Skip to content
2000
Volume 32, Issue 14
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Melanoma is one of the most dangerous and common types of cancer in humans. In order to minimize the toxicity and side effects of melanoma treatment, it is important to identify drug candidates that have strong anti-cancer activity and fewer side effects. Lobaric acid is a small molecule that has been found to have significant anti-cancer effects on various types of cancer cells.

Methods

The study aimed to investigate the effects of lobaric acid on human melanoma cell lines (A-375, MDA-MB-435, G-361, and WM-115) and normal human epidermal melanocyte cells. The study also examined the regulation of cell cycle and apoptosis, as well as the gene expression level of apoptosis-related genes and regulatory proteins to induce apoptosis in melanoma cells.

Results

The study suggests that lobaric acid may have an effect on the proliferation of A-375 melanoma cells, with results indicating a dose- and time-dependent manner. Additionally, the study found that the expression levels of 70 target genes out of 88 apoptosis-related genes in the primary apoptosis library panel were obtained. Out of these, 54 genes showed an increase in expression levels, while 16 genes showed a decrease. Moreover, it has been determined that the levels of apoptosis-related proteins, such as , , , and , were increased. The results suggest that lobaric acid induces apoptosis through the extrinsic pathway by upregulating the expression of Caspases and .

Conclusion

The findings of this study provided a strong basis for the use of lobaric acid as a potential therapeutic agent in the treatment of melanoma.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322435240913095954
2025-01-20
2025-07-07
Loading full text...

Full text loading...

References

  1. MatthewsN.H. LiW-Q. QureshiA.A. WeinstockM.A. ChoE. Epidemiology of Melanoma.Cutaneous Melanoma: Etiology and Therapy WardWH. FarmaJM. Codon Publications201710.15586/codon.cutaneousmelanoma.2017.ch1
    [Google Scholar]
  2. MadanV. LearJ.T. SzeimiesR.M. Non-melanoma skin cancer.Lancet2010375971567368510.1016/S0140‑6736(09)61196‑X20171403
    [Google Scholar]
  3. NaikP.P. Cutaneous malignant melanoma: A review of early diagnosis and management.World J. Oncol.202112171910.14740/wjon134933738001
    [Google Scholar]
  4. LauxA. HammanJ. SvitinaH. WrzesinskiK. GouwsC. In vitro evaluation of the anti-melanoma effects (A375 cell line) of the gel and whole leaf extracts from selected aloe species.J. Herb. Med.20223110053910.1016/j.hermed.2022.100539
    [Google Scholar]
  5. LangJ. MacKieR.M. Prevalence of exon 15 BRAF mutations in primary melanoma of the superficial spreading, nodular, acral, and lentigo maligna subtypes.J. Invest. Dermatol.2005125357557910.1111/j.0022‑202X.2005.23833.x16117801
    [Google Scholar]
  6. GuoW. WangH. YangY. GuoS. ZhangW. LiuY. YiX. MaJ. ZhaoT. LiuL. JianZ. LiuL. WangG. GaoT. ShiQ. LiC. Down-regulated miR-23a contributes to the metastasis of cutaneous melanoma by promoting autophagy.Theranostics2017782231224910.7150/thno.1883528740547
    [Google Scholar]
  7. YeZ. DongH. LiY. MaT. HuangH. LeongH.S. Eckel-PassowJ. KocherJ.P.A. LiangH. WangL. Prevalent homozygous deletions of type I interferon and defensin genes in human cancers associate with immunotherapy resistance.Clin. Cancer Res.201824143299330810.1158/1078‑0432.CCR‑17‑300829618619
    [Google Scholar]
  8. RistićS. RankovićB. KosanićM. StanojkovićT. StamenkovićS. VasiljevićP. ManojlovićI. ManojlovićN. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens.J. Food Sci. Technol.20165362804281610.1007/s13197‑016‑2255‑327478237
    [Google Scholar]
  9. BedardP.L. HymanD.M. DavidsM.S. SiuL.L. Small molecules, big impact: 20 years of targeted therapy in oncology.Lancet2020395102291078108810.1016/S0140‑6736(20)30164‑132222192
    [Google Scholar]
  10. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑429362479
    [Google Scholar]
  11. D’ArcyM.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.1113730958602
    [Google Scholar]
  12. WyllieA.H. “Where, O death, is thy sting?” A brief review of apoptosis biology.Mol. Neurobiol.20104214910.1007/s12035‑010‑8125‑520552413
    [Google Scholar]
  13. AllawadhiP. SinghV. GovindarajK. KhuranaI. SarodeL.P. NavikU. BanothuA.K. WeiskirchenR. BharaniK.K. KhuranaA. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis.Carbohydr. Polym.202228111892310.1016/j.carbpol.2021.11892335074100
    [Google Scholar]
  14. AllawadhiP. KhuranaA. SayedN. GoduguC. VohoraD. Ameliorative effect of cerium oxide nanoparticles against Freund’s complete adjuvant-induced arthritis.Nanomedicine (Lond.)202217638340410.2217/nnm‑2021‑017235124975
    [Google Scholar]
  15. WyllieA.H. BellamyC.O. BubbV.J. ClarkeA.R. CorbetS. CurtisL. HarrisonD.J. HooperM.L. ToftN. WebbS. BirdC.C. Apoptosis and carcinogenesis.Br. J. Cancer199980343710466759
    [Google Scholar]
  16. RehmanM.U. KhanA. ImtiyazZ. AliS. MakeenH.A. RashidS. ArafahA. Current nano-therapeutic approaches ameliorating inflammation in cancer progression.Semin. Cancer Biol.202286Pt 288690810.1016/j.semcancer.2022.02.00635143992
    [Google Scholar]
  17. SinghV. KhuranaA. NavikU. AllawadhiP. BharaniK.K. WeiskirchenR. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics.Sci2022421510.3390/sci4020015
    [Google Scholar]
  18. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  19. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  20. UgurelS. GutzmerR. Melanom.J. Dtsch. Dermatol. Ges.202321434334810.1111/ddg.15053_g36999586
    [Google Scholar]
  21. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  22. SunG. RongD. LiZ. SunG. WuF. LiX. CaoH. ChengY. TangW. SunY. Role of small molecule targeted compounds in cancer: Progress, opportunities, and challenges.Front. Cell Dev. Biol.2021969436310.3389/fcell.2021.69436334568317
    [Google Scholar]
  23. NgoH.X. Garneau-TsodikovaS. What are the drugs of the future?MedChemComm20189575775810.1039/C8MD90019A30108965
    [Google Scholar]
  24. HeinrichM. BarnesJ. Prieto-GarciaJ. GibbonsS. WilliamsonE. Fundamentals of Pharmacognosy and Phytotherapy. 4th ed.: Elsevier, 2023.
  25. RankovićB. KosanićM. Biotechnological substances in lichens.Natural Bioactive CompoundsAcademic Press202024926510.1016/B978‑0‑12‑820655‑3.00012‑4
    [Google Scholar]
  26. SolárováZ. LiskovaA. SamecM. KubatkaP. BüsselbergD. SolárP. Anticancer potential of lichens’ secondary metabolites.Biomolecules20201018710.3390/biom1001008731948092
    [Google Scholar]
  27. HongJ.M. SuhS.S. KimT. KimJ. HanS. YounU. YimJ. KimI.C. Anti-Cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum.Molecules201823365810.3390/molecules2303065829538328
    [Google Scholar]
  28. GonzálezA.G. Rodríguez PérezE.M. Hernández PadrónC.E. BarreraJ.B. Chemical constituents of the lichen Stereocaulon azoreum.Z. Naturforsch. C1992477-850350710.1515/znc‑1992‑7‑802
    [Google Scholar]
  29. Prashith-KekudaT.R. VinayakaK.S. Secondary metabolites from lichen genus (Ramalina ach.): Applications and biological activities.Assessment of Medicinal Plants for Human Health.Apple Academic Press202020322810.1201/9780429328541‑17
    [Google Scholar]
  30. JingM. CaiY. ShiJ. ZhangX. ZhuB. YuanF. ZhangJ. XiaoM. ChenM. Adjuvant treatments of adult melanoma: A systematic review and network meta-analysis.Front. Oncol.20221292624210.3389/fonc.2022.92624235785213
    [Google Scholar]
  31. MoghaddamF.D. MortazaviP. HamediS. NabiuniM. RoodbariN.H. Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression.Anticancer. Agents Med. Chem.202020779079910.2174/187152062066620021109145132072917
    [Google Scholar]
  32. MakvandiP. JosicU. DelfiM. PinelliF. JahedV. KayaE. AshrafizadehM. ZarepourA. RossiF. ZarrabiA. AgarwalT. ZareE.N. GhomiM. Kumar MaitiT. BreschiL. TayF.R. Drug delivery (nano)platforms for oral and dental applications: Tissue regeneration, infection control, and cancer management.Adv. Sci. (Weinh.)202188200401410.1002/advs.20200401433898183
    [Google Scholar]
  33. Dabbagh MoghaddamF. AkbarzadehI. MarzbankiaE. FaridM. khalediL. ReihaniA.H. JavidfarM. MortazaviP. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect.Cancer Nanotechnol.20211211410.1186/s12645‑021‑00085‑9
    [Google Scholar]
  34. YañezO. OsorioM.I. OsorioE. TiznadoW. RuízL. GarcíaC. NaglesO. SimirgiotisM.J. CastañetaG. ArecheC. García-BeltránO. Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical.Chem. Biol. Interact.202337211035710.1016/j.cbi.2023.11035736693444
    [Google Scholar]
  35. HaraldsdóttirS. GuðlaugsdóttirE. IngólfsdóttirK. ÖgmundsdóttirH.M. Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro .Planta Med.200470111098110010.1055/s‑2004‑83265715549672
    [Google Scholar]
  36. BrisdelliF. PerilliM. SellitriD. PiovanoM. GarbarinoJ.A. NicolettiM. BozziA. AmicosanteG. CelenzaG. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: An in vitro study.Phytother. Res.201327343143710.1002/ptr.473922628260
    [Google Scholar]
  37. EmsenB. AslanA. TurkezH. TaghizadehghalehjoughiA. KayaA. The anti-cancer efficacies of diffractaic, lobaric, and usnic acid.J. Cancer Res. Ther.201814594195110.4103/0973‑1482.17721830197329
    [Google Scholar]
  38. YuL. GaoL.X. MaX.Q. HuF.X. LiC.M. LuZ. Involvement of superoxide and nitric oxide in BRAF V600E inhibitor PLX4032-induced growth inhibition of melanoma cells.Integr. Biol.20146121211121710.1039/C4IB00170B25363644
    [Google Scholar]
  39. PengZ. GillissenB. RichterA. SinnbergT. SchlaakM.S. EberleJ. Enhanced apoptosis and loss of cell viability in melanoma cells by combined inhibition of ERK and Mcl-1 is related to loss of mitochondrial membrane potential, caspase activation and upregulation of proapoptotic Bcl-2 proteins.Int. J. Mol. Sci.2023245496110.3390/ijms2405496136902392
    [Google Scholar]
  40. HartmanM.L. Gajos-MichniewiczA. TalajJ.A. Mielczarek-LewandowskaA. CzyzM. BH3 mimetics potentiate pro-apoptotic activity of encorafenib in BRAFV600E melanoma cells.Cancer Lett.202149912213610.1016/j.canlet.2020.11.03633259900
    [Google Scholar]
  41. ChoO. LeeJ.W. KimH.S. JeongY.J. HeoT.H. Chelerythrine, a novel small molecule targeting IL-2, inhibits melanoma progression by blocking the interaction between IL-2 and its receptor.Life Sci.202332012155910.1016/j.lfs.2023.12155936893941
    [Google Scholar]
  42. AlbuquerqueL.F.F. LinsF.V. BispoE.C.I. BorgesE.N. SilvaM.T. GratieriT. Cunha-FilhoM. AlonsoA. CarvalhoJ.L. Saldanha-AraujoF. GelfusoG.M. Ibrutinib topical delivery for melanoma treatment: The effect of nanostructured lipid carriers’ composition on the controlled drug skin deposition.Colloids Surf. B Biointerfaces202423711387510.1016/j.colsurfb.2024.11387538547795
    [Google Scholar]
  43. WangY. ChenS. MaT. LongQ. ChenL. XuK. CaoY. Promotion of apoptosis in melanoma cells by taxifolin through the PI3K/AKT signaling pathway: Screening of natural products using WGCNA and CMAP platforms.Int. Immunopharmacol.202413811251710.1016/j.intimp.2024.11251738924866
    [Google Scholar]
  44. van JaarsveldM.T.M. DengD. Ordoñez-RuedaD. PaulsenM. WiemerE.A.C. ZiZ. Cell-type-specific role of CHK2 in mediating DNA damage-induced G2 cell cycle arrest.Oncogenesis2020933510.1038/s41389‑020‑0219‑y32170104
    [Google Scholar]
  45. AgarwalA. MahfouzR.Z. SharmaR.K. SarkarO. MangrolaD. MathurP.P. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes.Reprod. Biol. Endocrinol.20097114310.1186/1477‑7827‑7‑14319961617
    [Google Scholar]
  46. DuriezP. ShahG.M. Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death.Biochem. Cell Biol.199775433734910.1139/o97‑0439493956
    [Google Scholar]
  47. BressenotA. MarchalS. BezdetnayaL. GarrierJ. GuilleminF. PlénatF. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma.J. Histochem. Cytochem.200957428930010.1369/jhc.2008.95204419029405
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322435240913095954
Loading
/content/journals/cmc/10.2174/0109298673322435240913095954
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): apoptosis; koratinocyte; lobaric acid; Melanoma; neoplastic cancer; small molecule
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test