Skip to content
2000
Volume 33, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Myocardial infarction (MI) is a common critical syndrome in the late development of cardiovascular diseases (CVDs), and traditional Chinese Medicine (TCM) treatment has become an essential branch in this field.

Objective

This study aimed to use bibliometric methods to examine the research trajectory of TCM treatment of MI from 2007 to 2024 from a multidimensional perspective and analyse its characteristics, hotspots, and frontiers.

Methods

This study used the search formula TS OR TI OR AB OR A (“traditional Chinese medicine” or “Chinese medicine” or “TCM” or “traditional medicine, Chinese” or ” Chinese traditional medicine” or “Chinese medicine, traditional”) AND TS OR TI OR AB OR AK (“myocardial infarction” or “myocardial infarctions” or ” infarction, myocardial” or “infarctions, myocardial” or “myocardial infarct” or “MI”) to find the Web of Science Core Collection (WOSCC) of relevant studies from 01/01/2007 to 04/29/2024. Target literature records were analysed and graphed using CiteSpace, VOSviewer, and Scimago Graphica.

Results

A total of 754 records were obtained and 399 records were finally retained after screening. Countries, institutions, authors, and journals were visually analyzed. The current research hotspots and frontiers included , ischemia-reperfusion injury, pathway, molecular docking, and network pharmacology.

Conclusion

This research study would enrich the researchers' understanding of the existing research methodology and future development trends and provide a more efficient research methodology for the research on the mechanism of action of TCM for the treatment of MI and its clinical trials.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362741250128065027
2025-02-18
2026-02-18
Loading full text...

Full text loading...

References

  1. VargheseT.P. Genetic biomarkers of cardiovascular disease.Curr. Probl. Cardiol.202449710258810.1016/j.cpcardiol.2024.102588
    [Google Scholar]
  2. SagrisM. AntonopoulosA.S. TheofilisP. OikonomouE. SiasosG. TsalamandrisS. AntoniadesC. BrilakisE.S. KaskiJ.C. TousoulisD. Risk factors profile of young and older patients with myocardial infarction.Cardiovasc. Res.2022118102281229210.1093/cvr/cvab26434358302
    [Google Scholar]
  3. LuoC. RuanY. SunP. WangH. YangW. GongY. WangD. The role of transcription factors in coronary artery disease and myocardial infarction.Front. Biosci. Landmark2022271232910.31083/j.fbl271232936624938
    [Google Scholar]
  4. ZhaoX. YangF. WuH. FanZ. WeiG. ZouY. XueJ. LiuM. ChenG. Zhilong Huoxue Tongyu capsule improves myocardial ischemia/reperfusion injury via the PI3K/AKT/Nrf2 axis.PLoS One2024194e030265010.1371/journal.pone.030265038687744
    [Google Scholar]
  5. LiuY. LiL. WangZ. ZhangJ. ZhouZ. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention.Microvasc. Res.202314910456510.1016/j.mvr.2023.10456537307911
    [Google Scholar]
  6. YangY. WuA. DengA.N. LiuH. LanQ. MazharM. XueJ.Y. ChenM.T. LuoG. LiuM.N. Macrophages after myocardial infarction: Mechanisms for repairing and potential as therapeutic approaches.Int. Immunopharmacol.2024143Pt 311356210.1016/j.intimp.2024.11356239536484
    [Google Scholar]
  7. ChanM.Y. EfthymiosM. TanS.H. PickeringJ.W. TroughtonR. PembertonC. HoH.H. PrabathJ.F. DrumC.L. LingL.H. SooW.M. ChaiS.C. FongA. OonY.Y. LohJ.P. LeeC.H. FooR.S.Y. JohnsonA.M.A. PilbrowA. RichardsA.M. Prioritizing candidates of post–myocardial infarction heart failure using plasma proteomics and single-cell transcriptomics.Circulation2020142151408142110.1161/CIRCULATIONAHA.119.04515832885678
    [Google Scholar]
  8. BaiG. YangJ. LiaoW. ZhouX. HeY. LiN. ZhangL. WangY. DongX. ZhangH. PanJ. LaiL. YuanX. WangX. MiR-106a targets ATG7 to inhibit autophagy and angiogenesis after myocardial infarction.Animal Model. Exp. Med.20247440841810.1002/ame2.1241838807299
    [Google Scholar]
  9. TitovaO.E. YuanS. BybergL. BaronJ.A. LindL. MichaëlssonK. LarssonS.C. Plasma proteome and incident myocardial infarction: Sex-specific differences.Eur. Heart J.202445434647465710.1093/eurheartj/ehae65839397782
    [Google Scholar]
  10. WangJ. ZouJ. ShiY. ZengN. GuoD. WangH. ZhaoC. LuanF. ZhangX. SunJ. Traditional chinese medicine and mitophagy: A novel approach for cardiovascular disease management.Phytomedicine202412815547210.1016/j.phymed.2024.15547238461630
    [Google Scholar]
  11. CurfmanG. Traditional chinese medicine for ST-segment elevation myocardial infarction.JAMA202333016154610.1001/jama.2023.1971237874581
    [Google Scholar]
  12. YangY. LiX. ChenG. XianY. ZhangH. WuY. YangY. WuJ. WangC. HeS. WangZ. WangY. WangZ. LiuH. WangX. ZhangM. ZhangJ. LiJ. AnT. GuanH. LiL. ShangM. YaoC. HanY. ZhangB. GaoR. PetersonE.D. YangY. WuJ. WangC. HeS. WangZ. WangY. JingY. LiuL. ZhangX. PeiH. XueY. ZhengG. WangC. ZhaoZ. ZhengY. DuanB. ZhangG. LiuH. WangZ. FanZ. CaoW. ZhangH. QiX. WangX. WuG. GaoF. BieZ. YueL. HongH. QianJ. DaiB. DouW. YueL. ZhanZ. LiuM. GaoX. LianY. ZhengY. ZhangJ. ManR. DongP. WuL. DengJ. GuoY. ZhangM. LiJ. WangZ. DaiP. SiriG. XuQ. LiX. LiK. HanS. WangH. LiX. YangP. ZhangH. LiuY. XinB. ZhangM. CaoZ. ZhangM. MaG. WangL. SongJ. LiW. LiH. ShangZ. FengO. ZhangH. GaoH. BaoR. WangF. ShangL. QinL. WangJ. MaG. CuiJ. WangS. ChengF. ZhangS. LiuX. ChaC. SunM. HanW. LuH. WangH. ZhuH. WangW. WangZ. GuoY. ZhangH. ShaoZ. CuiX. LuC. LvZ. ZhangJ. CuiG. ZhangH. HanY. LiuW. ZhouB. GeH. ZhangL. ChenT. NiuB. MuB. ZhangJ. GuanH. ChunY. ZhangH. LiF. YinS. WangX. ZouX. SongJ. HongL. ZhengM. JiangB. LiuS. ZhuR. LiuW. ZhangJ. WuB. WuZ. FangQ. YuanZ. GaoC. JiangH. LiX. BuP. GaoW. LiuH. XianY. GaoR. ZhangB. HanY. GeJ. PetersonE. ChenS. PuJ. ZhengQ. HuangC. ShenW. WuY. YaoC. YanX. ShangM. FanX. ChengH. ChangW. WangH. LiZ. ZhaiW. ZhuZ. LiH. WangJ. TaoJ. XuB. SunM. WuF. ZouT. ChangY. YinP. ShenJ. ZhangY. HuangY. ChenG. LiX. XuY. YangJ. ZhangH. JinC. WangM. Traditional chinese medicine compound (Tongxinluo) and clinical outcomes of patients with acute myocardial infarction.JAMA2023330161534154510.1001/jama.2023.1952437874574
    [Google Scholar]
  13. meiD.X. huaJ.Z. yuanL.K. junM.Z. caiH.S. Traditional Chinese medicine for myocardial infarction: An overview.Int. J. Clin. Pract.201367121254126010.1111/ijcp.1217224246206
    [Google Scholar]
  14. WangY. XueY. GuoH. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.Front. Pharmacol.202213101374010.3389/fphar.2022.101374036330092
    [Google Scholar]
  15. HaoP. JiangF. ChengJ. MaL. ZhangY. ZhaoY. Traditional chinese medicine for cardiovascular disease: Evidence and potential mechanisms.J. American College Cardiol.201769242952296610.1016/j.jacc.2017.04.041
    [Google Scholar]
  16. LvJ. LiY. ShiS. LiuS. xuX. WuH. ZhangB. SongQ. Frontier and hotspot evolution in cardiorenal syndrome: A bibliometric analysis from 2003 to 2022.Curr. Probl. Cardiol.202348810123810.1016/j.cpcardiol.2022.10123835500729
    [Google Scholar]
  17. KokolP. Meta approaches in knowledge synthesis in nursing: A bibliometric analysis.Nurs. Outlook202169581582510.1016/j.outlook.2021.02.00633814160
    [Google Scholar]
  18. GeY. ChaoT. SunJ. LiuW. ChenY. WangC. Frontiers and hotspots evolution in psycho-cardiology: A bibliometric analysis from 2004 to 2022.Curr. Probl. Cardiol.2022471210136110.1016/j.cpcardiol.2022.10136135995242
    [Google Scholar]
  19. DwyerT. Network visualization as a higher-order visual analysis tool.IEEE Comput. Graph. Appl.2016366788510.1109/MCG.2016.11727893370
    [Google Scholar]
  20. EckV.N.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑320585380
    [Google Scholar]
  21. LuoH. CaiZ. HuangY. SongJ. MaQ. YangX. SongY. Study on pain catastrophizing from 2010 to 2020: A bibliometric analysis via citespace.Front. Psychol.20211275934710.3389/fpsyg.2021.75934734975649
    [Google Scholar]
  22. ChenY.H. YinM.Q. FanL.H. JiangX.C. XuH.F. ZhangT. ZhuX.Y. Bibliometric analysis of traditional Chinese medicine research on heart failure in the 21st century based on the WOS database.Heliyon202391e1277010.1016/j.heliyon.2022.e1277036691539
    [Google Scholar]
  23. LiH. SuredaA. DevkotaH.P. PittalàV. BarrecaD. SilvaA.S. TewariD. XuS. NabaviS.M. Curcumin, the golden spice in treating cardiovascular diseases.Biotechnol. Adv.20203810734310.1016/j.biotechadv.2019.01.01030716389
    [Google Scholar]
  24. BenameurT. GabanF.S.V. GiacomucciG. FilanninoF.M. TrottaT. PolitoR. MessinaG. PorroC. PanaroM.A. The effects of curcumin on inflammasome: Latest update.Molecules202328274210.3390/molecules2802074236677800
    [Google Scholar]
  25. LiS. GuoL.Z. KimM.H. HanJ.Y. SerebruanyV. Platelet microRNA for predicting acute myocardial infarction.J. Thromb. Thrombolysis201744455656410.1007/s11239‑017‑1537‑629030746
    [Google Scholar]
  26. GeC. MengD. PengY. HuangP. WangN. ZhouX. ChangD. The activation of the HIF-1α-VEGFA-Notch1 signaling pathway by Hydroxysafflor yellow A promotes angiogenesis and reduces myocardial ischemia–reperfusion injury.Int. Immunopharmacol.2024142Pt A11309710.1016/j.intimp.2024.11309739260311
    [Google Scholar]
  27. FuY.P. ZouY.F. LeiF.Y. WangensteenH. InngjerdingenK.T. Aconitum carmichaelii Debeaux: A systematic review on traditional use, and the chemical structures and pharmacological properties of polysaccharides and phenolic compounds in the roots.J. Ethnopharmacol.202229111514810.1016/j.jep.2022.11514835240238
    [Google Scholar]
  28. WangY. WangX. WangJ. LiC. ZhaoG. ZhengC. ShiX. WangX. WangK. WuW. ZhangZ. LiuH. ZhouH. LinF. RuanX. ZhaoJ. WangS. LiX. NieS. LiX. HuangJ. SunH. PianL. XingW. LiB. YuR. XingZ. SongY. LuoY. WangD. XieY. ZhangJ. ZhuM. A multicenter, randomized, double-blind, placebo-controlled trial to evaluate the effect of Tongmai Yangxin pill on ventricular remodeling in acute anterior STEMI patients after primary PCI.Phytomedicine202413515613310.1016/j.phymed.2024.15613339489990
    [Google Scholar]
  29. GeS. WuS. YinQ. TanM. WangS. YangY. ChenZ. XuL. ZhangH. MengC. XiaY. AsakawaN. WeiW. GongK. PanX. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway.J. Ethnopharmacol.202433511861210.1016/j.jep.2024.11861239047883
    [Google Scholar]
  30. FuJ. ChangL. HarmsA.C. JiaZ. WangH. WeiC. QiaoL. TianS. HankemeierT. WuY. WangM. A metabolomics study of Qiliqiangxin in a rat model of heart failure: A reverse pharmacology approach.Sci. Rep.201881368810.1038/s41598‑018‑22074‑629487344
    [Google Scholar]
  31. LaiE.J. GrubisicM. PalepuA. QuanH. KingK.M. KhanN.A. Cardiac medication prescribing and adherence after acute myocardial infarction in Chinese and South Asian Canadian patients.BMC Cardiovasc. Disord.20111115610.1186/1471‑2261‑11‑5621923931
    [Google Scholar]
  32. ZhangJ. LiW. XueS. GaoP. WangH. ChenH. HongY. SunQ. LuL. WangY. WangQ. Qishen granule attenuates doxorubicin-induced cardiotoxicity by protecting mitochondrial function and reducing oxidative stress through regulation of Sirtuin3.J. Ethnopharmacol.2024319Pt 111713410.1016/j.jep.2023.11713437714227
    [Google Scholar]
  33. AnN. ZhangG. LiY. YuanC. YangF. ZhangL. GaoY. XingY. Promising antioxidative effect of berberine in cardiovascular diseases.Front. Pharmacol.20221386535310.3389/fphar.2022.86535335321323
    [Google Scholar]
  34. GuoH. LiP. ZhaoJ. XinQ. MiaoY. LiL. LiX. WangS. MoH. ZengL. JuZ. LiuZ. ShenX. CongW. Sheng Mai Yin shows anti-fatigue, anti-hypoxia and cardioprotective potential in an experimental joint model of fatigue and acute myocardial infarction.J. Ethnopharmacol.2024319Pt 311733810.1016/j.jep.2023.11733837890804
    [Google Scholar]
  35. ShiH. ZhouJ. MaC. JiF. WuY. ZhaoY. QianJ. WangX. Shexiang baoxin pill (MUSKARDIA) reduces major adverse cardiovascular events in women with stable coronary artery disease: A subgroup analysis of a phase IV randomized clinical trial.Front. Cardiovasc. Med.20229100240010.3389/fcvm.2022.100240036386372
    [Google Scholar]
  36. WeiJ. LengL. SuiY. SongS. OwusuF.B. LiX. CaoY. LiP. WangH. LiR. YangW. GaoX. WangQ. Phenolic acids from Prunella vulgaris alleviate cardiac remodeling following myocardial infarction partially by suppressing NLRP3 activation.Phytother. Res.202438138439910.1002/ptr.802437992723
    [Google Scholar]
  37. ZhangZ. ChenF. WanJ. LiuX. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction.Chin. Med.20231812810.1186/s13020‑023‑00732‑w36932409
    [Google Scholar]
  38. LiC. ZhangY. WangQ. MengH. ZhangQ. WuY. XiaoW. WangY. TuP. Dragon’s Blood exerts cardio-protection against myocardial injury through PI3K-AKT-mTOR signaling pathway in acute myocardial infarction mice model.J. Ethnopharmacol.201822727928910.1016/j.jep.2018.09.01030195568
    [Google Scholar]
  39. LiaoJ. ZhangY. MaC. WuG. ZhangW. Microbiome-metabolome reveals that the Suxiao Jiuxin pill attenuates acute myocardial infarction associated with fatty acid metabolism.J. Ethnopharmacol.202331211652910.1016/j.jep.2023.11652937086873
    [Google Scholar]
  40. LiC. DuX. LiuY. LiuQ.-Q. ZhiW.B. WangC.L. ZhouJ. LiY. ZhangH. A systems pharmacology approach for identifying the multiple mechanisms of action for the Rougui-Fuzi herb pair in the treatment of cardiocerebral vascular diseases.Evid. Based Compl. Alternat. Med.20202020519630210.1155/2020/5196302
    [Google Scholar]
  41. LiC. WangJ. WangQ. ZhangY. ZhangN. LuL. WuY. ZhangQ. WangW. WangY. TuP. Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism.Sci. Rep.2016613694910.1038/srep3694927833128
    [Google Scholar]
  42. LiZ. XuS. LiuP. Salvia miltiorrhizaBurge (Danshen): A golden herbal medicine in cardiovascular therapeutics.Acta. Pharmacol. Sin.201839580282410.1038/aps.2017.19329698387
    [Google Scholar]
  43. ChengT.O. Cardiovascular effects of Danshen.Int. J. Cardiol.2007121192210.1016/j.ijcard.2007.01.00417363091
    [Google Scholar]
  44. RenJ. FuL. NileS.H. ZhangJ. KaiG. Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications.Front. Pharmacol.20191075310.3389/fphar.2019.0075331338034
    [Google Scholar]
  45. WangS. HuY. TanW. WuX. ChenR. CaoJ. ChenM. WangY. Compatibility art of traditional Chinese medicine: From the perspective of herb pairs.J. Ethnopharmacol.2012143241242310.1016/j.jep.2012.07.03322871585
    [Google Scholar]
  46. LiX. WuL. LiuW. JinY. ChenQ. WangL. FanX. LiZ. ChengY. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action.PLoS One201495e9500410.1371/journal.pone.009500424817581
    [Google Scholar]
  47. LiangX. ChenX. LiangQ. ZhangH. HuP. WangY. LuoG. Metabonomic study of Chinese medicine Shuanglong formula as an effective treatment for myocardial infarction in rats.J. Proteome Res.201110279079910.1021/pr100929921090666
    [Google Scholar]
  48. ChaoJ. DaiY. VerpoorteR. LamW. ChengY.C. PaoL.H. ZhangW. ChenS. Major achievements of evidence-based traditional Chinese medicine in treating major diseases.Biochem. Pharmacol.20171399410410.1016/j.bcp.2017.06.12328636884
    [Google Scholar]
  49. YangR. LiuA. MaX. LiL. SuD. LiuJ. Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation.J. Cardiovasc. Pharmacol.200851439640110.1097/FJC.0b013e318167143918427283
    [Google Scholar]
  50. IbánezB. JamesS. AgewallS. AntunesM.J. DucciB.C. BuenoH. CaforioA.L.P. CreaF. GoudevenosJ.A. HalvorsenS. HindricksG. KastratiA. LenzenM.J. PrescottE. RoffiM. ValgimigliM. VarenhorstC. VranckxP. WidimskýP. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation.Rev. Esp. Cardiol.20177012108210.1016/j.rec.2017.11.01029198432
    [Google Scholar]
  51. LiX. ZhangJ. HuangJ. MaA. YangJ. LiW. WuZ. YaoC. ZhangY. YaoW. ZhangB. GaoR. MulticenterA. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure.J. Am. Coll. Cardiol.201362121065107210.1016/j.jacc.2013.05.03523747768
    [Google Scholar]
  52. OngS.B. ReséndizH.S. AvilanC.G.E. MukhametshinaR.T. KwekX.Y. FuentesC.H.A. HausenloyD.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities.Pharmacol. Ther.2018186738710.1016/j.pharmthera.2018.01.00129330085
    [Google Scholar]
  53. ZhaoD. LiuJ. WangM. ZhangX. ZhouM. Epidemiology of cardiovascular disease in China: Current features and implications.Nat. Rev. Cardiol.201916420321210.1038/s41569‑018‑0119‑430467329
    [Google Scholar]
  54. ChengS. ZhangX. FengQ. ChenJ. ShenL. YuP. YangL. ChenD. ZhangH. SunW. ChenX. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway.Life Sci.2019227829310.1016/j.lfs.2019.04.04031004658
    [Google Scholar]
  55. HanA. LuY. ZhengQ. ZhangJ. ZhaoY. ZhaoM. CuiX. Qiliqiangxin attenuates cardiac remodeling via inhibition of TGF-β1/Smad3 and NF-κB signaling pathways in a rat model of myocardial infarction.Cell. Physiol. Biochem.20184551797180610.1159/00048787129510381
    [Google Scholar]
  56. RothG.A. JohnsonC. AbajobirA. AllahA.F. AberaS.F. AbyuG. AhmedM. AksutB. AlamT. AlamK. AllaF. GuzmanA.N. AmrockS. AnsariH. ÄrnlövJ. AsayeshH. AteyT.M. BurgosA.L. AwasthiA. BanerjeeA. BaracA. BärnighausenT. BarregardL. BediN. KetemaB.E. BennettD. BerheG. BhuttaZ. BitewS. CarapetisJ. CarreroJ.J. MaltaD.C. OrjuelaC.C.A. RivasC.J. LópezC.F. ChoiJ.Y. ChristensenH. CirilloM. CooperL.Jr CriquiM. CundiffD. DamascenoA. DandonaL. DandonaR. DavletovK. DharmaratneS. DorairajP. DubeyM. EhrenkranzR. El Sayed ZakiM. FaraonE.J.A. EsteghamatiA. FaridT. FarvidM. FeiginV. DingE.L. FowkesG. GebrehiwotT. GillumR. GoldA. GonaP. GuptaR. HabtewoldT.D. NejadH.N. HailuT. HailuG.B. HankeyG. HassenH.Y. AbateK.H. HavmoellerR. HayS.I. HorinoM. HotezP.J. JacobsenK. JamesS. JavanbakhtM. JeemonP. JohnD. JonasJ. KalkondeY. KarimkhaniC. KasaeianA. KhaderY. KhanA. KhangY.H. KheraS. KhojaA.T. KhubchandaniJ. KimD. KolteD. KosenS. KrohnK.J. KumarG.A. KwanG.F. LalD.K. LarssonA. LinnS. LopezA. LotufoP.A. RazekE.H.M.A. MalekzadehR. MazidiM. MeierT. MelesK.G. MensahG. MeretojaA. MezgebeH. MillerT. MirrakhimovE. MohammedS. MoranA.E. MusaK.I. NarulaJ. NealB. NgalesoniF. NguyenG. ObermeyerC.M. OwolabiM. PattonG. PedroJ. QatoD. QorbaniM. RahimiK. RaiR.K. RawafS. RibeiroA. SafiriS. SalomonJ.A. SantosI. MilicevicS.M. SartoriusB. SchutteA. SepanlouS. ShaikhM.A. ShinM.J. ShishehborM. ShoreH. SilvaD.A.S. SobngwiE. StrangesS. SwaminathanS. SeisdedosT.R. AtnafuT.N. TesfayF. ThakurJ.S. ThriftA. MadryT.R. TruelsenT. TyrovolasS. UkwajaK.N. UthmanO. VasankariT. VlassovV. VollsetS.E. WakayoT. WatkinsD. WeintraubR. WerdeckerA. WestermanR. WiysongeC.S. WolfeC. WorkichoA. XuG. YanoY. YipP. YonemotoN. YounisM. YuC. VosT. NaghaviM. MurrayC. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015.J. Am. Coll. Cardiol.201770112510.1016/j.jacc.2017.04.05228527533
    [Google Scholar]
  57. JiangB. WuW. LiM. XuL. SunK. YangM. GuanS. LiuX. GuoD. Cardioprotection and matrix metalloproteinase-9 regulation of salvianolic acids on myocardial infarction in rats.Planta Med.200975121286129210.1055/s‑0029‑118566919431100
    [Google Scholar]
  58. JiangP. DaiW. YanS. ChenZ. XuR. DingJ. XiangL. WangS. LiuR. ZhangW. Biomarkers in the early period of acute myocardial infarction in rat serum and protective effects of Shexiang Baoxin Pill using a metabolomic method.J. Ethnopharmacol.2011138253053610.1016/j.jep.2011.09.04922001859
    [Google Scholar]
  59. ZhangX. WangQ. WangX. ChenX. ShaoM. ZhangQ. GuoD. WuY. LiC. WangW. WangY. Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway.Biomed. Pharmacother.201911210859910.1016/j.biopha.2019.10859930798134
    [Google Scholar]
  60. LiH. ZhuJ. XuY. MouF. ShanX. WangQ. LiuB. NingK. LiuJ. WangY. MiJ. WeiX. ShaoS. CuiG. LuR. GuoH. Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction.Redox Biol.20225410238410.1016/j.redox.2022.10238435777198
    [Google Scholar]
  61. WangH. XieB. ShiS. ZhangR. LiangQ. LiuZ. ChengY. Curdione inhibits ferroptosis in isoprenaline-induced myocardial infarction via regulating Keap1/Trx1/GPX4 signaling pathway.Phytother. Res.202337115328534010.1002/ptr.796437500597
    [Google Scholar]
  62. JiaD. ZhangC. QiuY. ChenX. JiaL. ChenA.F. ChaiY. ZhuZ. HuangJ. ZhangC. Cardioprotective mechanisms of salvianic acid A sodium in rats with myocardial infarction based on proteome and transcriptome analysis.Acta. Pharmacol. Sin.201940121513152210.1038/s41401‑019‑0265‑131253938
    [Google Scholar]
  63. BoezioB. AudouzeK. DucrotP. TaboureauO. Network-based approaches in pharmacology.Mol. Inform.20173610170004810.1002/minf.20170004828692140
    [Google Scholar]
  64. YangH.Y. LiuM.L. LuoP. YaoX.S. ZhouH. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine.Phytomedicine202210415426810.1016/j.phymed.2022.15426835777118
    [Google Scholar]
  65. LiangD. YixuanD. ChangL. JingjingS. SihaiZ. JieD. Mechanism of Artemisia annua L. in the treatment of acute myocardial infarction: Network pharmacology, molecular docking and in vivo validation.Mol. Divers.20242853225324210.1007/s11030‑023‑10750‑337898972
    [Google Scholar]
  66. WanJ. ZhangZ. WuC. TianS. ZangY. JinG. SunQ. WangP. LuanX. YangY. ZhanX. YeL.L. DuanD.D. LiuX. ZhangW. Astragaloside IV derivative HHQ16 ameliorates infarction-induced hypertrophy and heart failure through degradation of lncRNA4012/9456.Signal Transduct. Target. Ther.20238141410.1038/s41392‑023‑01660‑937857609
    [Google Scholar]
  67. DuC.S. YangR-F. SongS-W. WangY-P. KangJ-H. ZhangR. SuD-F. XieX. Magnesium lithospermate B protects cardiomyocytes from ischemic injury via inhibition of TAB1-p38 apoptosis signaling.Front. Pharmacol.2010111110.3389/fphar.2010.0011121607062
    [Google Scholar]
  68. TanD. WuJ. ZhangX. LiuS. ZhangB. Sodium tanshinone II a sulfonate injection as adjuvant treatment for unstable angina pectoris: A meta-analysis of 17 randomized controlled trials.Chin. J. Integr. Med.201824215616010.1007/s11655‑017‑2424‑x29181731
    [Google Scholar]
  69. PanJ. WangJ. LeiZ. WangH. ZengN. ZouJ. ZhangX. SunJ. GuoD. LuanF. ShiY. Therapeutic potential of chinese herbal medicine and underlying mechanism for the treatment of myocardial infarction.Phytother. Res.2024ptr836810.1002/ptr.8368
    [Google Scholar]
  70. BoarescuP.M. BoarescuI. BocșanI.C. GhebanD. BulboacăA.E. NiculaC. PopR.M. RâjnoveanuR.M. BolboacăS.D. Antioxidant and anti-inflammatory effects of curcumin nanoparticles on drug-induced acute myocardial infarction in diabetic rats.Antioxidants201981050410.3390/antiox810050431652638
    [Google Scholar]
  71. MuL. DongR. LiC. ChenJ. HuangY. LiT. GuoB. ROS responsive conductive microspheres loaded with salvianolic acid B as adipose derived stem cell carriers for acute myocardial infarction treatment.Biomaterials202531412284910.1016/j.biomaterials.2024.12284939357150
    [Google Scholar]
  72. XiangM. ZhaoX. LuY. ZhangY. DingF. LvL. WangY. ShenZ. LiL. CuiX. Modified linggui zhugan decoction protects against ventricular remodeling through ameliorating mitochondrial damage in post-myocardial infarction rats.Front. Cardiovasc. Med.20239103852310.3389/fcvm.2022.103852336704451
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362741250128065027
Loading
/content/journals/cmc/10.2174/0109298673362741250128065027
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test