Skip to content
2000
image of Identification of Key Genes and Pathways in Lenvatinib-resistant Hepatocellular Carcinoma using Bioinformatic Analysis and Experimental Validation

Abstract

Background

Resistance to lenvatinib poses a serious threat to the therapy of patients with Hepatocellular Carcinoma (HCC). The mechanism by which HCC develops resistance to lenvatinib is currently unknown.

Objective

The aim of this study was to identify key genes and pathways involved in lenvatinib resistance in HCC using bioinformatic analysis and experimental validation.

Methods

Differentially expressed genes (DEGs) were identified from the GSE186191 gene expression profile, comparing HCC cell lines with lenvatinib-resistant HCC cell lines. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were then carried out using DAVID. A protein-protein interaction network was constructed to visualize DEGs and identify hub genes. The expression and prognostic significance of these hub genes were further examined. Additionally, genomic enrichment analysis (GSEA) was utilized to investigate the potential functions of key genes. Following this, the presence of AHSG was validated in both the original Huh7 cells and the lenvatinib-resistant Huh7 (Huh7LR) cells resistant to lenvatinib through the utilization of quantitative real-time PCR (qRT-PCR).

Results

A total of 232 DEGs were identified between HCC cell lines and those that are resistant to lenvatinib. These DEGs were significantly associated with arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, dilated cardiomyopathy, and mucin-type O-glycan biosynthesis. Three hub genes, including AHSG, C6, and ORM1, were identified. The low expression of AHSG showed a poorer prognosis in HCC. GSEA demonstrated a significant correlation between low AHSG expression and pathways involving fatty acid metabolism, ribosome function, glycine, serine, and threonine metabolism, peroxisome activity, and bile acid biosynthesis. The expression of AHSG was notably reduced in Huh7LR cells ( = 0.006) compared to Huh7 cells.

Conclusion

Diminished AHSG expression is strongly associated with lenvatinib resistance in HCC, suggesting that it may have implications for developing effective strategies to overcome this resistance.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673329991241111111941
2025-01-20
2025-05-09
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Yang J.D. Hainaut P. Gores G.J. Amadou A. Plymoth A. Roberts L.R. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019 16 10 589 604 10.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  3. Llovet J.M. Montal R. Sia D. Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018 15 10 599 616 10.1038/s41571‑018‑0073‑4 30061739
    [Google Scholar]
  4. Zhou S. Xu H. Wei T. Inhibition of stress proteins TRIB3 and STC2 potentiates sorafenib sensitivity in hepatocellular carcinoma. Heliyon 2023 9 6 e17295 10.1016/j.heliyon.2023.e17295 37389061
    [Google Scholar]
  5. Kudo M. Finn R.S. Qin S. Han K.H. Ikeda K. Piscaglia F. Baron A. Park J.W. Han G. Jassem J. Blanc J.F. Vogel A. Komov D. Evans T.R.J. Lopez C. Dutcus C. Guo M. Saito K. Kraljevic S. Tamai T. Ren M. Cheng A.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018 391 10126 1163 1173 10.1016/S0140‑6736(18)30207‑1 29433850
    [Google Scholar]
  6. Flynn M.J. Sayed A.A. Sharma R. Siddique A. Pinato D.J. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma. Hepatology 2019 69 5 2258 2270 10.1002/hep.30337 30382576
    [Google Scholar]
  7. Rizzo A. Ricci A.D. Brandi G. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update. J. Pers. Med. 2022 12 11 1788 10.3390/jpm12111788 36579504
    [Google Scholar]
  8. Rizzo A. Ricci A.D. Challenges and future trends of hepatocellular carcinoma immunotherapy. Int. J. Mol. Sci. 2022 23 19 11363 10.3390/ijms231911363 36232663
    [Google Scholar]
  9. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  10. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support Care Cancer 2023 31 12 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  11. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: Aa systematic review and meta-analysis. Cancers 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
  12. Bo W. Chen Y. Lenvatinib resistance mechanism and potential ways to conquer. Front. Pharmacol. 2023 14 1153991 10.3389/fphar.2023.1153991 37153782
    [Google Scholar]
  13. Uehara Y. Ikeda S. Kim K.H. Lim H.J. Adashek J.J. Persha H.E. Okamura R. Lee S. Sicklick J.K. Kato S. Kurzrock R. Targeting the FGF/FGFR axis and its co-alteration allies. ESMO Open 2022 7 6 100647 10.1016/j.esmoop.2022.100647 36455506
    [Google Scholar]
  14. Muraishi N. Kawamura Y. Akuta N. Shindoh J. Matsumura M. Okubo S. Fujiyama S. Hosaka T. Saitoh S. Sezaki H. Suzuki F. Suzuki Y. Ikeda K. Arase Y. Hashimoto M. Yasuda I. Kumada H. The impact of lenvatinib on tumor blood vessel shrinkage of hepatocellular carcinoma during treatment: An imaging-based analysis. Oncology 2023 101 2 134 144 10.1159/000526976 36103864
    [Google Scholar]
  15. Chen Z. Ma Y. Guo Z. Song D. Chen Z. Sun M. Ubiquitin-specific protease 1 acts as an oncogene and promotes lenvatinib efficacy in hepatocellular carcinoma by stabilizing c-kit. Ann. Hepatol. 2022 27 2 100669 10.1016/j.aohep.2022.100669 35045360
    [Google Scholar]
  16. Hegde A. Andreev-Drakhlin A.Y. Roszik J. Huang L. Liu S. Hess K. Cabanillas M. Hu M.I. Busaidy N.L. Sherman S.I. Dadu R. Grubbs E.G. Ali S.M. Lee J. Elamin Y.Y. Simon G.R. Blumenschein G.R. Jr Papadimitrakopoulou V.A. Hong D. Meric-Bernstam F. Heymach J. Subbiah V. Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open 2020 5 5 e000799 10.1136/esmoopen‑2020‑000799 33097651
    [Google Scholar]
  17. Motzer R.J. Hutson T.E. Glen H. Michaelson M.D. Molina A. Eisen T. Jassem J. Zolnierek J. Maroto J.P. Mellado B. Melichar B. Tomasek J. Kremer A. Kim H.J. Wood K. Dutcus C. Larkin J. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015 16 15 1473 1482 10.1016/S1470‑2045(15)00290‑9 26482279
    [Google Scholar]
  18. Wirth L.J. Tahara M. Robinson B. Francis S. Brose M.S. Habra M.A. Newbold K. Kiyota N. Dutcus C.E. Mathias E. Guo M. Sherman S.I. Schlumberger M. Treatment-emergent hypertension and efficacy in the phase 3 Study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer 2018 124 11 2365 2372 10.1002/cncr.31344 29656442
    [Google Scholar]
  19. Hu L. Zheng Y. Lin J. Shi X. Wang A. Comparison of the effects of lenvatinib and sorafenib on survival in patients with advanced hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2023 47 1 102061 10.1016/j.clinre.2022.102061 36473632
    [Google Scholar]
  20. Persano M. Casadei-Gardini A. Burgio V. Scartozzi M. Cascinu S. Rimini M. Five years of lenvatinib in hepatocellular carcinoma: are there any predictive and/or prognostic factors? Expert Rev. Anticancer Ther. 2023 23 1 19 27 10.1080/14737140.2023.2156340 36472371
    [Google Scholar]
  21. Su C.W. Teng W. Lin P.T. Jeng W.J. Chen K.A. Hsieh Y.C. Chen W.T. Ho M.M. Hsieh C.H. Wang C.T. Chai P.M. Lin C.C. Lin C.Y. Lin S.M. Similar efficacy and safety between lenvatinib versus atezolizumab plus bevacizumab as the first-line treatment for unresectable hepatocellular carcinoma. Cancer Med. 2023 12 6 7077 7089 10.1002/cam4.5506 36468578
    [Google Scholar]
  22. Wassermann J. Bagnis C.I. Leenhardt L. Ederhy S. Buffet C. Pre-therapeutic evaluation and practical management of cardiovascular and renal toxicities in patients with metastatic radioiodine-refractory thyroid cancer treated with lenvatinib. Expert Opin. Drug Saf. 2022 21 11 1401 1410 10.1080/14740338.2022.2153115 36458701
    [Google Scholar]
  23. Li M. Wang X. Liu J. Mao X. Li D. Wang Z. Tang Y. Wu S. Identification of core prognosis-related candidate genes in chinese gastric cancer population based on integrated bioinformatics. BioMed Res. Int. 2020 2020 1 14 10.1155/2020/8859826 33381592
    [Google Scholar]
  24. Wang Y. Zhang M. Gong Y. Wu Q. Zhang L. Jiao S. Bioinformatic analysis of hepatocellular carcinoma cell lines to the efficacy of nimotuzumab. Int. J. Gen. Med. 2021 14 2611 2621 10.2147/IJGM.S312770 34168487
    [Google Scholar]
  25. Tao Y. Shan L. Xu X. Jiang H. Chen R. Qian Z. Yang Z. Liang B. Zhen H. Cai F. Yu Y. Ma L. Huaier augmented the chemotherapeutic sensitivity of oxaliplatin via downregulation of yap in hepatocellular carcinoma. J. Cancer 2018 9 21 3962 3970 10.7150/jca.25909 30410600
    [Google Scholar]
  26. Wang Y. Zheng B. Xu M. Cai S. Younseo J. Zhang C. Jiang B. Prediction and analysis of hub genes in renal cell carcinoma based on CFS gene selection method combined with adaboost algorithm. Med. Chem. 2020 16 5 654 663 10.2174/1573406415666191004100744 31584378
    [Google Scholar]
  27. Chen Y.C. Li D.B. Wang D.L. Peng H. Comprehensive analysis of distal-less homeobox family gene expression in colon cancer. World J. Gastrointest. Oncol. 2023 15 6 1019 1035 10.4251/wjgo.v15.i6.1019 37389108
    [Google Scholar]
  28. Lyu G. Li D. Xiong H. Xiao L. Tong J. Ning C. Wang P. Li S. Quantitative proteomic analyses identify STO/BBX24 -related proteins induced by UV-B. Int. J. Mol. Sci. 2020 21 7 2496 10.3390/ijms21072496 32260266
    [Google Scholar]
  29. Li D.B. Lyu G.Z. Lyu J.P. Niu H.B. Wang X. Yin J. Cloning and characterization of a wheat RING finger gene TaRHA2b whose expression is up-regulated by ABA treatment. Appl. Ecol. Environ. Res. 2019 7495 7510 10.15666/aeer/1704_74957510
    [Google Scholar]
  30. Yang D. Liu M. Jiang J. Luo Y. Wang Y. Chen H. Li D. Wang D. Yang Z. Chen H. Comprehensive analysis of dmrt3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers 2022 14 24 6220 10.3390/cancers14246220 36551704
    [Google Scholar]
  31. Rui S. Wang D. Huang Y. Xu J. Zhou H. Zhang H. Prognostic value of SLC4A4 and its correlation with the microsatellite instability in colorectal cancer. Front. Oncol. 2023 13 1179120 10.3389/fonc.2023.1179120 37152025
    [Google Scholar]
  32. Li F. Miao J. Liu R. Zhang R. He A. Pan-cancer analysis of DDIT4 identifying its prognostic value and function in acute myeloid leukemia. J. Cancer Res. Clin. Oncol. 2024 150 3 144 10.1007/s00432‑024‑05676‑8 38507057
    [Google Scholar]
  33. Qian B. Liu Q. Wang C. Lu S. Ke S. Yin B. Li X. Yu H. Wu Y. Ma Y. Identification of MIR600HG/hsa-miR-342-3p/ANLN network as a potential prognosis biomarker associated with lmmune infiltrates in pancreatic cancer. Sci. Rep. 2023 13 1 15919 10.1038/s41598‑023‑43174‑y 37741887
    [Google Scholar]
  34. Ding Y. Wang H. Liu J. Jiang H. Gong A. Xu M. MBD3 as a potential biomarker for colon cancer: Implications for epithelial-mesenchymal transition (EMT) pathways. Cancers 2023 15 12 3185 10.3390/cancers15123185 37370795
    [Google Scholar]
  35. Yang Y. Gu X. Li Z. Zheng C. Wang Z. Zhou M. Chen Z. Li M. Li D. Xiang J. Whole-exome sequencing of rectal cancer identifies locally recurrent mutations in the Wnt pathway. Aging 2021 13 19 23262 23283 10.18632/aging.203618 34642262
    [Google Scholar]
  36. Liang W. Lu Y. Pan X. Zeng Y. Zheng W. Li Y. Nie Y. Li D. Wang D. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma. Pharm. Genomics Pers. Med. 2022 15 985 998 10.2147/PGPM.S384901 36482943
    [Google Scholar]
  37. Han Q. Cui Z. Wang Q. Pang F. Li D. Wang D. Upregulation of OTX2-AS1 is associated with immune infiltration and predicts prognosis of gastric cancer. Technol. Cancer Res. Treat. 2023 22 p. 15330338231154091 10.1177/15330338231154091 36740995
    [Google Scholar]
  38. Lin Z. Huang W. Yi Y. Li D. Xie Z. Li Z. Ye M. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma. Int. J. Gen. Med. 2021 14 8541 8555 10.2147/IJGM.S340683 34849000
    [Google Scholar]
  39. Yi W. Shen H. Sun D. Xu Y. Feng Y. Li D. Wang C. Low expression of long noncoding RNA SLC26A4 antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer. Med. Sci. Monit. 2021 27 e934522 34880202
    [Google Scholar]
  40. Chen B. Lu X. Zhou Q. Chen Q. Zhu S. Li G. Liu H. PAXIP1-AS1 is associated with immune infiltration and predicts poor prognosis in ovarian cancer. PLoS One 2023 18 8 e0290031 10.1371/journal.pone.0290031 37582104
    [Google Scholar]
  41. Lee H. Saini N. Parris A. Zhao M. Yang X. Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling. Int. J. Oncol. 2017 51 3 967 974 10.3892/ijo.2017.4073 28713919
    [Google Scholar]
  42. Li Z. Fan Y. Ma Y. Meng N. Li D. Wang D. Lian J. Hu C. Identification of crucial genes and signaling pathways in alectinib-resistant lung adenocarcinoma using bioinformatic analysis. Mol. Biotechnol. 2023 1 1 6 10.1007/s12033‑023‑00973‑y 38142454
    [Google Scholar]
  43. Yan Y.C. Meng G.X. Yang C.C. Yang Y.F. Tan S.Y. Yan L.J. Ding Z.N. Ma Y.L. Dong Z.R. Li T. Diacylglycerol lipase alpha promotes hepatocellular carcinoma progression and induces lenvatinib resistance by enhancing YAP activity. Cell Death Dis. 2023 14 7 404 10.1038/s41419‑023‑05919‑5 37414748
    [Google Scholar]
  44. Huang M. Long J. Yao Z. Zhao Y. Zhao Y. Liao J. Lei K. Xiao H. Dai Z. Peng S. Lin S. Xu L. Kuang M. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res. 2023 83 1 89 102 10.1158/0008‑5472.CAN‑22‑0963 36102722
    [Google Scholar]
  45. Pan J. Zhang M. Dong L. Ji S. Zhang J. Zhang S. Lin Y. Wang X. Ding Z. Qiu S. Gao D. Zhou J. Fan J. Gao Q. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy 2023 19 4 1184 1198 10.1080/15548627.2022.2117893 36037300
    [Google Scholar]
  46. He X. Hikiba Y. Suzuki Y. Nakamori Y. Kanemaru Y. Sugimori M. Sato T. Nozaki A. Chuma M. Maeda S. EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells. Sci. Rep. 2022 12 1 8007 10.1038/s41598‑022‑12076‑w 35568782
    [Google Scholar]
  47. Zhao Z. Zhang D. Wu F. Tu J. Song J. Xu M. Ji J. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression. J. Cell. Mol. Med. 2021 25 1 549 560 10.1111/jcmm.16108 33210432
    [Google Scholar]
  48. Chen L. Hu M. Chen L. Peng Y. Zhang C. Wang X. Li X. Yao Y. Song Q. Li J. Pei H. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar saga continues. Cancer Lett. 2024 588 216742 10.1016/j.canlet.2024.216742 38401884
    [Google Scholar]
  49. Shi F. Wu H. Qu K. Sun Q. Li F. Shi C. Li Y. Xiong X. Qin Q. Yu T. Jin X. Cheng L. Wei Q. Li Y. She J. Identification of serum proteins AHSG, FGA and APOA-I as diagnostic biomarkers for gastric cancer. Clin. Proteomics 2018 15 1 18 10.1186/s12014‑018‑9194‑0 29719494
    [Google Scholar]
  50. Thompson P.D. Sakwe A. Koumangoye R. Yarbrough W.G. Ochieng J. Marshall D.R. Alpha-2 heremans schmid glycoprotein (AHSG) modulates signaling pathways in head and neck squamous cell carcinoma cell line SQ20B. Exp. Cell Res. 2014 321 2 123 132 10.1016/j.yexcr.2013.12.003 24332981
    [Google Scholar]
  51. Li X. Ma C. Alpha-2-heremans-schmid-glycoprotein (AHSG) a potential biomarker associated with prognosis of chromophobe renal cell carcinoma: The propolis study. Health Sci. Rep. 2022 5 6 e878 10.1002/hsr2.878 36262809
    [Google Scholar]
  52. Yi J.K. Chang J.W. Han W. Lee J.W. Ko E. Kim D.H. Bae J.Y. Yu J. Lee C. Yu M.H. Noh D.Y. Autoantibody to tumor antigen, alpha 2-HS glycoprotein: A novel biomarker of breast cancer screening and diagnosis. Cancer Epidemiol. Biomarkers Prev. 2009 18 5 1357 1364 10.1158/1055‑9965.EPI‑08‑0696 19423516
    [Google Scholar]
  53. Dong Y. Ding D. Gu J. Chen M. Li S. Alpha-2 heremans schmid glycoprotein (AHSG) promotes the proliferation of bladder cancer cells by regulating the TGF-β signalling pathway. Bioengineered 2022 13 6 14282 14298 10.1080/21655979.2022.2081465 35746836
    [Google Scholar]
  54. Das S. Chattopadhyay D. Chatterjee S.K. Mondal S.A. Majumdar S.S. Mukhopadhyay S. Saha N. Velayutham R. Bhattacharya S. Mukherjee S. Increase in PPARγ inhibitory phosphorylation by Fetuin: A through the activation of Ras-MEK-ERK pathway causes insulin resistance. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 4 166050 10.1016/j.bbadis.2020.166050 33359696
    [Google Scholar]
  55. Li Y. Yang W. Zheng Y. Dai W. Ji J. Wu L. Cheng Z. Zhang J. Li J. Xu X. Wu J. Yang M. Feng J. Guo C. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J. Exp. Clin. Cancer Res. 2023 42 1 6 10.1186/s13046‑022‑02567‑z 36604718
    [Google Scholar]
  56. Chen M.Y. Hsu C.H. Setiawan S.A. Tzeng D.T.W. Ma H.P. Ong J.R. Chu Y.C. Hsieh M.S. Wu A.T.H. Tzeng Y.M. Yeh C.T. Ovatodiolide and antrocin synergistically inhibit the stemness and metastatic potential of hepatocellular carcinoma via impairing ribosome biogenesis and modulating ERK/Akt-mTOR signaling axis. Phytomedicine 2023 108 154478 10.1016/j.phymed.2022.154478 36265255
    [Google Scholar]
  57. Martínez-López N. García-Rodríguez J.L. Varela-Rey M. Gutiérrez V. Fernández-Ramos D. Beraza N. Aransay A.M. Schlangen K. Lozano J.J. Aspichueta P. Luka Z. Wagner C. Evert M. Calvisi D.F. Lu S.C. Mato J.M. Martínez-Chantar M.L. Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1. Gastroenterology 2012 143 3 787 798.e13 10.1053/j.gastro.2012.05.050 22687285
    [Google Scholar]
  58. Liu T. Yuan Z. Wang H. Wang J. Xue L. Peroxisome-related genes in hepatocellular carcinoma correlated with tumor metabolism and overall survival. Clin. Res. Hepatol. Gastroenterol. 2022 46 10 101835 10.1016/j.clinre.2021.101835 34798303
    [Google Scholar]
  59. Wang C. Yang M. Zhao J. Li X. Xiao X. Zhang Y. Jin X. Liao M. Bile salt (glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma. J. Cell. Physiol. 2019 234 7 10899 10906 10.1002/jcp.27905 30548625
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673329991241111111941
Loading
/content/journals/cmc/10.2174/0109298673329991241111111941
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: lenvatinib ; GSEA ; differential expression gene ; prognosis ; AHSG ; Hepatocellular carcinoma ; resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test