Skip to content
2000
image of Exosomal Delivery of miR-155 Inhibitor can Suppress Migration, Invasion, and Angiogenesis Via PTEN and DUSP14 in Triple-negative Breast Cancer

Abstract

Introduction

Triple-Negative Breast Cancer (TNBC) is the most common type of breast cancer (BC). In order to develop effective treatments for TNBC, it is vital to identify potential therapeutic targets. Angiogenesis stimulates tumor growth and metastasis in TNBC, and miR-155 plays a crucial role in this process. The exosome is a nano-sized vesicle that carries many cargoes, including miRNAs. The present study investigated the effect of exosomal delivery of miR-155 antagomir on tumor migration, invasion, and angiogenesis in TNBC.

Materials and methods

From MDA-MB-231 cells, exosomes were extracted, characterized, and loaded with miR-155 antagomir using electroporation. The expression of miR-155 and its target genes, including and was analyzed using RT-qPCR. The wound-healing and transwell assays were used to measure cell migration and invasion. Furthermore, angiogenesis was evaluated by tube formation and chorioallantoic membrane (CAM) assays.

Results

The results indicated that exosomal delivery of miR-155 antagomir to HUVEC cells significantly suppressed miR-155 expression while upregulating and . The tube formation properties of HUVEC cells were also significantly reduced following treatment with exosomes containing miR-155 antagomirs, and these results were confirmed using CAM assay. The migration and invasion of MDA-MB-231 cells were significantly reduced after treatment with miR-155 antagomir-loaded exosomes.

Conclusion

It was found that miR-155 antagomir delivery using exosomes can inhibit migration, invasion, and angiogenesis and in TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673341499241016110341
2024-10-31
2024-11-26
Loading full text...

Full text loading...

References

  1. Giaquinto A.N. Sung H. Miller K.D. Kramer J.L. Newman L.A. Minihan A. Jemal A. Siegel R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  2. Dass S.A. Tan K.L. Selva Rajan R. Mokhtar N.F. Mohd Adzmi E.R. Wan Abdul Rahman W.F. Tengku Din T.A.D.A.A. Balakrishnan V. Triple negative breast cancer: A review of present and future diagnostic modalities. Medicina (Kaunas) 2021 57 1 62 10.3390/medicina57010062 33445543
    [Google Scholar]
  3. Kadamb R. Singh S. Clinical implementation of biomarkers and signaling pathway as novel targeted therapeutics in breast cancer. Treatment Landscape of Targeted Therapies in Oncology 2023 27 56 10.1016/B978‑0‑443‑16034‑9.00003‑4
    [Google Scholar]
  4. Pourteimoor V. Paryan M. Mohammadi-Yeganeh S. MicroRNA as a systemic intervention in the specific breast cancer subtypes with C‐MYC impacts; introducing subtype‐based appraisal tool. J. Cell. Physiol. 2018 233 8 5655 5669 10.1002/jcp.26399 29243807
    [Google Scholar]
  5. Lee J. Current treatment landscape for early triple-negative breast cancer (TNBC). J. Clin. Med. 2023 12 4 1524 10.3390/jcm12041524 36836059
    [Google Scholar]
  6. Eiriz I.F. Vaz Batista M. Cruz Tomás T. Neves M.T. Guerra-Pereira N. Braga S. Breast cancer in very young women—a multicenter 10-year experience. ESMO Open 2021 6 1 100029 10.1016/j.esmoop.2020.100029 33399090
    [Google Scholar]
  7. Cserni G. Quinn C.M. Foschini M.P. Bianchi S. Callagy G. Chmielik E. Decker T. Fend F. Kovács A. van Diest P.J. Ellis I.O. Rakha E. Tot T. European Working Group For Breast Screening Pathology Triple-negative breast cancer histological subtypes with a favourable prognosis. Cancers 2021 13 22 5694 10.3390/cancers13225694 34830849
    [Google Scholar]
  8. Jin J. Gao Y. Zhang J. Wang L. Wang B. Cao J. Shao Z. Wang Z. Incidence, pattern and prognosis of brain metastases in patients with metastatic triple negative breast cancer. BMC Cancer 2018 18 1 446 10.1186/s12885‑018‑4371‑0 29673325
    [Google Scholar]
  9. Wang X.Y. Rosen M.N. Chehade R. Sahgal A. Das S. Warner E. Saskin R. Zhang B. Soliman H. Chan K.K.W. Jerzak K.J. Analysis of rates of brain metastases and association with breast cancer subtypes in Ontario, Canada. JAMA Netw. Open 2022 5 8 e2225424 e2225424 10.1001/jamanetworkopen.2022.25424 35960523
    [Google Scholar]
  10. Diana A. Carlino F. Franzese E. Oikonomidou O. Criscitiello C. De Vita F. Ciardiello F. Orditura M. Early triple negative breast cancer: Conventional treatment and emerging therapeutic landscapes. Cancers 2020 12 4 819 10.3390/cancers12040819 32235297
    [Google Scholar]
  11. Chang-Qing Y. Jie L. Shi-Qi Z. Kun Z. Zi-Qian G. Ran X. Hui-Meng L. Ren-Bin Z. Gang Z. Da-Chuan Y. Chen-Yan Z. Recent treatment progress of triple negative breast cancer. Prog. Biophys. Mol. Biol. 2020 151 40 53 10.1016/j.pbiomolbio.2019.11.007 31761352
    [Google Scholar]
  12. Ratti M. Lampis A. Ghidini M. Salati M. Mirchev M.B. Valeri N. Hahne J.C. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target. Oncol. 2020 15 3 261 278 10.1007/s11523‑020‑00717‑x 32451752
    [Google Scholar]
  13. Mohr A.M. In Seminars in liver disease Thieme Medical Publishers, 2015 35 003 011
    [Google Scholar]
  14. Kurosaki T. Popp M.W. Maquat L.E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 2019 20 7 406 420 10.1038/s41580‑019‑0126‑2 30992545
    [Google Scholar]
  15. Romano G. Veneziano D. Acunzo M. Croce C.M. Small non-coding RNA and cancer. Carcinogenesis 2017 38 5 485 491 10.1093/carcin/bgx026 28449079
    [Google Scholar]
  16. John B. Enright A.J. Aravin A. Tuschl T. Sander C. Marks D.S. Human MicroRNA targets. PLoS Biol. 2004 2 11 e363 10.1371/journal.pbio.0020363 15502875
    [Google Scholar]
  17. Pasquinelli A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 2012 13 4 271 282 10.1038/nrg3162 22411466
    [Google Scholar]
  18. Mulrane L. McGee S.F. Gallagher W.M. O’Connor D.P. miRNA dysregulation in breast cancer. Cancer Res. 2013 73 22 6554 6562 10.1158/0008‑5472.CAN‑13‑1841 24204025
    [Google Scholar]
  19. Uzuner E. Ulu G.T. Gürler S.B. Baran Y. The role of MiRNA in cancer: Pathogenesis, diagnosis, and treatment miRNomics:MicroRNA Biology and Computational Analysis 2022 375 422
    [Google Scholar]
  20. Salinas-Vera Y.M. Marchat L.A. Gallardo-Rincón D. Ruiz-García E. Astudillo-De La Vega H. Echavarría-Zepeda R. López-Camarillo C. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int. J. Mol. Med. 2019 43 2 657 670 30483765
    [Google Scholar]
  21. Lou W. Liu J. Gao Y. Zhong G. Chen D. Shen J. Bao C. Xu L. Pan J. Cheng J. Ding B. Fan W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017 8 70 115787 115802 10.18632/oncotarget.23115 29383201
    [Google Scholar]
  22. Kontomanolis E.N. Fasoulakis Z. Papamanolis V. Koliantzaki S. Dimopoulos G. Kambas N.J. The impact of microRNAs in breast cancer angiogenesis and progression. MicroRNA 2019 8 2 101 109 10.2174/2211536607666181017122921 30332982
    [Google Scholar]
  23. Fridrichova I. Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019 8 11 1361 10.3390/cells8111361 31683635
    [Google Scholar]
  24. Michaille J.J. Awad H. Fortman E.C. Efanov A.A. Tili E. miR‐155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019 58 4 208 218 10.1002/gcc.22698 30382602
    [Google Scholar]
  25. Jankauskas S.S. Gambardella J. Sardu C. Lombardi A. Santulli G. Functional role of miR-155 in the pathogenesis of diabetes mellitus and its complications. Noncoding RNA 2021 7 3 39 10.3390/ncrna7030039 34287359
    [Google Scholar]
  26. Deng T. Zhang H. Yang H. Wang H. Bai M. Sun W. Wang X. Si Y. Ning T. Zhang L. Li H. Ge S. Liu R. Lin D. Li S. Ying G. Ba Y. RETRACTED: exosome miR-155 derived from gastric carcinoma promotes angiogenesis by targeting the c-MYB/VEGF Axis of endothelial cells. Mol. Ther. Nucleic Acids 2020 19 1449 1459 10.1016/j.omtn.2020.01.024 32160713
    [Google Scholar]
  27. Kalkusova K. Taborska P. Stakheev D. Smrz D. The role of miR-155 in antitumor immunity. Cancers 2022 14 21 5414 10.3390/cancers14215414 36358832
    [Google Scholar]
  28. Neophytou C. Boutsikos P. Papageorgis P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front. Oncol. 2018 8 31 10.3389/fonc.2018.00031 29520340
    [Google Scholar]
  29. Deepak K.G.K. Vempati R. Nagaraju G.P. Dasari V.R. S N. Rao D.N. Malla R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 2020 153 104683 10.1016/j.phrs.2020.104683 32050092
    [Google Scholar]
  30. Guo C.H. Hsia S. Chung C.H. Lin Y.C. Shih M.Y. Chen P.C. Peng C.L. Henning S.M. Hsu G.S.W. Li Z. Nutritional supplements in combination with chemotherapy or targeted therapy reduces tumor progression in mice bearing triple-negative breast cancer. J. Nutr. Biochem. 2021 87 108504 10.1016/j.jnutbio.2020.108504 32956826
    [Google Scholar]
  31. Adinew G.M. Taka E. Mochona B. Badisa R.B. Mazzio E.A. Elhag R. Soliman K.F.A. Therapeutic potential of thymoquinone in triple-negative breast cancer prevention and progression through the modulation of the tumor microenvironment. Nutrients 2021 14 1 79 10.3390/nu14010079 35010954
    [Google Scholar]
  32. Jiménez-Morales J.M. Hernández-Cuenca Y.E. Reyes-Abrahantes A. Ruiz-García H. Barajas-Olmos F. García-Ortiz H. Orozco L. Quiñones-Hinojosa A. Reyes-González J. Abrahantes-Pérez M.C. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J. Control. Release 2022 349 712 730 10.1016/j.jconrel.2022.07.027 35905783
    [Google Scholar]
  33. Atri C. Guerfali, F.Z.; Laouini, D. AGO-driven Non-coding RNAs. Elsevier 2019 137 177 10.1016/B978‑0‑12‑815669‑8.00006‑3
    [Google Scholar]
  34. Dasgupta I. Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021 4 1 10 10.3390/mps4010010 33498244
    [Google Scholar]
  35. Fu Y. Chen J. Huang Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA 2019 1 1 24 10.1186/s41544‑019‑0024‑y 34171007
    [Google Scholar]
  36. Esmaeili A. Hosseini S. Baghaban Eslaminejad M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell. Mol. Life Sci. 2021 78 1 79 91 10.1007/s00018‑020‑03585‑w 32601714
    [Google Scholar]
  37. Munir J. Yoon J.K. Ryu S. Therapeutic miRNA-enriched extracellular vesicles: Current approaches and future prospects. Cells 2020 9 10 2271 10.3390/cells9102271 33050562
    [Google Scholar]
  38. Kang T. Atukorala I. Mathivanan S. Biogenesis of extracellular vesicles Subcell Biochem 2021 97 19 93
    [Google Scholar]
  39. Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci. OA 2020 6 4 FSO465 10.2144/fsoa‑2019‑0116 32257377
    [Google Scholar]
  40. Schwarzenbach H. Gahan P.B. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA 2019 5 1 28 10.3390/ncrna5010028 30901915
    [Google Scholar]
  41. Zhang M. Zang X. Wang M. Li Z. Qiao M. Hu H. Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. J. Mater. Chem. B Mater. Biol. Med. 2019 7 15 2421 2433 10.1039/C9TB00170K 32255119
    [Google Scholar]
  42. Narayanan E. Exosomes as drug delivery vehicles for cancer treatment. Curr. Nanosci. 2020 16 1 15 26 10.2174/1573413715666190219112422
    [Google Scholar]
  43. kia V. Paryan M. Mortazavi Y. Biglari A. Mohammadi-Yeganeh S. Evaluation of exosomal miR‐9 and miR‐155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells. J. Cell. Biochem. 2019 120 4 5666 5676 10.1002/jcb.27850 30335891
    [Google Scholar]
  44. Abadi A.J. Zarrabi A. Gholami M.H. Mirzaei S. Hashemi F. Zabolian A. Entezari M. Hushmandi K. Ashrafizadeh M. Khan H. Kumar A.P. Small in size, but large in action: MicroRNAs as potential modulators of PTEN in breast and lung cancers. Biomolecules 2021 11 2 304 10.3390/biom11020304 33670518
    [Google Scholar]
  45. Rider M.A. Hurwitz S.N. Meckes D.G. Jr Extra P.E.G. a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 2016 6 1 23978 10.1038/srep23978 27068479
    [Google Scholar]
  46. kia V. Mortazavi Y. Paryan M. Biglari A. Mohammadi-Yeganeh S. Exosomal miRNAs from highly metastatic cells can induce metastasis in non-metastatic cells. Life Sci. 2019 220 162 168 10.1016/j.lfs.2019.01.057 30721706
    [Google Scholar]
  47. Karimkhanloo H. Mohammadi-Yeganeh S. Ahsani Z. Paryan M. Bioinformatics prediction and experimental validation of microRNA-20a targeting Cyclin D1 in hepatocellular carcinoma. Tumour Biol. 2017 39 4 10.1177/1010428317698361 28378640
    [Google Scholar]
  48. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method methods 2001 25 4 402 408
    [Google Scholar]
  49. Liao H.Y. Zhang W.W. Sun J.Y. Li F.Y. He Z.Y. Wu S.G. The clinicopathological features and survival outcomes of different histological subtypes in triple-negative breast cancer. J. Cancer 2018 9 2 296 303 10.7150/jca.22280 29344276
    [Google Scholar]
  50. Wang Y. Wu S. Zhu X. Zhang L. Deng J. Li F. Guo B. Zhang S. Wu R. Zhang Z. Wang K. Lu J. Zhou Y. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J. Exp. Med. 2020 217 3 e20190950 10.1084/jem.20190950 31816634
    [Google Scholar]
  51. Cao H. Huang S. Liu A. Chen Z. Up-regulated expression of miR-155 in human colonic cancer. J. Cancer Res. Ther. 2018 14 3 604 607 10.4103/0973‑1482.175432 29893326
    [Google Scholar]
  52. Bayraktar R. Van Roosbroeck K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev. 2018 37 1 33 44 10.1007/s10555‑017‑9724‑7 29282605
    [Google Scholar]
  53. Wang Z. Tan W. Li B. Zou J. Li Y. Xiao Y. He Y. Yoshida S. Zhou Y. Exosomal non-coding RNAs in angiogenesis: Functions, mechanisms and potential clinical applications. Heliyon 2023 9 8 e18626 10.1016/j.heliyon.2023.e18626 37560684
    [Google Scholar]
  54. Bouzari B. Mohammadi S. Bokov D.O. Krasnyuk I.I. Hosseini-Fard S.R. Hajibaba M. Mirzaei R. Karampoor S. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed. Pharmacother. 2022 148 112760 10.1016/j.biopha.2022.112760 35228062
    [Google Scholar]
  55. Mondal J. Pillarisetti S. Junnuthula V. Saha M. Hwang S.R. Park I. Lee Y. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J. Control. Release 2023 353 1127 1149 10.1016/j.jconrel.2022.12.027 36528193
    [Google Scholar]
  56. Yanaihara N. Caplen N. Bowman E. Seike M. Kumamoto K. Yi M. Stephens R.M. Okamoto A. Yokota J. Tanaka T. Calin G.A. Liu C.G. Croce C.M. Harris C.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006 9 3 189 198 10.1016/j.ccr.2006.01.025 16530703
    [Google Scholar]
  57. Li H. Xie S. Liu M. Chen Z. Liu X. Wang L. Li D. Zhou Y. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int. J. Oncol. 2014 45 1 197 208 10.3892/ijo.2014.2415 24805774
    [Google Scholar]
  58. Zhuang X. Xiang X. Grizzle W. Sun D. Zhang S. Axtell R.C. Ju S. Mu J. Zhang L. Steinman L. Miller D. Zhang H.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 2011 19 10 1769 1779 10.1038/mt.2011.164 21915101
    [Google Scholar]
  59. Gao P.P. Qi X.W. Sun N. Sun Y.Y. Zhang Y. Tan X.N. Ding J. Han F. Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1876 1 188562 10.1016/j.bbcan.2021.188562 33964330
    [Google Scholar]
  60. Chen C.M. Chu T.H. Chou C.C. Chien C.Y. Wang J.S. Huang C.C. Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis. Oral Oncol. 2021 120 105402 10.1016/j.oraloncology.2021.105402 34174519
    [Google Scholar]
  61. Wang Y. Wang Z. Lu J. Zhang H. Circular RNA circ-PTEN elevates PTEN inhibiting the proliferation of non-small cell lung cancer cells. Hum. Cell 2021 34 4 1174 1184 10.1007/s13577‑021‑00526‑y 33821441
    [Google Scholar]
  62. Shi Y. Li K. Xu K. Liu Q-H. MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways. Eur. Rev. Med. Pharmacol. Sci. 2020 24 3
    [Google Scholar]
  63. Wei Y. Wang G. Wang C. Zhou Y. Zhang J. Xu K. Upregulation of DUSP14 affects proliferation, invasion and metastasis, potentially via epithelial–mesenchymal transition and is associated with poor prognosis in pancreatic cancer. Cancer Manag. Res. 2020 12 2097 2108 10.2147/CMAR.S240040 32256117
    [Google Scholar]
  64. Yang C.Y. Li J.P. Chiu L.L. Lan J.L. Chen D.Y. Chuang H.C. Huang C.Y. Tan T.H. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J. Immunol. 2014 192 4 1547 1557 10.4049/jimmunol.1300989 24403530
    [Google Scholar]
  65. Shojaei S. Moradi-Chaleshtori M. Paryan M. Koochaki A. Sharifi K. Mohammadi-Yeganeh S. Mesenchymal stem cell-derived exosomes enriched with miR-218 reduce the epithelial–mesenchymal transition and angiogenesis in triple-negative breast cancer cells. Eur. J. Med. Res. 2023 28 1 516 10.1186/s40001‑023‑01463‑2 37968694
    [Google Scholar]
  66. Yi L. Chen Y. Jin Q. Deng C. Wu Y. Li H. Liu T. Li Y. Yang Y. Wang J. Lv Q. Zhang L. Xie M. Antagomir‐155 attenuates acute cardiac rejection using ultrasound targeted microbubbles destruction. Adv. Healthc. Mater. 2020 9 14 2000189 10.1002/adhm.202000189 32548962
    [Google Scholar]
  67. Preethi K.A. Lakshmanan G. Sekar D. Future Medicine 2021 13 481 484
    [Google Scholar]
  68. Aksan H. Kundaktepe B.P. Sayili U. Velidedeoglu M. Simsek G. Koksal S. Gelisgen R. Yaylim I. Uzun H. Circulating miR ‐155, let‐7c, miR ‐21, and PTEN levels in differential diagnosis and prognosis of idiopathic granulomatous mastitis and breast cancer. Biofactors 2020 46 6 955 962 10.1002/biof.1676 32941675
    [Google Scholar]
  69. Li S. Shen Y. Wang M. Yang J. Lv M. Li P. Chen Z. Yang J. Loss of PTEN expression in breast cancer: Association with clinicopathological characteristics and prognosis. Oncotarget 2017 8 19 32043 32054 10.18632/oncotarget.16761 28410191
    [Google Scholar]
  70. Huang G-L. Zhang X-H. Guo G-L. Huang K-T. Yang K-Y. Shen X. You J. Hu X-Q. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol. Rep. 2009 21 3 673 679 19212625
    [Google Scholar]
  71. Kechagioglou P. Papi R.M. Provatopoulou X. Kalogera E. Papadimitriou E. Grigoropoulos P. Nonni A. Zografos G. Kyriakidis D.A. Gounaris A. Tumor suppressor PTEN in breast cancer: Heterozygosity, mutations and protein expression. Anticancer Res. 2014 34 3 1387 1400 24596386
    [Google Scholar]
  72. Zuo W-N. Zhu H. Li L-P. Jin A-Y. Wang H-Q. MiR-155 promotes proliferation and inhibits apoptosis of nasopharyngeal carcinoma cells through targeting PTEN-PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2019 23 18 7935 7942 31599418
    [Google Scholar]
  73. Lu W.L. Yu C.T.R. Lien H.M. Sheu G.T. Cherng S.H. Cytotoxicity of naringenin induces Bax‐mediated mitochondrial apoptosis in human lung adenocarcinoma A549 cells. Environ. Toxicol. 2020 35 12 1386 1394 10.1002/tox.23003 32667124
    [Google Scholar]
  74. Fu X. Wen H. Jing L. Yang Y. Wang W. Liang X. Nan K. Yao Y. Tian T. Micro RNA ‐155‐5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI 3K/Akt pathway. Cancer Sci. 2017 108 4 620 631 10.1111/cas.13177 28132399
    [Google Scholar]
  75. Sun J.F. Zhang D. Gao C.J. Zhang Y.W. Dai Q.S. Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN. Med. Sci. Monit. Basic Res. 2019 25 218 228 10.12659/MSMBR.918134 31645540
    [Google Scholar]
  76. Wu D. Wang C. miR-155 regulates the proliferation of glioma cells through PI3K/AKT signaling. Front. Neurol. 2020 11 297 10.3389/fneur.2020.00297 32411077
    [Google Scholar]
  77. Shi Y. Li Z. Li K. Xu K. miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/ TXNIP/NLRP3 pathway. Acta Biochim. Pol. 2022 69 4 787 793 10.18388/abp.2020_6095 36441582
    [Google Scholar]
  78. Matsuura Y. Wada H. Eguchi H. Gotoh K. Kobayashi S. Kinoshita M. Kubo M. Hayashi K. Iwagami Y. Yamada D. Asaoka T. Noda T. Kawamoto K. Takeda Y. Tanemura M. Umeshita K. Doki Y. Mori M. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig. Dis. Sci. 2019 64 3 792 802 10.1007/s10620‑018‑5380‑1 30465177
    [Google Scholar]
  79. Zhou X. Yan T. Huang C. Xu Z. Wang L. Jiang E. Wang H. Chen Y. Liu K. Shao Z. Shang Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J. Exp. Clin. Cancer Res. 2018 37 1 242 10.1186/s13046‑018‑0911‑3 30285793
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673341499241016110341
Loading
/content/journals/cmc/10.2174/0109298673341499241016110341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: PTEN ; invasion ; TNBC ; DUSP14 ; exosome ; Angiogenesis ; miR-155 ; migration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test