. Biocompatibility of amalgam vs composite - a review. Oral Health Prev. Dent. 2022 20 1 149 156 35308016
    [Google Scholar]
  6. Shiani A. Sharafi K. Omer A.K. Kiani A. Karamimatin B. Massahi T. Ebrahimzadeh G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. Sci. Total Environ. 2023 857 Pt 2 159246 10.1016/j.scitotenv.2022.159246 36220469
    [Google Scholar]
  7. Pavithra K.G. SundarRajan P. Kumar P.S. Rangasamy G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. Chemosphere 2023 312 Pt 1 137314 10.1016/j.chemosphere.2022.137314 36410499
    [Google Scholar]
  8. Bjørklund G. Antonyak H. Polishchuk A. Semenova Y. Lesiv M. Lysiuk R. Peana M. Effect of methylmercury on fetal neurobehavioral development: An overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch. Toxicol. 2022 96 12 3175 3199 10.1007/s00204‑022‑03366‑3 36063174
    [Google Scholar]
  9. Bjørklund G. Dadar M. Mutter J. Aaseth J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017 159 545 554 10.1016/j.envres.2017.08.051 28889024
    [Google Scholar]
  10. Dutta S. Gorain B. Choudhury H. Roychoudhury S. Sengupta P. Environmental and occupational exposure of metals and female reproductive health. Environ. Sci. Pollut. Res. Int. 2022 29 41 62067 62092 10.1007/s11356‑021‑16581‑9 34558053
    [Google Scholar]
  11. Velasco A. Cabrera A.F. Vargas O.I. Ramírez M. Ortinez A. Umlauf G. Sena F. Global mercury observatory system (gmos): Measurements of atmospheric mercury in celestun, yucatan, mexico during 2012. Environ. Sci. Pollut. Res. Int. 2016 23 17 17474 17483 10.1007/s11356‑016‑6852‑5 27230151
    [Google Scholar]
  12. Wiener J.G. Suchanek T.H. The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining. Ecol. Appl. 2008 18 sp8 Suppl. A3 A11 10.1890/06‑1939.1 19475915
    [Google Scholar]
  13. Zeng L. Luo G. He T. Guo Y. Qian X. Effects of sulfate-reducing bacteria on methylmercury at the sediment–water interface. J. Environ. Sci. 2016 46 214 219 10.1016/j.jes.2016.05.018 27521953
    [Google Scholar]
  14. Clarkson T.W. The three modern faces of mercury. Environ. Health Perspect. 2002 110 Suppl 1 Suppl. 1 11 23 10.1289/ehp.02110s111 11834460
    [Google Scholar]
  15. Ganguly J. Kulshreshtha D. Jog M. Mercury and movement disorders: The toxic legacy continues. Can. J. Neurol. Sci. 2022 49 4 493 501 10.1017/cjn.2021.146 34346303
    [Google Scholar]
  16. Maqbool F. Bahadar H. Abdollahi M. Exposure to mercury from dental amalgams: A threat to society. Arh. Hig. Rada Toksikol. 2014 65 3 339 340 10.2478/10004‑1254‑65‑2014‑2543 25205693
    [Google Scholar]
  17. Anusavice K.J. Shen C. Rawls H.R. Phillips’ science of dental materials. Elsevier Health Sciences 2012
    [Google Scholar]
  18. Darvell B.W. Effect of corrosion on the strength of dental silver amalgam. Dent. Mater. 2012 28 9 e160 e167 10.1016/j.dental.2012.06.001 22770402
    [Google Scholar]
  19. Kellet V.C. Del Barrio-Díaz P. Oral amalgam tattoo mimicking melanoma. N. Engl. J. Med. 2016 374 17 e21 10.1056/NEJMicm1510216 27119254
    [Google Scholar]
  20. Galletta V.C. Artico G. Vechio D.A.M. Lemos C.A. Jr Migliari D.A. Extensive amalgam tattoo on the alveolar-gingival mucosa. An. Bras. Dermatol. 2011 86 5 1019 1021 10.1590/S0365‑05962011000500026 22147048
    [Google Scholar]
  21. Vukmir R.B. Abdominal pain in a child associated with dental amalgam ingestion. Am. J. Emerg. Med. 2005 23 3 391 393 10.1016/j.ajem.2005.02.032 15915421
    [Google Scholar]
  22. Eames W.B. Palmertree C.O. Jr Mercury emission during amalgam condensation. Oper. Dent. 1979 4 1 15 19 296801
    [Google Scholar]
  23. Geier D.A. Geier M.R. Estimated mercury vapor exposure from amalgams among American pregnant women. Hum. Exp. Toxicol. 2024 43 09603271241231945 10.1177/09603271241231945 38316638
    [Google Scholar]
  24. Lim H.E. Shim J.J. Lee S.Y. Lee S.H. Jo J.Y. In K.H. Kim H.G. Yoo S.H. Kang K.H. Kang K.H. Mercury inhalation poisoning and acute lung injury. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.) 1998 13 2 127 130 10.3904/kjim.1998.13.2.127 9735669
    [Google Scholar]
  25. Moromisato D.Y. Anas N.G. Goodman G. Mercury inhalation poisoning and acute lung injury in a child. Use of high-frequency oscillatory ventilation. Chest 1994 105 2 613 615 10.1378/chest.105.2.613 8306778
    [Google Scholar]
  26. Henriksson J. Tjälve H. Uptake of inorganic mercury in the olfactory bulbs via olfactory pathways in rats. Environ. Res. 1998 77 2 130 140 10.1006/enrs.1997.3817 9600806
    [Google Scholar]
  27. Tian L. Shang Y. Chen R. Bai R. Chen C. Inthavong K. Tu J. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Part. Fibre Toxicol. 2019 16 1 6 10.1186/s12989‑019‑0290‑8 30683122
    [Google Scholar]
  28. Cariccio V.L. Samà A. Bramanti P. Mazzon E. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol. Trace Elem. Res. 2019 187 2 341 356 10.1007/s12011‑018‑1380‑4 29777524
    [Google Scholar]
  29. Patini R. Spagnuolo G. Guglielmi F. Staderini E. Simeone M. Camodeca A. Gallenzi P. Clinical effects of mercury in conservative dentistry: A systematic review, meta-analysis, and trial sequential analysis of randomized controlled trials. Int. J. Dent. 2020 2020 1 12 10.1155/2020/8857238 32849873
    [Google Scholar]
  30. Guzzi G. Minoia C. Pigatto P.D. Severi G. Methylmercury, amalgams, and children’s health. Environ. Health Perspect. 2006 114 3 A149 A149 10.1289/ehp.114‑a149a 16507443
    [Google Scholar]
  31. Heintze U. Edwardsson S. Dérand T. Birkhed D. Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Eur. J. Oral Sci. 1983 91 2 150 152 10.1111/j.1600‑0722.1983.tb00792.x 6222462
    [Google Scholar]
  32. Leistevuo J. Leistevuo T. Helenius H. Pyy L. Österblad M. Huovinen P. Tenovuo J. Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Res. 2001 35 3 163 166 10.1159/000047450 11385194
    [Google Scholar]
  33. Lyttle H.A. Bowden G.H. The level of mercury in human dental plaque and interaction in vitro between biofilms of Streptococcus mutans and dental amalgam. J. Dent. Res. 1993 72 9 1320 1324 10.1177/00220345930720091101 8360382
    [Google Scholar]
  34. Weiner J.A. Nylander M. Berglund F. Does mercury from amalgam restorations constitute a health hazard? Sci. Total Environ. 1990 99 1-2 1 22 10.1016/0048‑9697(90)90206‑A 2270464
    [Google Scholar]
  35. Lygre G.B. Björkman L. Haug K. Skjærven R. Helland V. Exposure to dental amalgam restorations in pregnant women. Community Dent. Oral Epidemiol. 2010 38 5 460 469 10.1111/j.1600‑0528.2010.00544.x 20406270
    [Google Scholar]
  36. Geier D. Kern J. Geier M. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol. Exp. 2009 69 2 189 197 10.55782/ane‑2009‑1744 19593333
    [Google Scholar]
  37. Findik B.R. Celik H.T. Ersoy A.O. Tasci Y. Moraloglu O. Karakaya J. Mercury concentration in maternal serum, cord blood, and placenta in patients with amalgam dental fillings: Effects on fetal biometric measurements. J. Matern. Fetal Neonatal Med. 2016 29 22 3665 3669 10.3109/14767058.2016.1140737 26898132
    [Google Scholar]
  38. Palkovicova L. Ursinyova M. Masanova V. Yu Z. Picciotto H.I. Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. J. Expo. Sci. Environ. Epidemiol. 2008 18 3 326 331 10.1038/sj.jes.7500606 17851449
    [Google Scholar]
  39. Yoshida M. Placental to fetal transfer of mercury and fetotoxicity. Tohoku J. Exp. Med. 2002 196 2 79 88 10.1620/tjem.196.79 12498319
    [Google Scholar]
  40. Santos E.O. Jesus I.M. Câmara V.M. Brabo E.S. Jesus M.I. Fayal K.F. Asmus C.I.R.F. Correlation between blood mercury levels in mothers and newborns in Itaituba, Pará State, Brazil. Cad. Saude Publica 2007 23 Suppl. 4 S622 S629 10.1590/S0102‑311X2007001600022 18038043
    [Google Scholar]
  41. Kim K.N. Bae S. Park H.Y. Kwon H.J. Hong Y.C. Low-level mercury exposure and risk of asthma in school-age children. Epidemiology 2015 26 5 733 739 10.1097/EDE.0000000000000351 26154023
    [Google Scholar]
  42. Ou L. Chen C. Chen L. Wang H. Yang T. Xie H. Tong Y. Hu D. Zhang W. Wang X. Low-level prenatal mercury exposure in north China: An exploratory study of anthropometric effects. Environ. Sci. Technol. 2015 49 11 6899 6908 10.1021/es5055868 25936461
    [Google Scholar]
  43. Gump B.B. Gabrikova E. Bendinskas K. Dumas A.K. Palmer C.D. Parsons P.J. MacKenzie J.A. Low-level mercury in children: Associations with sleep duration and cytokines TNF-α and IL-6. Environ. Res. 2014 134 228 232 10.1016/j.envres.2014.07.026 25173056
    [Google Scholar]
  44. Stone J. Sutrave P. Gascoigne E. Givens M.B. Fry R.C. Manuck T.A. Exposure to toxic metals and per- and polyfluoroalkyl substances and the risk of preeclampsia and preterm birth in the United States: A review. Am. J. Obstet. Gynecol. MFM 2021 3 3 100308 10.1016/j.ajogmf.2021.100308 33444805
    [Google Scholar]
  45. Luglie P.F. Campus G. Chessa G. Spano G. Capobianco G. Fadda G.M. Dessole S. Effect of amalgam fillings on the mercury concentration in human amniotic fluid. Arch. Gynecol. Obstet. 2005 271 2 138 142 10.1007/s00404‑003‑0578‑6 14689312
    [Google Scholar]
  46. Calabrese E.J. Iavicoli I. Calabrese V. Slechta C.D.A. Giordano J. Elemental mercury neurotoxicity and clinical recovery of function: A review of findings, and implications for occupational health. Environ. Res. 2018 163 134 148 10.1016/j.envres.2018.01.021 29438899
    [Google Scholar]
  47. Unuvar E. Ahmadov H. Kiziler A. Aydemir B. Toprak S. Ulker V. Ark C. Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: Clinical, prospective cohort study. Sci. Total Environ. 2007 374 1 60 70 10.1016/j.scitotenv.2006.11.043 17258795
    [Google Scholar]
  48. Vimy M.J. Takahashi Y. Lorscheider F.L. Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings. Am. J. Physiol. 1990 258 4 Pt 2 R939 R945 2331037
    [Google Scholar]
  49. Kayaaltı Z. Akyüzlü K.D. Yüksel B. Özdemir F. Söylemezoğlu T. Is there a relationship between metallothionein polymorphism and mercury levels of maternal blood, placental tissue and cord blood? Toxicol. Lett. 2016 258 258 S290 10.1016/j.toxlet.2016.06.2008
    [Google Scholar]
  50. Woods J.S. Heyer N.J. Russo J.E. Martin M.D. Pillai P.B. Farin F.M. Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children. Neurotoxicol. Teratol. 2013 39 36 44 10.1016/j.ntt.2013.06.004 23827881
    [Google Scholar]
  51. Drasch G. Schupp I. Höfl H. Reinke R. Roider G. Mercury burden of human fetal and infant tissues. Eur. J. Pediatr. 1994 153 8 607 610 10.1007/BF02190671 7957411
    [Google Scholar]
  52. Cace I.B. Milardovic A. Prpic I. Krajina R. Petrovic O. Vukelic P. Spiric Z. Horvat M. Mazej D. Snoj J. Relationship between the prenatal exposure to low-level of mercury and the size of a newborn’s cerebellum. Med. Hypotheses 2011 76 4 514 516 10.1016/j.mehy.2010.12.005 21195558
    [Google Scholar]
  53. Rooney J.P.K. The retention time of inorganic mercury in the brain — A systematic review of the evidence. Toxicol. Appl. Pharmacol. 2014 274 3 425 435 10.1016/j.taap.2013.12.011 24368178
    [Google Scholar]
  54. Dack K. Fell M. Taylor C.M. Havdahl A. Lewis S.J. Prenatal mercury exposure and neurodevelopment up to the age of 5 years: A systematic review. Int. J. Environ. Res. Public Health 2022 19 4 1976 10.3390/ijerph19041976 35206164
    [Google Scholar]
  55. Mutter J. Naumann J. Schneider R. Walach H. Haley B. Mercury and autism: Accelerating Evidence? Act. Nerv. Super. 2007 49 1/2 22
    [Google Scholar]
  56. Woods J.S. Heyer N.J. Russo J.E. Martin M.D. Farin F.M. Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: Summary findings from the Casa Pia Children’s Amalgam Clinical Trial. Neurotoxicology 2014 44 288 302 10.1016/j.neuro.2014.07.010 25109824
    [Google Scholar]
  57. Solan T.D. Lindow S.W. Mercury exposure in pregnancy: A review. J. Perinat. Med. 2014 42 6 725 729 10.1515/jpm‑2013‑0349 24698820
    [Google Scholar]
  58. Saleh A.I. Sedairi A.A. Mercury (Hg) burden in children: The impact of dental amalgam. Sci. Total Environ. 2011 409 16 3003 3015 10.1016/j.scitotenv.2011.04.047 21601239
    [Google Scholar]
  59. Drasch G. Aigner S. Roider G. Staiger E. Lipowsky G. Mercury in human colostrum and early breast milk. Its dependence on dental amalgam and other factors. J. Trace Elem. Med. Biol. 1998 12 1 23 27 10.1016/S0946‑672X(98)80017‑5 9638609
    [Google Scholar]
  60. Schulte A. Stoll R. Wittich M. Pieper K. Stachniss V. Mercury concentrations in the urine of children with and without amalgam fillings. Schweizer Monatsschrift fur Zahnmedizin= Revue mensuelle suisse d'odonto-stomatologie= Rivista mensile svizzera di odontologia e stomatologia 1994 104 11 1336 1340
    [Google Scholar]
  61. Björnberg K.A. Vahter M. Berglund B. Niklasson B. Blennow M. Englund S.G. Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant. Environ. Health Perspect. 2005 113 10 1381 1385 10.1289/ehp.7856 16203251
    [Google Scholar]
  62. Orün E. Yalçin S.S. Aykut O. Orhan G. Morgil K.G. Yurdakök K. Uzun R. Mercury exposure via breast-milk in infants from a suburban area of Ankara, Turkey. Turk. J. Pediatr. 2012 54 2 136 143 22734299
    [Google Scholar]
  63. Saleh A.I. Abduljabbar M. Rouqi A.R. Eltabache C. Rajudi A.T. Elkhatib R. Nester M. The extent of mercury (Hg) exposure among Saudi mothers and their respective infants. Environ. Monit. Assess. 2015 187 11 678 10.1007/s10661‑015‑4858‑y 26450688
    [Google Scholar]
  64. Costa S.L. Malm O. Dórea J.G. Breast-milk mercury concentrations and amalgam surface in mothers from Brasília, Brazil. Biol. Trace Elem. Res. 2005 106 2 145 152 10.1385/BTER:106:2:145 16116246
    [Google Scholar]
  65. Drexler H. Schaller K.H. The mercury concentration in breast milk resulting from amalgam fillings and dietary habits. Environ. Res. 1998 77 2 124 129 10.1006/enrs.1997.3813 9600805
    [Google Scholar]
  66. Oskarsson A. Schütz A. Skerfving S. Hallén I.P. Ohlin B. Lagerkvist B.J. Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch. Environ. Health 1996 51 3 234 241 10.1080/00039896.1996.9936021 8687245
    [Google Scholar]
  67. Vimy M.J. Hooper D.E. King W.W. Lorscheider F.L. Mercury from maternal “silver” tooth fillings in sheep and human breast milk. Biol. Trace Elem. Res. 1997 56 2 143 152 10.1007/BF02785388 9164660
    [Google Scholar]
  68. Rosebush M.S. Briody A.N. Cordell K.G. Black and Brown: Non-neoplastic Pigmentation of the Oral Mucosa. Head Neck Pathol. 2019 13 1 47 55 10.1007/s12105‑018‑0980‑9 30671761
    [Google Scholar]
  69. Parizi J.L.S. Nai G.A. Amalgam tattoo: A cause of sinusitis? J. Appl. Oral Sci. 2010 18 1 100 104 10.1590/S1678‑77572010000100016 20379688
    [Google Scholar]
  70. Kremers L. Halbach S. Willruth H. Mehl A. Welzl G. Wack F.X. Hickel R. Greim H. Effect of rubber dam on mercury exposure during amalgam removal. Eur. J. Oral Sci. 1999 107 3 202 207 10.1046/j.0909‑8836.1999.eos1070307.x 10424384
    [Google Scholar]
  71. Zieniewska I. Maciejczyk M. Zalewska A. The effect of selected dental materials used in conservative dentistry, endodontics, surgery, and orthodontics as well as during the periodontal treatment on the redox balance in the oral cavity. Int. J. Mol. Sci. 2020 21 24 9684 10.3390/ijms21249684 33353105
    [Google Scholar]
  72. Guzzi G. Pigatto P.D. Occupational exposure to mercury from amalgams during pregnancy. Occup. Environ. Med. 2007 64 10 715.1 716 10.1136/oem.2007.032789 17881473
    [Google Scholar]
  73. Takahashi Y. Tsuruta S. Arimoto M. Tanaka H. Yoshida M. Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology 2003 185 1-2 23 33 10.1016/S0300‑483X(02)00588‑7 12505442
    [Google Scholar]
  74. Wannag A. Skjaeråsen J. Mercury accumulation in placenta and foetal membranes. A study of dental workers and their babies. Environ. Physiol. Biochem. 1975 5 5 348 352 1193047
    [Google Scholar]
  75. Colson D.G. A safe protocol for amalgam removal. J. Env. Public Health. 2012 2012 517391 10.1155/2012/517391
    [Google Scholar]
  76. Bjørklund G. Dadar M. Chirumbolo S. Aaseth J. The role of xenobiotics and trace metals in parkinson’s disease. Mol. Neurobiol. 2020 57 3 1405 1417 10.1007/s12035‑019‑01832‑1 31754997
    [Google Scholar]
  77. Bjørklund G. Peana M. Dadar M. Chirumbolo S. Aaseth J. Martins N. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders. Clin. Immunol. 2020 213 108352 10.1016/j.clim.2020.108352 32032765
    [Google Scholar]
  78. Mahmoudi N. Jafari J.A. Moradi Y. Esrafili A. The mercury level in hair and breast milk of lactating mothers in Iran: A systematic review and meta-analysis. J. Environ. Health Sci. Eng. 2020 18 1 355 366 10.1007/s40201‑020‑00460‑5 32399246
    [Google Scholar]
  79. Visag M.C. Manejo responsable del mercurio de la amalgama dental: Una revisión sobre sus repercusiones en la salud. Rev. Peru. Med. Exp. Salud Publica 2014 31 4 725 732 10.17843/rpmesp.2014.314.126 25597726
    [Google Scholar]
  80. Emeny R.T. Korrick S.A. Li Z. Nadeau K. Madan J. Jackson B. Baker E. Karagas M.R. Prenatal exposure to mercury in relation to infant infections and respiratory symptoms in the New Hampshire Birth Cohort Study. Environ. Res. 2019 171 523 529 10.1016/j.envres.2019.01.026 30743244
    [Google Scholar]
  81. Tjälve H. Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology 1999 20 2-3 181 195 10385882
    [Google Scholar]
  82. Barregard L. Trachtenberg F. McKinlay S. Renal effects of dental amalgam in children: The New England children’s amalgam trial. Environ. Health Perspect. 2008 116 3 394 399 10.1289/ehp.10504 18335109
    [Google Scholar]
  83. Burbure d.C. Buchet J.P. Leroyer A. Nisse C. Haguenoer J.M. Mutti A. Smerhovský Z. Cikrt M. Ochocka T.M. Razniewska G. Jakubowski M. Bernard A. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environ. Health Perspect. 2006 114 4 584 590 10.1289/ehp.8202 16581550
    [Google Scholar]
  84. Nuttall K.L. Interpreting mercury in blood and urine of individual patients. Ann. Clin. Lab. Sci. 2004 34 3 235 250 15487698
    [Google Scholar]
  85. Webb J. Coomes O.T. Ross N. Mergler D. Mercury concentrations in urine of amerindian populations near oil fields in the peruvian and ecuadorian amazon. Environ. Res. 2016 151 344 350 10.1016/j.envres.2016.07.040 27525667
    [Google Scholar]
  86. Mood K.M. Shirazi S.A.R. Mood B.M. Urinary mercury excretion following amalgam filling in children. J. Toxicol. Clin. Toxicol. 2001 39 7 701 705 10.1081/CLT‑100108510 11778667
    [Google Scholar]
  87. Woods J.S. Martin M.D. Leroux B.G. DeRouen T.A. Leitão J.G. Bernardo M.F. Luis H.S. Simmonds P.L. Kushleika J.V. Huang Y. The contribution of dental amalgam to urinary mercury excretion in children. Environ. Health Perspect. 2007 115 10 1527 1531 10.1289/ehp.10249 17938746
    [Google Scholar]
  88. Geier D.A. Carmody T. Kern J.K. King P.G. Geier M.R. A significant relationship between mercury exposure from dental amalgams and urinary porphyrins: A further assessment of the Casa Pia children’s dental amalgam trial. Biometals 2011 24 2 215 224 10.1007/s10534‑010‑9387‑0 21053054
    [Google Scholar]
  89. Warwick D. Young M. Palmer J. Ermel R.W. Mercury vapor volatilization from particulate generated from dental amalgam removal with a high-speed dental drill – a significant source of exposure. J. Occup. Med. Toxicol. 2019 14 1 22 10.1186/s12995‑019‑0240‑2 31346345
    [Google Scholar]
  90. Saleh A.I. Sedairi A.A. Elkhatib R. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children. Sci. Total Environ. 2012 431 188 196 10.1016/j.scitotenv.2012.05.036 22683759
    [Google Scholar]
  91. Guzzi G. Pigatto P.D. Urinary mercury levels in children with amalgam fillings. Environ. Health Perspect. 2008 116 7 A286 A287 10.1289/ehp.11235 18629336
    [Google Scholar]
  92. Englund S.G. Elinder C.G. Johanson G. Lind B. Skare I. Ekstrand J. The absorption, blood levels, and excretion of mercury after a single dose of mercury vapor in humans. Toxicol. Appl. Pharmacol. 1998 150 1 146 153 10.1006/taap.1998.8400 9630463
    [Google Scholar]
  93. Holmes A.S. Blaxill M.F. Haley B.E. Reduced levels of mercury in first baby haircuts of autistic children. Int. J. Toxicol. 2003 22 4 277 285 10.1080/10915810305120 12933322
    [Google Scholar]
  94. Baskin D.S. Ngo H. Didenko V.V. Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol. Sci. 2003 74 2 361 368 10.1093/toxsci/kfg126 12773768
    [Google Scholar]
  95. Garrecht M. Austin D.W. The plausibility of a role for mercury in the etiology of autism: A cellular perspective. Toxicol. Environ. Chem. 2011 93 6 1251 1273 10.1080/02772248.2011.580588 22163375
    [Google Scholar]
  96. Bjørklund G. Skalny A.V. Rahman M.M. Dadar M. Yassa H.A. Aaseth J. Chirumbolo S. Skalnaya M.G. Tinkov A.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ. Res. 2018 166 234 250 10.1016/j.envres.2018.05.020 29902778
    [Google Scholar]
  97. Bjørklund G. Meguid N.A. Bana E.M.A. Tinkov A.A. Saad K. Dadar M. Hemimi M. Skalny A.V. Hosnedlová B. Kizek R. Osredkar J. Urbina M.A. Fabjan T. Houfey E.A.A. Kałużna-Czaplińska J. Gątarek P. Chirumbolo S. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020 57 5 2314 2332 10.1007/s12035‑019‑01742‑2 32026227
    [Google Scholar]
  98. Bjørklund G. Doşa M.D. Maes M. Dadar M. Frye R.E. Peana M. Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res. 2021 166 105437 10.1016/j.phrs.2021.105437 33493659
    [Google Scholar]
  99. Bjørklund G. Tinkov A.A. Hosnedlová B. Kizek R. Ajsuvakova O.P. Chirumbolo S. Skalnaya M.G. Peana M. Dadar M. Ansary E.A. Qasem H. Adams J.B. Aaseth J. Skalny A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med. 2020 160 149 162 10.1016/j.freeradbiomed.2020.07.017 32745763
    [Google Scholar]
  100. Woods J.S. Heyer N.J. Echeverria D. Russo J.E. Martin M.D. Bernardo M.F. Luis H.S. Vaz L. Farin F.M. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicol. Teratol. 2012 34 5 513 521 10.1016/j.ntt.2012.06.004 22765978
    [Google Scholar]
  101. Kern J.K. Geier D.A. Adams J.B. Mehta J.A. Grannemann B.D. Geier M.R. Toxicity biomarkers in autism spectrum disorder: A blinded study of urinary porphyrins. Pediatr. Int. 2011 53 2 147 153 10.1111/j.1442‑200X.2010.03196.x 20626635
    [Google Scholar]
  102. Youn S.I. Jin S.H. Kim S.H. Lim S. Porphyrinuria in Korean children with autism: Correlation with oxidative stress. J. Toxicol. Environ. Health A 2010 73 10 701 710 10.1080/15287391003614000 20391113
    [Google Scholar]
  103. Khaled E.M. Meguid N.A. Bjørklund G. Gouda A. Bahary M.H. Hashish A. Sallam N.M. Chirumbolo S. Bana E.M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in egyptian children with autism spectrum disorder. Metab. Brain Dis. 2016 31 6 1419 1426 10.1007/s11011‑016‑9870‑6 27406246
    [Google Scholar]
  104. Echeverria D. Woods J. Heyer N. Rohlman D. Farin F. Li T. Garabedian C. The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Neurotoxicol. Teratol. 2006 28 1 39 48 10.1016/j.ntt.2005.10.006 16343843
    [Google Scholar]
  105. Cheuk D. Wong V. Attention-deficit hyperactivity disorder and blood mercury level: A case-control study in Chinese children. Neuropediatrics 2006 37 4 234 240 10.1055/s‑2006‑924577 17177150
    [Google Scholar]
  106. Fuks A.B. The use of amalgam in pediatric dentistry: New insights and reappraising the tradition. Pediatr. Dent. 2015 37 2 125 132 25905653
    [Google Scholar]
  107. Gao Z.Y. Li M.M. Wang J. Yan J. Zhou C.C. Yan C.H. Blood mercury concentration, fish consumption and anthropometry in chinese children: A national study. Environ. Int. 2018 110 14 21 10.1016/j.envint.2017.08.016 29113684
    [Google Scholar]
  108. Tobias G. Chackartchi T. Mann J. Haim D. Findler M. Survival rates of amalgam and composite resin restorations from big data real-life databases in the era of restricted dental mercury use. Bioengineering (Basel) 2024 11 6 579 10.3390/bioengineering11060579 38927815
    [Google Scholar]
  109. Lamsal R. Estrich C.G. Sandmann D. Bartelt K. Lipman R.D. Declining US dental amalgam restorations in US Food and Drug Administration–identified populations: 2017-2023. J. Am. Dent. Assoc. 2024 155 10 816 824 10.1016/j.adaj.2024.07.015 39243252
    [Google Scholar]
  110. World Health Organization. Draft Global Oral Health Action Plan. 2023 Available from: https://www.who.int/publications/m/item/draft-global-oral-health-action-plan-(2023-2030)
  111. Eaton K. Yusuf H. Vassallo P. Editorial: The WHO global oral health action plan 2023-2030. Community Dent. Health 2023 40 2 68 69 37265395
    [Google Scholar]
  112. Selin H. Keane S.E. Wang S. Selin N.E. Davis K. Bally D. Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio 2018 47 2 198 215 10.1007/s13280‑017‑1003‑x 29388129
    [Google Scholar]
  113. Evers D.C. Keane S.E. Basu N. Buck D. Evaluating the effectiveness of the minamata convention on mercury: Principles and recommendations for next steps. Sci. Total Environ. 2016 569-570 888 903 10.1016/j.scitotenv.2016.05.001 27425440
    [Google Scholar]
  114. Katsonouri A. Gabriel C. López E.M. Namorado S. Halldorsson T.I. Tratnik S.J. Martin R.L. Karakoltzidis A. Chatzimpaloglou A. Giannadaki D. Anastasi E. Thoma A. Morueco D.N. Portilla C.A.I. Jacobsen E. Assunção R. Peres M. Santiago S. Nunes C. Diaz P.S. Iavicoli I. Leso V. Lacasaña M. Alzaga G.B. Horvat M. Sepai O. Castano A. Gehring K.M. Karakitsios S. Sarigiannis D. HBM4EU-MOM: Prenatal methylmercury-exposure control in five countries through suitable dietary advice for pregnancy – Study design and characteristics of participants. Int. J. Hyg. Environ. Health 2023 252 114213 10.1016/j.ijheh.2023.114213 37393843
    [Google Scholar]
  115. Tamiji T. Ejhieh N.A. Electrocatalytic determination of hg(ii) by the modified carbon paste electrode with sn(iv)-clinoptilolite nanoparticles. Electrocatalysis 2019 10 5 466 476 10.1007/s12678‑019‑00528‑3
    [Google Scholar]
  116. Pirrone N. Aas W. Cinnirella S. Ebinghaus R. Hedgecock I.M. Pacyna J. Sprovieri F. Sunderland E.M. Toward the next generation of air quality monitoring: Mercury. Atmos. Environ. 2013 80 599 611 10.1016/j.atmosenv.2013.06.053
    [Google Scholar]
  117. Khullar V. Singh H.P. Miro Y. Anand D. Mohamed H.G. Gupta D. Kumar N. Goyal N. IoT fog-enabled multi-node centralized ecosystem for real time screening and monitoring of health information. Appl. Sci. 2022 12 19 9845 10.3390/app12199845
    [Google Scholar]
  118. Rani L. Srivastav A.L. Kaushal J. Bioremediation: An effective approach of mercury removal from the aqueous solutions. Chemosphere 2021 280 130654 10.1016/j.chemosphere.2021.130654 34162069
    [Google Scholar]
  119. Sharma P. Sirohi R. Tong Y.W. Kim S.H. Pandey A. Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges. J. Hazard. Mater. 2021 416 125855 10.1016/j.jhazmat.2021.125855 34492804
    [Google Scholar]
  120. Eshraghi F. Ejhieh N.A. EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb(II) removal. Environ. Sci. Pollut. Res. Int. 2018 25 14 14043 14056 10.1007/s11356‑018‑1461‑0 29520543
    [Google Scholar]
  121. Shirzadi H. Ejhieh N.A. An efficient modified zeolite for simultaneous removal of Pb(II) and Hg(II) from aqueous solution. J. Mol. Liq. 2017 230 221 229 10.1016/j.molliq.2017.01.029
    [Google Scholar]
  122. Barlow N.L. Bradberry S.M. Investigation and monitoring of heavy metal poisoning. J. Clin. Pathol. 2023 76 2 82 97 10.1136/jcp‑2021‑207793 36600633
    [Google Scholar]
  123. Crisponi G. Nurchi V.M. Lachowicz J.I. Alonso C.M. Zoroddu M.A. Peana M. Kill or cure: Misuse of chelation therapy for human diseases. Coord. Chem. Rev. 2015 284 278 285 10.1016/j.ccr.2014.04.023
    [Google Scholar]
  124. Barbosa N.V. Aschner M. Tinkov A.A. Farina M. Rocha J.B.T. Should ebselen be considered for the treatment of mercury intoxication? A minireview. Toxicol. Mech. Methods 2024 34 1 1 12 10.1080/15376516.2023.2258958 37731353
    [Google Scholar]
  125. Dudeja P. Dudeja K. Grover S. Singh H. Jabin Z. Pathway to mercury-free dentistry: An insight into past, present, and future. Eur. Oral Res. 2023 57 2 67 74 10.26650/eor.20231050091 37525858
    [Google Scholar]
  126. Yahya B.I. Global oral health initiative: World Health Organization strategic action plan. J. Dent. Educ. 2024 88 S1 Suppl. 1 699 702 10.1002/jdd.13504 38758047
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334663250101101006
Loading
/content/journals/cmc/10.2174/0109298673334663250101101006
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: prenatal exposure ; neurological development ; childhood ; Mercury ; pregnancy ; dental amalgam
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test