Full text loading...
We use cookies to track usage and preferences.I Understand
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on Aβ aggregation, and Aβ disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.
Hydroxy groups and aryl benzyl ether groups were introduced into chalcone scaffolds to obtain a series of 2-hydroxyl-4-benzyloxy chalcone derivatives. These derivatives were further synthesized, biologically evaluated, and docked.
Most target derivatives exhibited good anti-AD activities. In particular, compound 11d had excellent inhibitory effects on self-induced Aβ1-42 aggregation (90.8% inhibition rate at 25 μM) and Cu2+ induced Aβ1-42 aggregation (93.4% inhibition rate at 25 μM). In addition, it also exhibited good Aβ1-42 fibril disaggregation ability (64.7% at 25 μM), significant antioxidative activity (ORAC = 2.03 Trolox equivalent), moderate MAO-B inhibition (IC50 = 4.81 μM), selective metal chelation, appropriate BBB permeation, and dramatic anti-neuroinflammatory ability. In addition, compound 11d relieved AD symptoms and protected hippocampal neurons in vivo.
Compound 11d is a promising multifunctional anti-Aβ agent.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements