Skip to content
2000
Volume 33, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on A aggregation, and A disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.

Methods

Hydroxy groups and aryl benzyl ether groups were introduced into chalcone scaffolds to obtain a series of 2-hydroxyl-4-benzyloxy chalcone derivatives. These derivatives were further synthesized, biologically evaluated, and docked.

Results

Most target derivatives exhibited good anti-AD activities. In particular, compound had excellent inhibitory effects on self-induced A aggregation (90.8% inhibition rate at 25 μM) and Cu2+ induced A aggregation (93.4% inhibition rate at 25 μM). In addition, it also exhibited good A fibril disaggregation ability (64.7% at 25 μM), significant antioxidative activity (ORAC = 2.03 Trolox equivalent), moderate MAO-B inhibition (IC = 4.81 μM), selective metal chelation, appropriate BBB permeation, and dramatic anti-neuroinflammatory ability. In addition, compound relieved AD symptoms and protected hippocampal neurons .

Conclusion

Compound is a promising multifunctional anti-A agent.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673328877241113091539
2025-07-09
2026-02-19
Loading full text...

Full text loading...

References

  1. DeppC. SunT. SasmitaA.O. SpiethL. BerghoffS.A. NazarenkoT. OverhoffK. Steixner-KumarA.A. SubramanianS. ArinradS. RuhwedelT. MöbiusW. GöbbelsS. SaherG. WernerH.B. DamkouA. ZamparS. WirthsO. ThalmannM. SimonsM. SaitoT. SaidoT. Krueger-BurgD. KawaguchiR. WillemM. HaassC. GeschwindD. EhrenreichH. StassartR. NaveK.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease.Nature2023618796434935710.1038/s41586‑023‑06120‑637258678
    [Google Scholar]
  2. LiangW. LiX. WangH. WangS. MengQ. FengR. ZhaiJ. XueM. ZhengC. Exploration of the common gene and potential molecular mechanisms between Herpes simplex virus 1 infection and Alzheimer’s disease.Genes Dis.202310374674910.1016/j.gendis.2022.10.01237396506
    [Google Scholar]
  3. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  4. SrivastavaS. AhmadR. KhareS.K. Alzheimer’s disease and its treatment by different approaches: A review.Eur. J. Med. Chem.202121611332010.1016/j.ejmech.2021.11332033652356
    [Google Scholar]
  5. MartensY.A. ZhaoN. LiuC.C. KanekiyoT. YangA.J. GoateA.M. HoltzmanD.M. BuG. ApoE. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias.Neuron202211081304131710.1016/j.neuron.2022.03.00435298921
    [Google Scholar]
  6. JuckerM. WalkerL.C. Alzheimer’s disease: From immunotherapy to immunoprevention.Cell2023186204260427010.1016/j.cell.2023.08.02137729908
    [Google Scholar]
  7. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑737386015
    [Google Scholar]
  8. GremerL. SchölzelD. SchenkC. ReinartzE. LabahnJ. RavelliR.B.G. TuscheM. Lopez-IglesiasC. HoyerW. HeiseH. WillboldD. SchröderG.F. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy.Science2017358635911611910.1126/science.aao282528882996
    [Google Scholar]
  9. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  10. HuJ. ChenQ. ZhuH. HouL. LiuW. YangQ. ShenH. ChaiG. ZhangB. ChenS. CaiZ. WuC. HongF. LiH. ChenS. XiaoN. WangZ-x. ZhangX. WangB. ZhangL. MoW. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer's disease.Neuron20231111152910.1016/j.neuron.2022.10.021
    [Google Scholar]
  11. SunN. VictorM.B. ParkY.P. XiongX. ScannailA.N. LearyN. ProsperS. ViswanathanS. LunaX. BoixC.A. JamesB.T. TanigawaY. GalaniK. MathysH. JiangX. NgA.P. BennettD.A. TsaiL.-H. KellisM. Human microglial state dynamics in Alzheimer's disease progression.Cell2023186204386440310.1016/j.cell.2023.08.037
    [Google Scholar]
  12. MerliniM. RafalskiV.A. Rios CoronadoP.E. GillT.M. EllismanM. MuthukumarG. SubramanianK.S. RyuJ.K. SymeC.A. DavalosD. SeeleyW.W. MuckeL. NelsonR.B. AkassoglouK. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer's disease model.Neuron.201910161099110810.1016/j.neuron.2019.01.014
    [Google Scholar]
  13. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y33318676
    [Google Scholar]
  14. ChenL.L. FanY.G. ZhaoL.X. ZhangQ. WangZ.Y. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators.Bioorg. Chem.202313110630110.1016/j.bioorg.2022.10630136455485
    [Google Scholar]
  15. AwadH.H. DesoukyM.A. ZidanA. BassemM. QasemA. FaroukM. AlDeabH. FouadM. HanyC. BasemN. NaderR. AlkallenyA. RedaV. GeorgeM.Y. Neuromodulatory effect of vardenafil on aluminium chloride/d-galactose induced Alzheimer’s disease in rats: emphasis on amyloid-beta, p-tau, PI3K/Akt/p53 pathway, endoplasmic reticulum stress, and cellular senescence.Inflammopharmacology20233152653267310.1007/s10787‑023‑01287‑w37460908
    [Google Scholar]
  16. LiX. ChenX. GaoX. Copper and cuproptosis: new therapeutic approaches for Alzheimer’s disease.Front. Aging Neurosci.202315130040510.3389/fnagi.2023.130040538178962
    [Google Scholar]
  17. FengS. TangD. WangY. LiX. BaoH. TangC. DongX. LiX. YangQ. YanY. YinZ. ShangT. ZhengK. HuangX. WeiZ. WangK. QiS. The mechanism of ferroptosis and its related diseases.Mol. Biomed.2023413310.1186/s43556‑023‑00142‑237840106
    [Google Scholar]
  18. AlqahtaniT. DeoreS.L. KideA.A. ShendeB.A. SharmaR. Dadarao ChakoleR. NemadeL.S. Kishor KaleN. BorahS. Shrikant DeokarS. BeheraA. Dhawal BhandariD. GaikwadN. Kalam AzadA. GhoshA. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review.Mitochondrion202371839210.1016/j.mito.2023.05.00737269968
    [Google Scholar]
  19. ZouD. LiuR. LvY. GuoJ. ZhangC. XieY. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.2023381227078110.1080/14756366.2023.227078137955252
    [Google Scholar]
  20. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  21. Wojtunik-KuleszaK. RudkowskaM. Orzeł-SajdłowskaA. Aducanumab—hope or disappointment for Alzheimer’s disease.Int. J. Mol. Sci.2023245436710.3390/ijms2405436736901797
    [Google Scholar]
  22. KumarN. KumarV. AnandP. KumarV. Ranjan DwivediA. KumarV. Advancements in the development of multi-target directed ligands for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20226111674210.1016/j.bmc.2022.11674235398739
    [Google Scholar]
  23. BirsaM.L. SarbuL.G. Hydroxy chalcones and analogs with chemopreventive properties.Int. J. Mol. Sci.202324131066710.3390/ijms24131066737445844
    [Google Scholar]
  24. ZhangX. RakeshK.P. BukhariS.N.A. BalakrishnaM. ManukumarH.M. QinH.L. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice.Bioorg. Chem.201880869310.1016/j.bioorg.2018.06.00929890362
    [Google Scholar]
  25. ThapaP. UpadhyayS.P. SuoW.Z. SinghV. GurungP. LeeE.S. SharmaR. SharmaM. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease.Bioorg. Chem.202110810468110.1016/j.bioorg.2021.10468133571811
    [Google Scholar]
  26. ChenR. LiX. ChenH. WangK. XueT. MiJ. BanY. ZhuG. ZhouY. DongW. TangL. SangZ. Development of the “hidden” multi-target-directed ligands by AChE/BuChE for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202325111525310.1016/j.ejmech.2023.11525336921526
    [Google Scholar]
  27. CaoZ. YangJ. XuR. SongQ. ZhangX. LiuH. QiangX. LiY. TanZ. DengY. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment.Bioorg. Med. Chem.20182651102111510.1016/j.bmc.2018.01.03029409707
    [Google Scholar]
  28. SudevanS.T. RangarajanT.M. Al-SehemiA.G. NairA.S. KoyiparambathV.P. MathewB. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors.Arch. Pharm. (Weinheim)20223558220008410.1002/ardp.20220008435567313
    [Google Scholar]
  29. CaoZ. WangX. ZhangT. FuX. ZhangF. ZhuJ. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson’s disease.J. Enzyme Inhib. Med. Chem.2023381215995710.1080/14756366.2022.215995736728713
    [Google Scholar]
  30. CaoZ. ZhangT. FuX. WangX. XiaQ. ZhongL. ZhuJ. 2-Hydroxy-4-benzyloxylimine resveratrol derivatives as potential multifunctional agents for the treatment of Parkinson’s disease.ChemMedChem2023186e20220062910.1002/cmdc.20220062936622947
    [Google Scholar]
  31. CaoZ. FuX. WangX. ZhangT. ZhongL. XiaQ. ZhuJ. Discovery of novel 2-hydroxyl-4-benzyloxybenzyl aniline derivatives as potential multifunctional agents for the treatment of Parkinson’s disease.Eur. J. Med. Chem.202324911514210.1016/j.ejmech.2023.11514236716641
    [Google Scholar]
  32. BindaC. WangJ. PisaniL. CacciaC. CarottiA. SalvatiP. EdmondsonD.E. MatteviA. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs.J. Med. Chem.200750235848585210.1021/jm070677y17915852
    [Google Scholar]
  33. WangZ.M. LiX.M. XuW. LiF. WangJ. KongL.Y. WangX.B. Acetophenone derivatives: novel and potent small molecule inhibitors of monoamine oxidase B.MedChemComm.20156122146215710.1039/C5MD00357A
    [Google Scholar]
  34. MarquinaS. Maldonado-SantiagoM. Sánchez-CarranzaJ.N. Antúnez-MojicaM. González-MayaL. Razo-HernándezR.S. AlvarezL. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway.Bioorg. Med. Chem.2019271435410.1016/j.bmc.2018.10.04530482548
    [Google Scholar]
  35. DongS. XiaJ. WangF. YangL. XingS. DuJ. ZhangT. LiZ. Discovery of novel deoxyvasicinone derivatives with benzenesulfonamide substituents as multifunctional agents against Alzheimer’s disease.Eur. J. Med. Chem.202426411601310.1016/j.ejmech.2023.11601338052155
    [Google Scholar]
  36. HindoS.S. MancinoA.M. BraymerJ.J. LiuY. VivekanandanS. RamamoorthyA. LimM.H. Small molecule modulators of copper-induced Abeta aggregation.J. Am. Chem. Soc.200913146166631666510.1021/ja907045h19877631
    [Google Scholar]
  37. YuG. ShiY. CongS. WuC. LiuJ. ZhangY. LiuH. LiuX. DengH. TanZ. DengY. Synthesis and evaluation of butylphthalide-scutellarein hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202426511609910.1016/j.ejmech.2023.11609938160618
    [Google Scholar]
  38. DekkerS. NardinT. RomanT. TessadriM. LarcherR. Evidence of the relationship between the oxygen radical absorbance capacity (ORAC) and the potential exposure of white wines to atypical aging (ATA).J. Agric. Food Chem.20247216acs.jafc.3c0912010.1021/acs.jafc.3c0912038605656
    [Google Scholar]
  39. ShawM. PetzerJ.P. CloeteT.T. PetzerA. Synthesis and evaluation of 2-methylbenzothiazole derivatives as monoamine oxidase inhibitors.Med. Chem. Res.202433101829183710.1007/s00044‑024‑03283‑3
    [Google Scholar]
  40. LiW. YangX. SongQ. CaoZ. ShiY. DengY. ZhangL. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease.Bioorg. Chem.20209710370710.1016/j.bioorg.2020.10370732146176
    [Google Scholar]
  41. WalyO.M. SaadK.M. El-SubbaghH.I. BayomiS.M. GhalyM.A. Synthesis, biological evaluation, and molecular modeling simulations of new heterocyclic hybrids as multi-targeted anti-Alzheimer’s agents.Eur. J. Med. Chem.202223111415210.1016/j.ejmech.2022.11415235101650
    [Google Scholar]
  42. XuY. WangH. LiX. DongS. LiuW. GongQ. WangT. TangY. ZhuJ. LiJ. ZhangH. MaoF. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.2018143334710.1016/j.ejmech.2017.08.02529172081
    [Google Scholar]
  43. ZangY. NingJ. LiuK. ShangM. ZangC. LiC. MaJ. ChenX. MaJ. LiG. YangY. BaoX. ZhangD. ZhangD. Design, synthesis and biological evaluation of pyranocarbazole derivatives against Alzheimer’s disease, with antioxidant, neuroprotective and cognition enhancing properties.Bioorg. Chem.202212910617910.1016/j.bioorg.2022.10617936244322
    [Google Scholar]
  44. DiL. KernsE.H. FanK. McConnellO.J. CarterG.T. High throughput artificial membrane permeability assay for blood–brain barrier.Eur. J. Med. Chem.200338322323210.1016/S0223‑5234(03)00012‑612667689
    [Google Scholar]
  45. WenR. LvJ. JiaP. YangW. WangN. WuX. XueZ. LiuY. The protective effects of natural product tunicatachalcone against neuroinflammation via targeting RIPK2 in microglia BV-2 cells stimulated by LPS.Bioorg. Med. Chem.20226911691610.1016/j.bmc.2022.11691635792403
    [Google Scholar]
  46. GuoT. DangW. ZhouY. ZhouD. MengQ. XuL. ChenG. LinB. QingD. SunY. HouY. LiN. Sesquiterpene coumarins isolated from Ferula bungeana and their anti-neuroinflammatory activities.Bioorg. Chem.202212810610210.1016/j.bioorg.2022.10610235998519
    [Google Scholar]
  47. YangQ.B. HeY.L. ZhongX.W. XieW.G. ZhouJ.G. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients.Inflammopharmacology2019271475610.1007/s10787‑018‑00555‑430600470
    [Google Scholar]
  48. LimaV.B. VianaA.R. SantosD. FelipettoN. MezzomoN.F. ZagoA.M. FloresE.M.M. MachadoA.K. KrauseA. PerozaL.R. SchafferL.F. KrauseL.M.F. Ethyl acetate fraction of harpagophytum procumbens prevents oxidative stress in vitro and amphetamine-induced alterations in mice behavior.Neurochem. Res.20234861716172710.1007/s11064‑022‑03846‑z36648708
    [Google Scholar]
  49. FangY. XiaW. ChengB. HuaP. ZhouH. GuQ. XuJ. Design, synthesis, and biological evaluation of compounds with a new scaffold as anti-neuroinflammatory agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201814912913810.1016/j.ejmech.2018.02.06329499485
    [Google Scholar]
  50. FuX. KeM. YuW. WangX. XiaoQ. GuM. LüY. Periodic variation of AAK1 in an Aβ1–42-induced mouse model of Alzheimer’s disease.J. Mol. Neurosci.201865217918910.1007/s12031‑018‑1085‑329774516
    [Google Scholar]
  51. LiQ. ZhaoY. GuoH. LiQ. YanC. LiY. HeS. WangN. WangQ. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment.Autophagy202319102639265610.1080/15548627.2023.221398437204119
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673328877241113091539
Loading
/content/journals/cmc/10.2174/0109298673328877241113091539
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test