Skip to content
2000
image of Hybrid/Chimera Drugs - Part 1 - Drug Hybrids Affecting Diseases of the Central Nervous System

Abstract

This review, focused on hybrid drugs, is the third in a series of reviews, where the first two reviews dealt with a) dimeric drugs, b) mutual prodrugs – codrugs. The compounds designated as hybrids are comprised of two (and sometimes three) biologically active entities, linked by metabolically stable bridges. In some cases, one of the two components of the hybrids serves as a carrier for the second component, and most frequently, the components elicit their individual biological properties, which are commonly synergistic or complementary. Due to the very large number of publications dealing with hybrid drugs, the present review is restricted to hybrids acting in the central nervous system. Future reviews will cover fields such as antimicrobial, anticancer, and antiviral hybrids, and cardiovascular active hybrids. The selected articles reviewed herein were published between the years 2000-2022 with partial coverage of the year 2023.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673305662240702071354
2024-10-28
2025-01-26
Loading full text...

Full text loading...

References

  1. Nudelman A. Dimeric drugs. Curr. Med. Chem. 2022 29 16 2751 2845 10.2174/0929867328666210810124159 34375175
    [Google Scholar]
  2. Wermuth C.G. Ganellin C.R. Lindberg P. Mitscher L.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem. 1998 70 5 1129 1143 10.1351/pac199870051129
    [Google Scholar]
  3. Nudelman A. Mutual prodrugs or codrugs. Curr. Med. Chem. 2023 30 38 4283 4339 10.2174/0929867330666221209102650 36503392
    [Google Scholar]
  4. Awalt J.K. Nguyen A.T.N. Fyfe T.J. Thai B.S. White P.J. Christopoulos A. Jörg M. May L.T. Scammells P.J. Examining the role of the linker in bitopic N-6-substituted adenosine derivatives acting as biased adenosine A1 receptor agonists. J. Med. Chem. 2022 65 13 9076 9095 10.1021/acs.jmedchem.2c00320 35729775
    [Google Scholar]
  5. Kohlstaedt E. Klingler K.H.U.S. 1962
  6. Pubchem, Fenetylline. Available from: https://pubchem. ncbi.nlm.nih.gov/source/hsdb/8315
  7. Wikipedia, Fenethylline. Available from: wikipedia.org/wiki/Fenethylline (accessed on 27-5-2024)
  8. Jones G.B. Huber R.S. Mathews J.E. Li A. Target directed enediyne prodrugs: Cytotoxic estrogen conjugates. Tetrahedron Lett. 1996 37 21 3643 3646 10.1016/0040‑4039(96)00662‑4
    [Google Scholar]
  9. Bozorov K. Zhao J. Aisa H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019 27 16 3511 3531 10.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  10. Xu Z. Zhao S.J. Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem. 2019 183 111700 10.1016/j.ejmech.2019.111700 31546197
    [Google Scholar]
  11. Kumar S.H.M. Herrmann L. Tsogoeva S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett. 2020 30 23 127514 10.1016/j.bmcl.2020.127514 32860980
    [Google Scholar]
  12. Shaveta M. Mishra S. Singh P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 2016 124 500 536 10.1016/j.ejmech.2016.08.039 27598238
    [Google Scholar]
  13. Acevedo C.H. Scotti L. Alves M.F. Diniz M.F.F.M. Scotti M.T. Hybrid compounds in the search for alternative chemotherapeutic agents against neglected tropical diseases. Lett. Org. Chem. 2019 16 81 92 10.2174/1570178615666180402123057
    [Google Scholar]
  14. Henriquez-Figuereo A. Morán-Serradilla C. Angulo-Elizari E. Sanmartín C. Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur. J. Med. Chem. 2023 246 115002 10.1016/j.ejmech.2022.115002 36493616
    [Google Scholar]
  15. Müller-Schiffmann A. Sticht H. Korth C. Hybrid Compounds. BioDrugs 2012 26 1 21 31 10.2165/11597630‑000000000‑00000 22239618
    [Google Scholar]
  16. Zhao X. Liu Z. Liu H. Guo J. Long S. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review. Eur. J. Med. Chem. 2022 243 114745 10.1016/j.ejmech.2022.114745 36152388
    [Google Scholar]
  17. Zahrani A.L. N.A.; El-Shishtawy, R.M.; Asiri, A.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur. J. Med. Chem. 2020 204 112609 10.1016/j.ejmech.2020.112609 32731188
    [Google Scholar]
  18. Fantacuzzi M. Amoroso R. Carradori S. De Filippis B. Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur. J. Med. Chem. 2022 233 114242 10.1016/j.ejmech.2022.114242 35276424
    [Google Scholar]
  19. Alizadeh S.R. Ebrahimzadeh M.A. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur. J. Med. Chem. 2022 229 114068 10.1016/j.ejmech.2021.114068 34971873
    [Google Scholar]
  20. Singh K. Kumar P. Bhatia R. Mehta V. Kumar B. Akhtar M.J. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur. J. Med. Chem. 2022 234 114269 10.1016/j.ejmech.2022.114269 35306287
    [Google Scholar]
  21. Havrylyuk D. Roman O. Lesyk R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazo-] lidine-based hybrids. Eur. J. Med. Chem. 2016 113 145 166 10.1016/j.ejmech.2016.02.030 26922234
    [Google Scholar]
  22. Duvauchelle V. Meffre P. Benfodda Z. Recent contribution of medicinally active 2-aminothiophenes: A privileged scaffold for drug discovery. Eur. J. Med. Chem. 2022 238 114502 10.1016/j.ejmech.2022.114502 35696863
    [Google Scholar]
  23. Vandekerckhove S. D’hooghe M. Exploration of aziridine- and β-lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry. Bioorg. Med. Chem. 2013 21 13 3643 3647 10.1016/j.bmc.2013.04.033 23684232
    [Google Scholar]
  24. Noureddin S.A. El-Shishtawy R.M. Al-Footy K.O. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur. J. Med. Chem. 2019 182 111631 10.1016/j.ejmech.2019.111631 31479974
    [Google Scholar]
  25. Wang J. Gong F. Liang T. Xie Z. Yang Y. Cao C. Gao J. Lu T. Chen X. A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur. J. Med. Chem. 2021 225 113815 10.1016/j.ejmech.2021.113815 34479038
    [Google Scholar]
  26. Singla P. Salunke D.B. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur. J. Med. Chem. 2020 187 111909 10.1016/j.ejmech.2019.111909 31830636
    [Google Scholar]
  27. Brandão P. Marques C. Burke A.J. Pineiro M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur. J. Med. Chem. 2021 211 113102 10.1016/j.ejmech.2020.113102 33421712
    [Google Scholar]
  28. Kaminskyy D. Kryshchyshyn A. Lesyk R. 5-Ene-4-thiazolidinones – an efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017 140 542 594 10.1016/j.ejmech.2017.09.031 28987611
    [Google Scholar]
  29. Gaba S. Saini A. Singh G. Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg. Med. Chem. 2021 38 116143 10.1016/j.bmc.2021.116143 33848698
    [Google Scholar]
  30. Apaydın S. Török M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett. 2019 29 16 2042 2050 10.1016/j.bmcl.2019.06.041 31272793
    [Google Scholar]
  31. Venepally V. Reddy Jala R.C. An insight into the biological activities of heterocyclic–fatty acid hybrid molecules. Eur. J. Med. Chem. 2017 141 113 137 10.1016/j.ejmech.2017.09.069 29031060
    [Google Scholar]
  32. Choudhary S. Singh P.K. Verma H. Singh H. Silakari O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem. 2018 151 62 97 10.1016/j.ejmech.2018.03.057 29605809
    [Google Scholar]
  33. Auti P.S. George G. Paul A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Advances 2020 10 68 41353 41392 10.1039/D0RA06642G 35516563
    [Google Scholar]
  34. Gong Q. Hu J. Wang P. Li X. Zhang X. A comprehensive review on β-lapachone: Mechanisms, structural modifications, and therapeutic potentials. Eur. J. Med. Chem. 2021 210 112962 10.1016/j.ejmech.2020.112962 33158575
    [Google Scholar]
  35. Zhang X. He X. Chen Q. Lu J. Rapposelli S. Pi R. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorg. Med. Chem. 2018 26 3 543 550 10.1016/j.bmc.2017.12.042 29310862
    [Google Scholar]
  36. Blaikie L. Kay G. Lin K. T.P. Current and emerging therapeutic targets of Alzheimer’s disease for the design of multi-target directed ligands. MedChemComm 2019 10 12 2052 2072 10.1039/C9MD00337A 32206241
    [Google Scholar]
  37. Mishra P. Kumar A. Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg. Med. Chem. 2019 27 6 895 930 10.1016/j.bmc.2019.01.025 30744931
    [Google Scholar]
  38. Savelieff M.G. Nam G. Kang J. Lee H.J. Lee M. Lim M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 2019 119 2 1221 1322 10.1021/acs.chemrev.8b00138 30095897
    [Google Scholar]
  39. Wang L. Kumar R. Pavlov P.F. Winblad B. Small molecule therapeutics for tauopathy in Alzheimer’s disease: Walking on the path of most resistance. Eur. J. Med. Chem. 2021 209 112915 10.1016/j.ejmech.2020.112915 33139110
    [Google Scholar]
  40. Singh Y.P. Rai H. Singh G. Singh G.K. Mishra S. Kumar S. Srikrishna S. Modi G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. Eur. J. Med. Chem. 2021 215 113278 10.1016/j.ejmech.2021.113278 33662757
    [Google Scholar]
  41. Haghighijoo Z. Zamani L. Moosavi F. Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer’s disease: A comprehensive review. Eur. J. Med. Chem. 2022 227 113949 10.1016/j.ejmech.2021.113949 34742016
    [Google Scholar]
  42. Malafaia D. Albuquerque H.M.T. Silva A.M.S. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur. J. Med. Chem. 2021 214 113209 10.1016/j.ejmech.2021.113209 33548635
    [Google Scholar]
  43. Ferreira J.P.S. Albuquerque H.M.T. Cardoso S.M. Silva A.M.S. Silva V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem. 2021 221 113492 10.1016/j.ejmech.2021.113492 33984802
    [Google Scholar]
  44. Zhang H. Peng Y. Zhuo L. Wang Y. Zeng G. Wang S. Long L. Li X. Wang Z. Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur. J. Med. Chem. 2022 242 114695 10.1016/j.ejmech.2022.114695 36044812
    [Google Scholar]
  45. Sang Z. Wang K. Dong J. Tang L. Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress. Eur. J. Med. Chem. 2022 238 114464 10.1016/j.ejmech.2022.114464 35635955
    [Google Scholar]
  46. Molęda Z. Zawadzka A. Czarnocki Z. Monjas L. Hirsch A.K.H. Budzianowski A. Maurin J.K. “Clicking” fragment leads to novel dual-binding cholinesterase inhibitors. Bioorg. Med. Chem. 2021 42 116269 10.1016/j.bmc.2021.116269 34130217
    [Google Scholar]
  47. Le-Nhat-Thuy G. Nguyen Thi N. Pham-The H. Dang Thi T.A. Nguyen Thi H. Nguyen Thi T.H. Nguyen Hoang S. Nguyen T.V. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2020 30 18 127404 10.1016/j.bmcl.2020.127404 32717612
    [Google Scholar]
  48. Khan I. Ibrar A. Zaib S. Ahmad S. Furtmann N. Hameed S. Simpson J. Bajorath J. Iqbal J. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorg. Med. Chem. 2014 22 21 6163 6173 10.1016/j.bmc.2014.08.026 25257911
    [Google Scholar]
  49. Sivakumar S. Ranjith Kumar R. Ali M.A. Choon T.S. An atom economic synthesis and AChE inhibitory activity of novel dispiro 7-aryltetrahydro-1H-pyrrolo[1,2-c][1,3] thiazole and 4-aryloctahydroindolizine N-methylpiperidin-4-one hybrid heterocycles. Eur. J. Med. Chem. 2013 65 240 248 10.1016/j.ejmech.2013.04.050 23721952
    [Google Scholar]
  50. Fang L. Chen M. Liu Z. Fang X. Gou S. Chen L. Ferulic acid–carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorg. Med. Chem. 2016 24 4 886 893 10.1016/j.bmc.2016.01.010 26795115
    [Google Scholar]
  51. Ghobadian R. Mahdavi M. Nadri H. Moradi A. Edraki N. Akbarzadeh T. Sharifzadeh M. Bukhari S.N.A. Amini M. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities. Eur. J. Med. Chem. 2018 155 49 60 10.1016/j.ejmech.2018.05.031 29857276
    [Google Scholar]
  52. Almansour A.I. Arumugam N. Kumar R.S. Kotresha D. Manohar T.S. Venketesh S. Design, synthesis and cholinesterase inhibitory activity of novel spiropyrrolidine tethered imidazole heterocyclic hybrids. Bioorg. Med. Chem. Lett. 2020 30 2 126789 10.1016/j.bmcl.2019.126789 31753696
    [Google Scholar]
  53. Aslam S. Zaib S. Ahmad M. Gardiner J.M. Ahmad A. Hameed A. Furtmann N. Gütschow M. Bajorath J. Iqbal J. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors. Eur. J. Med. Chem. 2014 78 106 117 10.1016/j.ejmech.2014.03.035 24681070
    [Google Scholar]
  54. Abdellatif K.R.A. Moawad A. Knaus E.E. Synthesis of new 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles: A search for novel nitric oxide donor anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2014 24 21 5015 5021 10.1016/j.bmcl.2014.09.024 25304893
    [Google Scholar]
  55. Gujral S.S. Shakeri A. Hejazi L. Rao P.P.N. Design, synthesis and structure-activity relationship studies of 3-phenylpyrazino[1,2-a]indol-1(2H)-ones as amyloid aggregation and cholinesterase inhibitors with antioxidant activity. European Journal of Medicinal Chemistry Reports 2022 6 100075 10.1016/j.ejmcr.2022.100075
    [Google Scholar]
  56. Wichur T. Pasieka A. Godyń J. Panek D. Góral I. Latacz G. Honkisz-Orzechowska E. Bucki A. Siwek A. Głuch-Lutwin M. Knez D. Brazzolotto X. Gobec S. Kołaczkowski M. Sabate R. Malawska B. Więckowska A. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur. J. Med. Chem. 2021 225 113783 10.1016/j.ejmech.2021.113783 34461507
    [Google Scholar]
  57. Brandão P. López Ó. Leitzbach L. Stark H. Fernández-Bolaños J.G. Burke A.J. Pineiro M. Ugi reaction synthesis of oxindole-lactam hybrids as selective butyrylcholinesterase inhibitors. ACS Med. Chem. Lett. 2021 12 11 1718 1725 10.1021/acsmedchemlett.1c00344 34795859
    [Google Scholar]
  58. Reiland K.M. Eckroat T.J. Selective butyrylcholinesterase inhibition by isatin dimers and 3-indolyl-3-hydroxy-2-oxindole dimers. Bioorg. Med. Chem. Lett. 2022 77 129037 10.1016/j.bmcl.2022.129037 36307033
    [Google Scholar]
  59. kia, Y.; Osman, H.; Kumar, R.S.; Basiri, A.; Murugaiyah, V. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies. Bioorg. Med. Chem. 2014 22 4 1318 1328 10.1016/j.bmc.2014.01.002 24461561
    [Google Scholar]
  60. Kia Y. Osman H. Kumar R.S. Murugaiyah V. Basiri A. Perumal S. Razak I.A. Synthesis of new 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles: A search for novel nitric oxide donor anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2013 23 2979 2983 10.1016/j.bmcl.2013.03.027 23570788
    [Google Scholar]
  61. Buemi M.R. De Luca L. Chimirri A. Ferro S. Gitto R. Alvarez-Builla J. Alajarin R. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorg. Med. Chem. 2013 21 15 4575 4580 10.1016/j.bmc.2013.05.044 23777828
    [Google Scholar]
  62. Ahmeda H.H. Elmegeed G.A. Hashashb M.A. Abd-Elhalima M.M. El-kady D.S. Highlights on mechanisms of newly synthesized compounds targeting multiple systems provide a novel perspective on Alzheimer’s disease treatment. J. Chem. Pharm. Res. 2015 7 297 318
    [Google Scholar]
  63. Rosini M. Simoni E. Bartolini M. Cavalli A. Ceccarini L. Pascu N. McClymont D.W. Tarozzi A. Bolognesi M.L. Minarini A. Tumiatti V. Andrisano V. Mellor I.R. Melchiorre C. Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J. Med. Chem. 2008 51 15 4381 4384 10.1021/jm800577j 18605718
    [Google Scholar]
  64. Reggiani A.M. Simoni E. Caporaso R. Meunier J. Keller E. Maurice T. Minarini A. Rosini M. Cavalli A. In vivo characterization of ARN14140, a memantine/galantamine-based multi-target compound for Alzheimer’s disease. Sci. Rep. 2016 6 1 33172 10.1038/srep33172 27609215
    [Google Scholar]
  65. Cao Z. Yang J. Xu R. Song Q. Zhang X. Liu H. Qiang X. Li Y. Tan Z. Deng Y. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2018 26 5 1102 1115 10.1016/j.bmc.2018.01.030 29409707
    [Google Scholar]
  66. Yang Z. Song Q. Cao Z. Yu G. Liu Z. Tan Z. Deng Y. Design, synthesis and evaluation of flurbiprofen-clioquinol hybrids as multitarget-directed ligands against Alzheimer’s disease. Bioorg. Med. Chem. 2020 28 7 115374 10.1016/j.bmc.2020.115374 32089390
    [Google Scholar]
  67. Prati F. Bartolini M. Simoni E. De Simone A. Pinto A. Andrisano V. Bolognesi M.L. Quinones bearing non-steroidal anti-inflammatory fragments as multitarget ligands for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2013 23 23 6254 6258 10.1016/j.bmcl.2013.09.091 24140444
    [Google Scholar]
  68. Teixeira D.R.T. 2017
  69. Bhawna; Kumar, A.; Bhatia, M.; Kapoor, A.; Kumar, P.; Kumar, S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 2022 242 114655 10.1016/j.ejmech.2022.114655 36037788
    [Google Scholar]
  70. Piemontese L. Tomás D. Hiremathad A. Capriati V. Candeias E. Cardoso S.M. Chaves S. Santos M.A. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J. Enzyme Inhib. Med. Chem. 2018 33 1 1212 1224 10.1080/14756366.2018.1491564 30160188
    [Google Scholar]
  71. Du H. Liu X. Xie J. Ma F. Novel deoxyvasicinone-donepezil hybrids as potential multitarget drug candidates for Alzheimer’s disease. ACS Chem. Neurosci. 2019 10 5 2397 2407 10.1021/acschemneuro.8b00699 30720268
    [Google Scholar]
  72. Bowroju S.K. Penthala N.R. Lakkaniga N.R. Balasubramaniam M. Ayyadevara S. Shmookler Reis R.J. Crooks P.A. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer’s disease. Bioorg. Med. Chem. 2021 45 116311 10.1016/j.bmc.2021.116311 34304133
    [Google Scholar]
  73. Nerella A. Jeripothula M. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2021 49 128212 10.1016/j.bmcl.2021.128212 34153471
    [Google Scholar]
  74. Rizzo S. Bartolini M. Ceccarini L. Piazzi L. Gobbi S. Cavalli A. Recanatini M. Andrisano V. Rampa A. Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg. Med. Chem. 2010 18 5 1749 1760 10.1016/j.bmc.2010.01.071 20171894
    [Google Scholar]
  75. Valencia E.M. Herrera-Arozamena C. de Andrés L. Pérez C. Morales-García J.A. Pérez-Castillo A. Ramos E. Romero A. Viña D. Yáñez M. Laurini E. Pricl S. Rodríguez-Franco M.I. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer’s disease. Eur. J. Med. Chem. 2018 156 534 553 10.1016/j.ejmech.2018.07.026
    [Google Scholar]
  76. Dias K.S.T. de Paula C.T. dos Santos T. Souza I.N.O. Boni M.S. Guimarães M.J.R. da Silva F.M.R. Castro N.G. Neves G.A. Veloso C.C. Coelho M.M. de Melo I.S.F. Giusti F.C.V. Giusti-Paiva A. da Silva M.L. Dardenne L.E. Guedes I.A. Pruccoli L. Morroni F. Tarozzi A. Viegas C. Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2017 130 440 457 10.1016/j.ejmech.2017.02.043
    [Google Scholar]
  77. Sang Z. Wang K. Wang H. Wang H. Ma Q. Han X. Ye M. Yu L. Liu W. Design, synthesis and biological evaluation of 2-acetyl-5-O-(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2017 27 22 5046 5052 10.1016/j.bmcl.2017.09.057 29033233
    [Google Scholar]
  78. Pan W. Hu K. Bai P. Yu L. Ma Q. Li T. Zhang X. Chen C. Peng K. Liu W. Sang Z. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2016 26 10 2539 2543 10.1016/j.bmcl.2016.03.086 27072909
    [Google Scholar]
  79. Brunetti L. Leuci R. Carrieri A. Catto M. Occhineri S. Vinci G. Gambacorta L. Baltrukevich H. Chaves S. Laghezza A. Altomare C.D. Tortorella P.M. Amélia S. Fulvio L. Luca P. Structure-based design of novel donepezil-like hybrids for a multitarget approach to the therapy of Alzheimer’s disease. Eur. J. Med. Chem. 2022 237 114358 10.1016/j.ejmech.2022.114358 35462163
    [Google Scholar]
  80. Camps P. Formosa X. Galdeano C. Gómez T. Muñoz-Torrero D. Scarpellini M. Viayna E. Badia A. Clos M.V. Camins A. Pallàs M. Bartolini M. Mancini F. Andrisano V. Estelrich J. Lizondo M. Bidon-Chanal A. Luque F.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J. Med. Chem. 2008 51 12 3588 3598 10.1021/jm8001313 18517184
    [Google Scholar]
  81. Sang Z. Bai P. Ban Y. Wang K. Wu A. Mi J. Hu J. Xu R. Zhu G. Wang J. Zhang J. Wang C. Tan Z. Tang L. Novel donepezil-chalcone-rivastigmine hybrids as potential multifunctional anti-Alzheimer’s agents: Design, synthesis, in vitro biological evaluation, in vivo and in silico studies. Bioorg. Chem. 2022 127 106007 10.1016/j.bioorg.2022.106007 35849893
    [Google Scholar]
  82. Fang L. Shen S. Liu Q. Liu Z. Zhao J. Combination of NSAIDs with donepezil as multi-target directed ligands for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2022 75 128976 10.1016/j.bmcl.2022.128976 36067929
    [Google Scholar]
  83. Alonso D. Dorronsoro I. Rubio L. Muñoz P. García-Palomero E. Del Monte M. Bidon-Chanal A. Orozco M. Luque F.J. Castro A. Medina M. Martínez A. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem. 2005 13 24 6588 6597 10.1016/j.bmc.2005.09.029 16230018
    [Google Scholar]
  84. Wang J. Wang Z.M. Li X.M. Li F. Wu J.J. Kong L.Y. Wang X.B. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorg. Med. Chem. 2016 24 18 4324 4338 10.1016/j.bmc.2016.07.025 27460699
    [Google Scholar]
  85. Gabr M.T. Abdel-Raziq M.S. Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg. Med. Chem. Lett. 2018 28 17 2910 2913 10.1016/j.bmcl.2018.07.019 30017317
    [Google Scholar]
  86. Matos M.J. Viña D. Quezada E. Picciau C. Delogu G. Orallo F. Santana L. Uriarte E. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett. 2009 19 12 3268 3270 10.1016/j.bmcl.2009.04.085 19423346
    [Google Scholar]
  87. Matos M.J. Viña D. Janeiro P. Borges F. Santana L. Uriarte E. New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett. 2010 20 17 5157 5160 10.1016/j.bmcl.2010.07.013 20659799
    [Google Scholar]
  88. Matos M.J. Viña D. Picciau C. Orallo F. Santana L. Uriarte E. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett. 2009 19 17 5053 5055 10.1016/j.bmcl.2009.07.039 19628387
    [Google Scholar]
  89. Xie S.S. Liu J. Tang C. Pang C. Li Q. Qin Y. Nong X. Zhang Z. Guo J. Cheng M. Tang W. Liang N. Jiang N. Design, synthesis and biological evaluation of rasagiline-clorgyline hybrids as novel dual inhibitors of monoamine oxidase-β and amyloid-β aggregation against Alzheimer’s disease. Eur. J. Med. Chem. 2020 202 112475 10.1016/j.ejmech.2020.112475 32652406
    [Google Scholar]
  90. Jiang X. Guo J. Lv Y. Yao C. Zhang C. Mi Z. Shi Y. Gu J. Zhou T. Bai R. Xie Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg. Med. Chem. 2020 28 12 115550 10.1016/j.bmc.2020.115550 32503694
    [Google Scholar]
  91. Yang H.L. Cai P. Liu Q.H. Yang X.L. Li F. Wang J. Wu J.J. Wang X.B. Kong L.Y. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid- β aggregation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2017 138 715 728 10.1016/j.ejmech.2017.07.008 28728104
    [Google Scholar]
  92. Xie S.S. Lan J.S. Wang X. Wang Z.M. Jiang N. Li F. Wu J.J. Wang J. Kong L.Y. Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2016 24 7 1528 1539 10.1016/j.bmc.2016.02.023 26917219
    [Google Scholar]
  93. Huang M. Xie S.S. Jiang N. Lan J.S. Kong L.Y. Wang X.B. Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015 25 3 508 513 10.1016/j.bmcl.2014.12.034 25542589
    [Google Scholar]
  94. Zhang C. Yang K. Yu S. Su J. Yuan S. Han J. Chen Y. Gu J. Zhou T. Bai R. Xie Y. Synthesis and evaluation of hydroxypyridinonecoumarin hybrids as multimodal monoamine oxidase B inhibitors and iron chelates against Alzheimer’s disease. Eur. J. Med. Chem. 2019 180 367 382 10.1016/j.ejmech.2019.07.031 31325784
    [Google Scholar]
  95. Girek M. Szymański P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. Chem. Pap. 2019 73 2 269 289 10.1007/s11696‑018‑0590‑8
    [Google Scholar]
  96. Girek M. Szymański P. Phyto-tacrine hybrids as promising drugs to treat Alzheimer’s disease. ChemistrySelect 2019 4 19 5776 5790 10.1002/slct.201803672
    [Google Scholar]
  97. Romero A. Cacabelos R. Oset-Gasque M.J. Samadi A. Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2013 23 7 1916 1922 10.1016/j.bmcl.2013.02.017 23481643
    [Google Scholar]
  98. Spilovska K. Korabecny J. Nepovimova E. Dolezal R. Mezeiova E. Soukup O. Kuca K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr. Top. Med. Chem. 2017 17 9 1006 1026 10.2174/1568026605666160927152728 27697055
    [Google Scholar]
  99. Sameem B. Saeedi M. Mahdavi M. Shafiee A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem. 2017 128 332 345 10.1016/j.ejmech.2016.10.060 27876467
    [Google Scholar]
  100. Oset-Gasque M.J. Marco-Contelles J.L. Tacrine-natural-product hybrids for Alzheimer’s disease therapy. Curr. Med. Chem. 2020 27 26 4392 4400 10.2174/0929867325666180403151725 29611473
    [Google Scholar]
  101. Hamulakova S. Kudlickova Z. Janovec L. Mezencev R. Deckner Z.J. Chernoff Y.O. Janockova J. Ihnatova V. Bzonek P. Novakova N. Hepnarova V. Hrabinova M. Jun D. Korabecny J. Soukup O. Kuca K. Design and synthesis of novel tacrine-indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease. Future Med. Chem. 2021 13 9 785 804 10.4155/fmc‑2020‑0184 33829876
    [Google Scholar]
  102. Bornstein J.J. Eckroat T.J. Houghton J.L. Jones C.K. Green K.D. Garneau-Tsodikova S. Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase. MedChemComm 2011 2 5 406 412 10.1039/c0md00256a
    [Google Scholar]
  103. Chen Y. Sun J. Huang Z. Liao H. Peng S. Lehmann J. Zhang Y. Design, synthesis and evaluation of tacrine–flurbiprofen–nitrate trihybrids as novel anti-Alzheimer’s disease agents. Bioorg. Med. Chem. 2013 21 9 2462 2470 10.1016/j.bmc.2013.03.005 23541836
    [Google Scholar]
  104. Chen Y. Sun J. Peng S. Liao H. Zhang Y. Lehmann J. Tacrine-flurbiprofen hybrids as multifunctional drug candidates for the treatment of Alzheimer’s disease. Arch. Pharm. (Weinheim) 2013 346 12 865 871 10.1002/ardp.201300074 24203864
    [Google Scholar]
  105. Liu Z. Zhang B. Xia S. Fang L. Gou S. ROS-responsive and multifunctional anti-Alzheimer prodrugs: Tacrine-ibuprofen hybrids via a phenyl boronate linker. Eur. J. Med. Chem. 2021 212 112997 10.1016/j.ejmech.2020.112997 33189440
    [Google Scholar]
  106. Chioua M. Buzzi E. Moraleda I. Iriepa I. Maj M. Wnorowski A. Giovannini C. Tramarin A. Portali F. Ismaili L. López-Alvarado P. Bolognesi M.L. Jóźwiak K. Menéndez J.C. Marco-Contelles J. Bartolini M. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur. J. Med. Chem. 2018 155 839 846 10.1016/j.ejmech.2018.06.044 29958119
    [Google Scholar]
  107. León R. Ríos C. Marco-Contelles J. Huertas O. Barril X. Javier Luque F. López M.G. García A.G. Villarroya M. New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg. Med. Chem. 2008 16 16 7759 7769 10.1016/j.bmc.2008.07.005 18640842
    [Google Scholar]
  108. Wang Y. Wang F. Yu J.P. Jiang F.C. Guan X.L. Wang C.M. Li L. Cao H. Li M.X. Chen J.G. Novel multipotent phenylthiazole–tacrine hybrids for the inhibition of cholinesterase activity, β-amyloid aggregation and Ca2+ overload. Bioorg. Med. Chem. 2012 20 21 6513 6522 10.1016/j.bmc.2012.08.040 23000296
    [Google Scholar]
  109. Jiang X.Y. Chen T.K. Zhou J.T. He S.Y. Yang H.Y. Chen Y. Qu W. Feng F. Sun H.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-Alzheimer’s disease drug discovery. ACS Med. Chem. Lett. 2018 9 3 171 176 10.1021/acsmedchemlett.7b00463 29541355
    [Google Scholar]
  110. Liu W. Liu X. Liu W. Gao Y. Wu L. Huang Y. Chen H. Li D. Zhou L. Wang N. Xu Z. Jiang X. Zhao Q. Discovery of novel β-carboline derivatives as selective AChE inhibitors with GSK-3β inhibitory property for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2022 229 114095 10.1016/j.ejmech.2021.114095 34995924
    [Google Scholar]
  111. Jeřábek J. Uliassi E. Guidotti L. Korábečný J. Soukup O. Sepsova V. Hrabinova M. Kuča K. Bartolini M. Peña-Altamira L.E. Petralla S. Monti B. Roberti M. Bolognesi M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem. 2017 127 250 262 10.1016/j.ejmech.2016.12.048 28064079
    [Google Scholar]
  112. Viayna E. Gómez T. Galdeano C. Ramírez L. Ratia M. Badia A. Clos M.V. Verdaguer E. Junyent F. Camins A. Pallàs M. Bartolini M. Mancini F. Andrisano V. Arce M.P. Rodríguez-Franco M.I. Bidon-Chanal A. Luque F.J. Camps P. Muñoz-Torrero D. Novel huprine derivatives with inhibitory activity toward β-amyloid aggregation and formation as disease-modifying anti-Alzheimer drug candidates. ChemMedChem 2010 5 11 1855 1870 10.1002/cmdc.201000322 20859987
    [Google Scholar]
  113. Galdeano C. Viayna E. Sola I. Formosa X. Camps P. Badia A. Clos M.V. Relat J. Ratia M. Bartolini M. Mancini F. Andrisano V. Salmona M. Minguillón C. González-Muñoz G.C. Rodríguez-Franco M.I. Bidon-Chanal A. Luque F.J. Muñoz-Torrero D. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J. Med. Chem. 2012 55 2 661 669 10.1021/jm200840c 22185619
    [Google Scholar]
  114. Mezeiova E. Hrabinova M. Hepnarova V. Jun D. Janockova J. Muckova L. Prchal L. Kristofikova Z. Kucera T. Gorecki L. Chalupova K. Kunes J. Hroudova J. Soukup O. Korabecny J. Huprine Y. Tryptophan heterodimers with potential implication to Alzheimer’s disease treatment. Bioorg. Med. Chem. Lett. 2021 43 128100 10.1016/j.bmcl.2021.128100 33984470
    [Google Scholar]
  115. Ceschi M.A. Sobieski da Costa J. Dardenne L.E. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids. Eur. J. Med. Chem. 2016 121 758 772 10.1016/j.ejmech.2016.06.025 27392529
    [Google Scholar]
  116. Li G. Hong G. Li X. Zhang Y. Xu Z. Mao L. Feng X. Liu T. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids. Eur. J. Med. Chem. 2018 148 238 254 10.1016/j.ejmech.2018.01.028 29466774
    [Google Scholar]
  117. Lin R. Rao S. Li Y. Zhang L. Xu L. He Y. Liu Z. Chen H. Conjugation of tacrine with genipin derivative not only enhances effects on AChE but also leads to autophagy against Alzheimer’s disease. Eur. J. Med. Chem. 2021 211 113067 10.1016/j.ejmech.2020.113067 33338868
    [Google Scholar]
  118. Kálai T. Altman R. Maezawa I. Balog M. Morisseau C. Petrlova J. Hammock B.D. Jin L.W. Trudell J.R. Voss J.C. Hideg K. Synthesis and functional survey of new tacrine analogs modified with nitroxides or their precursors. Eur. J. Med. Chem. 2014 77 343 350 10.1016/j.ejmech.2014.03.026 24657571
    [Google Scholar]
  119. Fang L. Appenroth D. Decker M. Kiehntopf M. Roegler C. Deufel T. Fleck C. Peng S. Zhang Y. Lehmann J. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem. 2008 51 4 713 716 10.1021/jm701491k 18232655
    [Google Scholar]
  120. Ceschi M. Pilotti R. Lopes J. Dapont H. da Rocha J. Afolabi B. Guedes I. Dardenne L. An expedient synthesis of tacrine-squaric hybrids as potent, selective and dual binding cholinesterase inhibitors. J. Braz. Chem. Soc. 2020 31 857 866 10.21577/0103‑5053.20200019
    [Google Scholar]
  121. Lopes J.P.B. Silva L. da Costa Franarin G. Antonio Ceschi M. Seibert Lüdtke D. Ferreira Dantas R. de Salles C.M.C. Paes Silva-Jr F. Roberto Senger M. Alvim Guedes I. Emmanuel Dardenne L. Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives. Bioorg. Med. Chem. 2018 26 20 5566 5577 10.1016/j.bmc.2018.10.003 30340901
    [Google Scholar]
  122. Scipioni M. Kay G. Megson I.L. Kong Thoo Lin P. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s disease. MedChemComm 2019 10 5 764 777 10.1039/C9MD00048H 31191867
    [Google Scholar]
  123. Fang L. Kraus B. Lehmann J. Heilmann J. Zhang Y. Decker M. Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett. 2008 18 9 2905 2909 10.1016/j.bmcl.2008.03.073 18406135
    [Google Scholar]
  124. Fu Y. Mu Y. Lei H. Wang P. Li X. Leng Q. Han L. Qu X. Wang Z. Huang X. Design, synthesis, and evaluation of novel tacrine-ferulic acid hybrids as multifunctional drug candidates against Alzheimer’s Disease. Molecules 2016 21 1 10 10.3390/molecules21101338
    [Google Scholar]
  125. Chao X. He X. Yang Y. Zhou X. Jin M. Liu S. Cheng Z. Liu P. Wang Y. Yu J. Tan Y. Huang Y. Qin J. Rapposelli S. Pi R. Design, synthesis and pharmacological evaluation of novel tacrine–caffeic acid hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2012 22 20 6498 6502 10.1016/j.bmcl.2012.08.036 22981331
    [Google Scholar]
  126. Digiacomo M. Chen Z. Wang S. Lapucci A. Macchia M. Yang X. Chu J. Han Y. Pi R. Rapposelli S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett. 2015 25 4 807 810 10.1016/j.bmcl.2014.12.084 25597007
    [Google Scholar]
  127. Xie S.S. Lan J.S. Wang X.B. Jiang N. Dong G. Li Z.R. Wang K.D.G. Guo P.P. Kong L.Y. Multifunctional tacrine–trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur. J. Med. Chem. 2015 93 42 50 10.1016/j.ejmech.2015.01.058 25656088
    [Google Scholar]
  128. Lan J.S. Xie S.S. Li S.Y. Pan L.F. Wang X.B. Kong L.Y. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2014 22 21 6089 6104 10.1016/j.bmc.2014.08.035 25282654
    [Google Scholar]
  129. Li S.Y. Wang X.B. Xie S.S. Jiang N. Wang K.D.G. Yao H.Q. Sun H.B. Kong L.Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013 69 632 646 10.1016/j.ejmech.2013.09.024 24095756
    [Google Scholar]
  130. Cen J. Guo H. Hong C. Lv J. Yang Y. Wang T. Fang D. Luo W. Wang C. Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur. J. Med. Chem. 2018 144 128 136 10.1016/j.ejmech.2017.12.005 29268129
    [Google Scholar]
  131. Kochi A. Eckroat T.J. Green K.D. Mayhoub A.S. Lim M.H. Garneau-Tsodikova S. A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation. Chem. Sci. (Camb.) 2013 4 11 4137 4145 10.1039/c3sc51902c
    [Google Scholar]
  132. Eckroat T.J. Green K.D. Reed R.A. Bornstein J.J. Garneau-Tsodikova S. Investigation of the role of linker moieties in bifunctional tacrine hybrids. Bioorg. Med. Chem. 2013 21 12 3614 3623 10.1016/j.bmc.2013.02.047 23535563
    [Google Scholar]
  133. Liu Z. Fang L. Zhang H. Gou S. Chen L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem. 2017 25 8 2387 2398 10.1016/j.bmc.2017.02.049 28302511
    [Google Scholar]
  134. De Lorenzi E. Seghetti F. Tarozzi A. Pruccoli L. Contardi C. Serra M. Bisi A. Gobbi S. Vistoli G. Gervasoni S. Argentini C. Ghirardo G. Guarato G. Orso G. Belluti F. Di Martino R.M.C. Zusso M. Targeting the multifaceted neurotoxicity of Alzheimer’s disease by tailored functionalisation of the curcumin scaffold. Eur. J. Med. Chem. 2023 252 115297 10.1016/j.ejmech.2023.115297 36996713
    [Google Scholar]
  135. Keri R.S. Quintanova C. Chaves S. Silva D.F. Cardoso S.M. Santos M.A. New tacrine hybrids with natural‐based cysteine derivatives as multitargeted drugs for potential treatment of Alzheimer’s disease. Chem. Biol. Drug Des. 2016 87 1 101 111 10.1111/cbdd.12633 26256122
    [Google Scholar]
  136. Lu C. Zhou Q. Yan J. Du Z. Huang L. Li X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013 62 745 753 10.1016/j.ejmech.2013.01.039 23454517
    [Google Scholar]
  137. Teponnou G.A.K. Joubert J. Malan S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for Alzheimer’s disease therapy. Open Med. Chem. J. 2017 11 1 24 37 10.2174/1874104501711010024 28567126
    [Google Scholar]
  138. do Carmo Carreiras M. Ismaili L. Marco-Contelles J. Propargylamine-derived multi-target directed ligands for Alzheimer’s disease therapy. Bioorg. Med. Chem. Lett. 2020 30 3 126880 10.1016/j.bmcl.2019.126880 31864798
    [Google Scholar]
  139. Rodríguez-Franco M.I. Fernández-Bachiller M.I. Pérez C. Hernández-Ledesma B. Bartolomé B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem. 2006 49 2 459 462 10.1021/jm050746d 16420031
    [Google Scholar]
  140. Mao F. Chen J. Zhou Q. Luo Z. Huang L. Li X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett. 2013 23 24 6737 6742 10.1016/j.bmcl.2013.10.034 24220172
    [Google Scholar]
  141. Chufarova N. Czarnecka K. Skibiński R. Cuchra M. Majsterek I. Szymański P. New tacrine–acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer’s disease. Arch. Pharm. (Weinheim) 2018 351 7 1800050 10.1002/ardp.201800050 29870588
    [Google Scholar]
  142. Fancellu G. Chand K. Tomás D. Orlandini E. Piemontese L. Silva D.F. Cardoso S.M. Chaves S. Santos M.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s Disease. J. Enzyme Inhib. Med. Chem. 2020 35 1 211 226 10.1080/14756366.2019.1689237 31760822
    [Google Scholar]
  143. Xie S.S. Wang X. Jiang N. Yu W. Wang K.D.G. Lan J.S. Li Z.R. Kong L.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem. 2015 95 153 165 10.1016/j.ejmech.2015.03.040 25812965
    [Google Scholar]
  144. Sun Q. Peng D.Y. Yang S.G. Zhu X.L. Yang W.C. Yang G.F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem. 2014 22 17 4784 4791 10.1016/j.bmc.2014.06.057 25088549
    [Google Scholar]
  145. Xie S.S. Wang X.B. Li J.Y. Yang L. Kong L.Y. Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur. J. Med. Chem. 2013 64 540 553 10.1016/j.ejmech.2013.03.051 23685572
    [Google Scholar]
  146. Fernández-Bachiller M.I. Pérez C. Monjas L. Rademann J. Rodríguez-Franco M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem. 2012 55 3 1303 1317 10.1021/jm201460y 22243648
    [Google Scholar]
  147. Liao S. Deng H. Huang S. Yang J. Wang S. Yin B. Zheng T. Zhang D. Liu J. Gao G. Ma J. Deng Z. Design, synthesis and evaluation of novel 5,6,7-trimethoxyflavone–6-chlorotacrine hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015 25 7 1541 1545 10.1016/j.bmcl.2015.02.015 25724825
    [Google Scholar]
  148. Sun Y. Chen J. Chen X. Huang L. Li X. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-homoisoflavonoid hybrids. Bioorg. Med. Chem. 2013 21 23 7406 7417 10.1016/j.bmc.2013.09.050 24128814
    [Google Scholar]
  149. Hamulakova S. Poprac P. Jomova K. Brezova V. Lauro P. Drostinova L. Jun D. Sepsova V. Hrabinova M. Soukup O. Kristian P. Gazova Z. Bednarikova Z. Kuca K. Valko M. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J. Inorg. Biochem. 2016 161 52 62 10.1016/j.jinorgbio.2016.05.001 27230386
    [Google Scholar]
  150. Luo W. Li Y.P. He Y. Huang S.L. Tan J.H. Ou T.M. Li D. Gu L.Q. Huang Z.S. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation. Bioorg. Med. Chem. 2011 19 2 763 770 10.1016/j.bmc.2010.12.022 21211982
    [Google Scholar]
  151. Zhang C. Du Q.Y. Chen L.D. Wu W.H. Liao S.Y. Yu L.H. Liang X.T. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer’s disease. Eur. J. Med. Chem. 2016 116 200 209 10.1016/j.ejmech.2016.03.077 27061983
    [Google Scholar]
  152. Tang H. Zhao L.Z. Zhao H.T. Huang S.L. Zhong S.M. Qin J.K. Chen Z.F. Huang Z.S. Liang H. Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem. 2011 46 10 4970 4979 10.1016/j.ejmech.2011.08.002 21871694
    [Google Scholar]
  153. Tang H. Ning F.X. Wei Y.B. Huang S.L. Huang Z.S. Chan A.S.C. Gu L.Q. Derivatives of oxoisoaporphine alkaloids: A novel class of selective acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2007 17 13 3765 3768 10.1016/j.bmcl.2007.04.015 17451950
    [Google Scholar]
  154. Wei S. Chen W. Qin J. Huangli Y. Wang L. Shen Y. Tang H. Multitarget-directed oxoisoaporphine derivatives: Anti-acetylcholinesterase, anti-β-amyloid aggregation and enhanced autophagy activity against Alzheimer’s disease. Bioorg. Med. Chem. 2016 24 22 6031 6039 10.1016/j.bmc.2016.09.061 27720328
    [Google Scholar]
  155. Ip F.C.F. Fu G. Yang F. Kang F. Sun P. Ling C.Y. Cheung K. Xie F. Hu Y. Fu L. Ip N.Y. A tacrine-tetrahydroquinoline heterodimer potently inhibits acetylcholinesterase activity and enhances neurotransmission in mice. Eur. J. Med. Chem. 2021 226 113827 10.1016/j.ejmech.2021.113827 34530383
    [Google Scholar]
  156. Di Pietro O. Pérez-Areales F.J. Juárez-Jiménez J. Espargaró A. Clos M.V. Pérez B. Lavilla R. Sabaté R. Luque F.J. Muñoz-Torrero D. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies. Eur. J. Med. Chem. 2014 84 107 117 10.1016/j.ejmech.2014.07.021 25016233
    [Google Scholar]
  157. Hepnarova V. Korabecny J. Matouskova L. Jost P. Muckova L. Hrabinova M. Vykoukalova N. Kerhartova M. Kucera T. Dolezal R. Nepovimova E. Spilovska K. Mezeiova E. Pham N.L. Jun D. Staud F. Kaping D. Kuca K. Soukup O. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem. 2018 150 292 306 10.1016/j.ejmech.2018.02.083 29533874
    [Google Scholar]
  158. Shao D. Zou C. Luo C. Tang X. Li Y. Synthesis and evaluation of tacrine–E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2004 14 18 4639 4642 10.1016/j.bmcl.2004.07.005 15324879
    [Google Scholar]
  159. Mao F. Huang L. Luo Z. Liu A. Lu C. Xie Z. Li X. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg. Med. Chem. 2012 20 19 5884 5892 10.1016/j.bmc.2012.07.045 22944335
    [Google Scholar]
  160. Lange J.H.M. Coolen H.K.A.C. van der Neut M.A.W. Borst A.J.M. Stork B. Verveer P.C. Kruse C.G. Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism. J. Med. Chem. 2010 53 3 1338 1346 10.1021/jm901614b 20047331
    [Google Scholar]
  161. Derabli C. Boualia I. Abdelwahab A.B. Boulcina R. Bensouici C. Kirsch G. Debache A. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel tacrine-pyranopyrazole derivatives. Bioorg. Med. Chem. Lett. 2018 28 14 2481 2484 10.1016/j.bmcl.2018.05.063 29887354
    [Google Scholar]
  162. Pan T. Xie S. Zhou Y. Hu J. Luo H. Li X. Huang L. Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids. Bioorg. Med. Chem. Lett. 2019 29 16 2150 2152 10.1016/j.bmcl.2019.06.056 31281020
    [Google Scholar]
  163. Najafi Z. Mahdavi M. Saeedi M. Karimpour-Razkenari E. Asatouri R. Vafadarnejad F. Moghadam F.H. Khanavi M. Sharifzadeh M. Akbarzadeh T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem. 2017 125 1200 1212 10.1016/j.ejmech.2016.11.008 27863370
    [Google Scholar]
  164. Hiremathad A. Keri R.S. Esteves A.R. Cardoso S.M. Chaves S. Santos M.A. Novel tacrine-hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 2018 148 255 267 10.1016/j.ejmech.2018.02.023 29466775
    [Google Scholar]
  165. Huang L. Su T. Shan W. Luo Z. Sun Y. He F. Li X. Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids. Bioorg. Med. Chem. 2012 20 9 3038 3048 10.1016/j.bmc.2012.02.059 22472046
    [Google Scholar]
  166. Keri R.S. Quintanova C. Marques S.M. Esteves A.R. Cardoso S.M. Santos M.A. Design, synthesis and neuroprotective evaluation of novel tacrine–benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem. 2013 21 15 4559 4569 10.1016/j.bmc.2013.05.028 23768661
    [Google Scholar]
  167. Thiratmatrakul S. Yenjai C. Waiwut P. Vajragupta O. Reubroycharoen P. Tohda M. Boonyarat C. Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014 75 21 30 10.1016/j.ejmech.2014.01.020 24508831
    [Google Scholar]
  168. Lan J.S. Ding Y. Liu Y. Kang P. Hou J.W. Zhang X.Y. Xie S.S. Zhang T. Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2017 139 48 59 10.1016/j.ejmech.2017.07.055 28797883
    [Google Scholar]
  169. Jiang N. Huang Q. Liu J. Liang N. Li Q. Li Q. Xie S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018 146 287 298 10.1016/j.ejmech.2018.01.055 29407958
    [Google Scholar]
  170. Qiang X. Li Y. Yang X. Luo L. Xu R. Zheng Y. Cao Z. Tan Z. Deng Y. DL-3-n-butylphthalide-edaravone hybrids as novel dual inhibitors of amyloid- β aggregation and monoamine oxidases with high antioxidant potency for Alzheimer’s therapy. Bioorg. Med. Chem. Lett. 2017 27 4 718 722 10.1016/j.bmcl.2017.01.050 28131710
    [Google Scholar]
  171. Macklin L.J. Schwans J.P. Synthesis, biochemical evaluation, and molecular modeling of organophosphate-coumarin hybrids as potent and selective butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2020 30 13 127213 10.1016/j.bmcl.2020.127213 32381396
    [Google Scholar]
  172. Liu W. Wu L. Liu W. Tian L. Chen H. Wu Z. Wang N. Liu X. Qiu J. Feng X. Xu Z. Jiang X. Zhao Q. Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2022 242 114689 10.1016/j.ejmech.2022.114689 36007469
    [Google Scholar]
  173. Huang L. Luo Z. He F. Shi A. Qin F. Li X. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorg. Med. Chem. Lett. 2010 20 22 6649 6652 10.1016/j.bmcl.2010.09.013 20880702
    [Google Scholar]
  174. Huang L. Shi A. He F. Li X. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Bioorg. Med. Chem. 2010 18 3 1244 1251 10.1016/j.bmc.2009.12.035 20056426
    [Google Scholar]
  175. Jiang H. Wang X. Huang L. Luo Z. Su T. Ding K. Li X. Benzenediol-berberine hybrids: Multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem. 2011 19 23 7228 7235 10.1016/j.bmc.2011.09.040 22041172
    [Google Scholar]
  176. Su T. Xie S. Wei H. Yan J. Huang L. Li X. Synthesis and biological evaluation of berberine–thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg. Med. Chem. 2013 21 18 5830 5840 10.1016/j.bmc.2013.07.011 23932451
    [Google Scholar]
  177. Jiang X. Zhang Z. Zuo J. Wu C. Zha L. Xu Y. Wang S. Shi J. Liu X.H. Zhang J. Tang W. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease. Eur. J. Med. Chem. 2021 223 113735 10.1016/j.ejmech.2021.113735 34371367
    [Google Scholar]
  178. Spatz P. Steinmüller S.A.M. Tutov A. Poeta E. Morilleau A. Carles A. Deventer M.H. Hofmann J. Stove C.P. Monti B. Maurice T. Decker M. Dual-acting small molecules: Subtype-selective cannabinoid receptor 2 agonist/butyrylcholinesterase inhibitor hybrids show neuroprotection in an Alzheimer’s disease mouse model. J. Med. Chem. 2023 66 9 6414 6435 10.1021/acs.jmedchem.3c00541 37127287
    [Google Scholar]
  179. Huang W. Tang L. Shi Y. Huang S. Xu L. Sheng R. Wu P. Li J. Zhou N. Hu Y. Searching for the Multi-Target-Directed Ligands against Alzheimer’s disease: Discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorg. Med. Chem. 2011 19 23 7158 7167 10.1016/j.bmc.2011.09.061 22019465
    [Google Scholar]
  180. Arumugam N. Almansour A.I. Kumar R.S. Kotresha D. Saiswaroop R. Venketesh S. Dispiropyrrolidinyl-piperidone embedded indeno[1,2-b]quinoxaline heterocyclic hybrids: Synthesis, cholinesterase inhibitory activity and their molecular docking simulation. Bioorg. Med. Chem. 2019 27 12 2621 2628 10.1016/j.bmc.2019.03.058 30952387
    [Google Scholar]
  181. Li Y. Peng P. Tang L. Hu Y. Hu Y. Sheng R. Design, synthesis and evaluation of rivastigmine and curcumin hybrids as site-activated multitarget-directed ligands for Alzheimer’s disease therapy. Bioorg. Med. Chem. 2014 22 17 4717 4725 10.1016/j.bmc.2014.07.009 25082512
    [Google Scholar]
  182. Sang Z. Li Y. Qiang X. Xiao G. Liu Q. Tan Z. Deng Y. Multifunctional scutellarin–rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2015 23 4 668 680 10.1016/j.bmc.2015.01.005 25614117
    [Google Scholar]
  183. Wang L. Wang Y. Tian Y. Shang J. Sun X. Chen H. Wang H. Tan W. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg. Med. Chem. 2017 25 1 360 371 10.1016/j.bmc.2016.11.002 27856236
    [Google Scholar]
  184. Xiao G. Li Y. Qiang X. Xu R. Zheng Y. Cao Z. Luo L. Yang X. Sang Z. Su F. Deng Y. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2017 25 3 1030 1041 10.1016/j.bmc.2016.12.013 28011206
    [Google Scholar]
  185. Chen Z. Digiacomo M. Tu Y. Gu Q. Wang S. Yang X. Chu J. Chen Q. Han Y. Chen J. Nesi G. Sestito S. Macchia M. Rapposelli S. Pi R. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer’s disease. Eur. J. Med. Chem. 2017 125 784 792 10.1016/j.ejmech.2016.09.052 27736684
    [Google Scholar]
  186. Sang Z. Wang K. Shi J. Cheng X. Zhu G. Wei R. Ma Q. Yu L. Zhao Y. Tan Z. Liu W. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2020 187 111958 10.1016/j.ejmech.2019.111958 31865014
    [Google Scholar]
  187. Sestito S. Pruccoli L. Runfola M. Citi V. Martelli A. Saccomanni G. Calderone V. Tarozzi A. Rapposelli S. Design and synthesis of H2S-donor hybrids: A new treatment for Alzheimer’s disease? Eur. J. Med. Chem. 2019 184 111745 10.1016/j.ejmech.2019.111745 31585237
    [Google Scholar]
  188. Xu P. Zhang M. Sheng R. Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem. 2017 127 174 186 10.1016/j.ejmech.2016.12.045 28061347
    [Google Scholar]
  189. Cheng G. Xu P. Zhang M. Chen J. Sheng R. Ma Y. Resveratrol-maltol hybrids as multi-target-directed agents for Alzheimer’s disease. Bioorg. Med. Chem. 2018 26 22 5759 5765 10.1016/j.bmc.2018.08.011 30360953
    [Google Scholar]
  190. Liu X. Yu C. Yao Y. Lai H. Ye X. Xu J. Guo J. Xiao X. Lin C. Huang Z. Lin J. Yu C. Zha D. Novel neuroprotective pyromeconic acid derivatives with concurrent anti-Aβ deposition, anti-inflammatory, and anti-oxidation properties for treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2023 248 115120 10.1016/j.ejmech.2023.115120 36682173
    [Google Scholar]
  191. Gutti G. Leifeld J. Kakarla R. Bajad N.G. Ganeshpurkar A. Kumar A. Krishnamurthy S. Klein-Schmidt C. Tapken D. Hollmann M. Singh S.K. Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2023 259 115670 10.1016/j.ejmech.2023.115670 37515920
    [Google Scholar]
  192. Kushwaha P. Fatima S. Upadhyay A. Gupta S. Bhagwati S. Baghel T. Siddiqi M.I. Nazir A. Sashidhara K.V. Synthesis, biological evaluation and molecular dynamic simulations of novel benzofuran-tetrazole derivatives as potential agents against Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2019 29 1 66 72 10.1016/j.bmcl.2018.11.005 30455151
    [Google Scholar]
  193. Abd El-Karim S.S. Anwar M.M. Ahmed N.S. Syam Y.M. Elseginy S.A. Aly H.F. Younis E.A. Khalil W.K.B. Ahmed K.A. Mohammed F.F. Rizk M. Discovery of novel benzofuran-based derivatives as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, molecular docking and 3D-QSAR investigation. Eur. J. Med. Chem. 2023 260 115766 10.1016/j.ejmech.2023.115766 37678141
    [Google Scholar]
  194. Li X. Li T. Zhang P. Li X. Lu L. Sun Y. Zhang B. Allen S. White L. Phillips J. Zhu Z. Yao H. Xu J. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer’s disease. Eur. J. Med. Chem. 2022 244 114841 10.1016/j.ejmech.2022.114841 36257284
    [Google Scholar]
  195. Manzoor S. Prajapati S.K. Majumdar S. Raza M.K. Gabr M.T. Kumar S. Pal K. Rashid H. Kumar S. Krishnamurthy S. Hoda N. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer’s action: Design, synthesis, crystal structure and in-vitro biological evaluation. Eur. J. Med. Chem. 2021 215 113224 10.1016/j.ejmech.2021.113224 33582578
    [Google Scholar]
  196. Estrada M. Herrera-Arozamena C. Pérez C. Viña D. Romero A. Morales-García J.A. Pérez-Castillo A. Rodríguez-Franco M.I. New cinnamic – N-benzylpiperidine and cinnamic – N,N-dibenzyl(N-methyl) amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur. J. Med. Chem. 2016 121 376 386 10.1016/j.ejmech.2016.05.055 27267007
    [Google Scholar]
  197. Wang J. Cai P. Yang X.L. Li F. Wu J.J. Kong L.Y. Wang X.B. Novel cinnamamide-dibenzylamine hybrids: Potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. Eur. J. Med. Chem. 2017 139 68 83 10.1016/j.ejmech.2017.07.077 28800459
    [Google Scholar]
  198. Pagoni A. Marinelli L. Di Stefano A. Ciulla M. Turkez H. Mardinoglu A. Vassiliou S. Cacciatore I. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation. Eur. J. Med. Chem. 2020 186 111880 10.1016/j.ejmech.2019.111880 31753513
    [Google Scholar]
  199. Xie Y. Chen C. Lin S. Yu X. Ye S. Chen X. Ouyang N. Xiong W. Li C. Xu C. Song G. Wu H. Design, synthesis and anti-AD effects of dual inhibitor targeting glutaminyl cyclase/GSK-3β. Eur. J. Med. Chem. 2023 248 115089 10.1016/j.ejmech.2023.115089 36638710
    [Google Scholar]
  200. Blaikie L. Kay G. Kong Thoo Lin P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2020 30 21 127505 10.1016/j.bmcl.2020.127505 32822761
    [Google Scholar]
  201. Zhang Z. Guo J. Cheng M. Zhou W. Wan Y. Wang R. Fang Y. Jin Y. Liu J. Xie S.S. Design, synthesis, and biological evaluation of novel xanthone-alkylbenzylamine hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2021 213 113154 10.1016/j.ejmech.2021.113154 33476932
    [Google Scholar]
  202. Albuquerque H.M.T. Nunes da Silva R. Pereira M. Maia A. Guieu S. Soares A.R. Santos C.M.M. Vieira S.I. Silva A.M.S. Steroid–quinoline hybrids for disruption and reversion of protein aggregation processes. ACS Med. Chem. Lett. 2022 13 3 443 448 10.1021/acsmedchemlett.1c00604 35300075
    [Google Scholar]
  203. Wang B. Wang Z. Chen H. Lu C.J. Li X. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (benzo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant. Bioorg. Med. Chem. 2016 24 19 4741 4749 10.1016/j.bmc.2016.08.017 27567080
    [Google Scholar]
  204. Luo Z. Liang L. Sheng J. Pang Y. Li J. Huang L. Li X. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem. 2014 22 4 1355 1361 10.1016/j.bmc.2013.12.066 24461494
    [Google Scholar]
  205. Schulze M. Siol O. Decker M. Lehmann J. Bivalent 5,8,9,13b-tetrahydro-6H-isoquino[1,2-a]isoquinolines and -isoquinolinium salts: Novel heterocyclic templates for butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2010 20 9 2946 2949 10.1016/j.bmcl.2010.03.011 20350808
    [Google Scholar]
  206. Xu Z.C. Wang X.B. Yu W.Y. Xie S.S. Li S.Y. Kong L.Y. Design, synthesis and biological evaluation of benzylisoquinoline derivatives as multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2014 24 10 2368 2373 10.1016/j.bmcl.2014.03.058 24726809
    [Google Scholar]
  207. Karabelyov V. Kondeva-Burdina M. Angelova V.T. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review. Bioorg. Med. Chem. 2021 29 115888 10.1016/j.bmc.2020.115888 33360082
    [Google Scholar]
  208. Zhong Z. He X. Ge J. Zhu J. Yao C. Cai H. Ye X.Y. Xie T. Bai R. Discovery of small-molecule compounds and natural products against Parkinson’s disease: Pathological mechanism and structural modification. Eur. J. Med. Chem. 2022 237 114378 10.1016/j.ejmech.2022.114378 35462165
    [Google Scholar]
  209. Sashidhara K.V. Modukuri R.K. Jadiya P. Rao K.B. Sharma T. Haque R. Singh D.K. Banerjee D. Siddiqi M.I. Nazir A. Discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson’s disease. ACS Med. Chem. Lett. 2014 5 10 1099 1103 10.1021/ml500222g 25313319
    [Google Scholar]
  210. Lü M.H. Wang Z.P. Xing L.Z. Zhang W. Han F. Huang G.L. Liu W. Zhang Y.X. Xu J. Cui J. Hybrids of polyphenolic/quinone acids, the potential preventive and therapeutic drugs for PD: Disaggregate α-Syn fibrils, inhibit inclusions, and repair damaged neurons in mice. Eur. J. Med. Chem. 2023 249 115122 10.1016/j.ejmech.2023.115122 36680987
    [Google Scholar]
  211. Di Martino R.M.C. Pruccoli L. Bisi A. Gobbi S. Rampa A. Martinez A. Pérez C. Martinez-Gonzalez L. Paglione M. Di Schiavi E. Seghetti F. Tarozzi A. Belluti F. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 inducer for the treatment of Parkinson’s disease. ACS Chem. Neurosci. 2020 11 17 2728 2740 10.1021/acschemneuro.0c00363 32663009
    [Google Scholar]
  212. Pinnen F. Cacciatore I. Cornacchia C. Mollica A. Sozio P. Cerasa L.S. Iannitelli A. Fontana A. Nasuti C. Di Stefano A. CNS delivery of l-dopa by a new hybrid glutathione–methionine peptidomimetic prodrug. Amino Acids 2012 42 1 261 269 10.1007/s00726‑010‑0804‑z 21080012
    [Google Scholar]
  213. Shen Z.B. Meng H.W. Meng X.S. Lv Z.K. Fang M.Y. Zhang L.L. Lv Z.L. Li M.S. Liu A.K. Han J.H. Li Q.S. Duan Y.J. Design, synthesis, and SAR study of novel flavone 1,2,4-oxadiazole derivatives with anti-inflammatory activities for the treatment of Parkinson’s disease. Eur. J. Med. Chem. 2023 255 115417 10.1016/j.ejmech.2023.115417 37137246
    [Google Scholar]
  214. Ghogare J.G. Bhandari S.V. Bothara K.G. Madgulkar A.R. Parashar G.A. Sonawane B.G. Inamdar P.R. Design, synthesis and pharmacological screening of potential anticonvulsant agents using hybrid approach. Eur. J. Med. Chem. 2010 45 3 857 863 10.1016/j.ejmech.2009.09.014 20034707
    [Google Scholar]
  215. Marcinkowska M. Mordyl B. Fajkis-Zajaczkowska N. Siwek A. Karcz T. Gawalska A. Bucki A. Żmudzki P. Partyka A. Jastrzębska-Więsek M. Pomierny B. Walczak M. Smolik M. Pytka K. Mika K. Kotańska M. Kolaczkowski M. Hybrid molecules combining GABA-A and serotonin 5-HT6 receptors activity designed to tackle neuroinflammation associated with depression. Eur. J. Med. Chem. 2023 247 115071 10.1016/j.ejmech.2022.115071 36603509
    [Google Scholar]
  216. Malik S. Bahare R.S. Khan S.A. Design, synthesis and anticonvulsant evaluation of N-(benzo[d]thiazol-2-ylcarba-] moyl)-2-methyl-4-oxoquinazoline-3(4H)-carbothioamide derivatives: A hybrid pharmacophore approach. Eur. J. Med. Chem. 2013 67 1 13 10.1016/j.ejmech.2013.06.026 23831504
    [Google Scholar]
  217. Zaręba P. Sałat K. Höfner G.C. Łątka K. Bajda M. Latacz G. Kotniewicz K. Rapacz A. Podkowa A. Maj M. Jóźwiak K. Filipek B. Wanner K.T. Malawska B. Kulig K. Development of tricyclic N-benzyl-4-hydroxybutanamide derivatives as inhibitors of GABA transporters mGAT1-4 with anticonvulsant, antinociceptive, and antidepressant activity. Eur. J. Med. Chem. 2021 221 113512 10.1016/j.ejmech.2021.113512 34015586
    [Google Scholar]
  218. Yogeeswari P. Sriram D. Sahitya P. Ragavendran J.V. Ranganadh V. Synthesis and anticonvulsant activity of 4-(2-(2,6-dimethylphenylamino)-2-oxoethylamino)-N-(substituted)butanamides: A pharmacophoric hybrid approach. Bioorg. Med. Chem. Lett. 2007 17 13 3712 3715 10.1016/j.bmcl.2007.04.032 17481896
    [Google Scholar]
  219. Liu W. Wang H. Li X. Xu Y. Zhang J. Wang W. Gong Q. Qiu X. Zhu J. Mao F. Zhang H. Li J. Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment. Bioorg. Med. Chem. 2018 26 12 3117 3125 10.1016/j.bmc.2018.04.037 29729987
    [Google Scholar]
  220. Abram M. Rapacz A. Latacz G. Szulczyk B. Kalinowska-Tłuścik J. Otto-Ślusarczyk D. Struga M. Kamiński R.M. Kamiński K. Asymmetric synthesis and in vivo/in vitro characterization of new hybrid anticonvulsants derived from (2,5-dioxopyrrolidin-1-yl)phenylacetamides. Bioorg. Chem. 2021 109 104751 10.1016/j.bioorg.2021.104751 33647745
    [Google Scholar]
  221. Kamiński K. Zagaja M. Rapacz A. Łuszczki J.J. Andres-Mach M. Abram M. Obniska J. New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl)propan-2-yl]pyrrolidine-2,5-diones. Bioorg. Med. Chem. 2016 24 4 606 618 10.1016/j.bmc.2015.12.027 26746343
    [Google Scholar]
  222. Sun X. Li N. Zhong P. Chen L. Sun J. Development of MAO-A and 5-HT2AR dual inhibitors with improved antidepressant activity. J. Med. Chem. 2022 65 19 13385 13400 10.1021/acs.jmedchem.2c01271 36173886
    [Google Scholar]
  223. Sashidhara K.V. Rao K.B. Singh S. Modukuri R.K. Aruna Teja G. Chandasana H. Shukla S. Bhatta R.S. Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents. Bioorg. Med. Chem. Lett. 2014 24 20 4876 4880 10.1016/j.bmcl.2014.08.037 25239852
    [Google Scholar]
  224. Sashidhara K.V. Modukuri R.K. Singh S. Bhaskara Rao K. Aruna Teja G. Gupta S. Shukla S. Design and synthesis of new series of coumarin–aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg. Med. Chem. Lett. 2015 25 2 337 341 10.1016/j.bmcl.2014.11.036 25488839
    [Google Scholar]
  225. Zhou J. Kläß T. Johnson K.M. Giberson K.M. Kozikowski A.P. Discovery of novel conformationally constrained tropane-based biaryl and arylacetylene ligands as potent and selective norepinephrine transporter inhibitors and potential antidepressants. Bioorg. Med. Chem. Lett. 2005 15 10 2461 2465 10.1016/j.bmcl.2005.03.083 15863297
    [Google Scholar]
  226. Huang Z.H. Yin L.Q. Guan L.P. Li Z.H. Tan C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett. 2020 30 11 127173 10.1016/j.bmcl.2020.127173 32278513
    [Google Scholar]
  227. Du Y. Gao F. Sun H. Wu C. Zhu G. Zhu M. Novel substituted 4-(Arylethynyl)-Pyrrolo[2,3-d]pyrimidines negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) Treat depressive disorder in mice. Eur. J. Med. Chem. 2023 261 115855 10.1016/j.ejmech.2023.115855 37847955
    [Google Scholar]
  228. Dalton King H. Denhart D.J. Deskus J.A. Ditta J.L. Epperson J.R. Higgins M.A. Kung J.E. Marcin L.R. Sloan C.P. Mattson G.K. Molski T.F. Krause R.G. Bertekap R.L. Jr Lodge N.J. Mattson R.J. Macor J.E. Conformationally restricted homotryptamines. Part 4: Heterocyclic and naphthyl analogs of a potent selective serotonin reuptake inhibitor. Bioorg. Med. Chem. Lett. 2007 17 20 5647 5651 10.1016/j.bmcl.2007.07.083 17766113
    [Google Scholar]
  229. Abdul-Hay S. Schiefer I.T. Chandrasena R.E.P. Li M. Abdelhamid R. Wang Y.T. Tavassoli E. Michalsen B. Asghodom R.T. Luo J. Thatcher G.R.J. NO-SSRIs: Nitric oxide chimera drugs incorporating a selective serotonin reuptake inhibitor. ACS Med. Chem. Lett. 2011 2 9 656 661 10.1021/ml2000033 21927645
    [Google Scholar]
  230. Medina R.A. Vázquez-Villa H. Gómez-Tamayo J.C. Benhamú B. Martín-Fontecha M. de la Fuente T. Caltabiano G. Hedlund P.B. Pardo L. López-Rodríguez M.L. The extracellular entrance provides selectivity to serotonin 5-HT7 receptor antagonists with antidepressant-like behavior in vivo. J. Med. Chem. 2014 57 15 6879 6884 10.1021/jm500880c 25073094
    [Google Scholar]
  231. Mohsin N.A. Ahmad M. Hybrid organic molecules as antiinflammatory agents; a review of structural features and biological activity. Turk. J. Chem. 2018 42 1 20 10.3906/kim‑1706‑58
    [Google Scholar]
  232. Chen T. Zhu G. Meng X. Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur. J. Med. Chem. 2020 207 112660 10.1016/j.ejmech.2020.112660 32916382
    [Google Scholar]
  233. Pereira R. Silva A.M.S. Ribeiro D. Silva V.L.M. Fernandes E. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects. Eur. J. Med. Chem. 2023 252 115280 10.1016/j.ejmech.2023.115280 36966653
    [Google Scholar]
  234. Gasco A. Boschi D. Chegaev K. Cena C. Di Stilo A. Fruttero R. Lazzarato L. Rolando B. Tosco P. Multitarget drugs: Focus on the NO-donor hybrid drugs. Pure Appl. Chem. 2008 80 8 1693 1701 10.1351/pac200880081693
    [Google Scholar]
  235. Martelli A. Rapposelli S. Calderone V. NO-releasing hybrids of cardiovascular drugs. Curr. Med. Chem. 2006 13 6 609 625 10.2174/092986706776055634 16529554
    [Google Scholar]
  236. Martelli A. Breschi M. Calderone V. Pharmacodynamic hybrids coupling established cardiovascular mechanisms of action with additional nitric oxide releasing properties. Curr. Pharm. Des. 2009 15 6 614 636 10.2174/138161209787315611 19199986
    [Google Scholar]
  237. Serafim R.A.M. Primi M.C. Trossini G.H.G. Ferreira E.I. Nitric oxide: state of the art in drug design. Curr. Med. Chem. 2012 19 3 386 405 10.2174/092986712803414321 22335514
    [Google Scholar]
  238. Bhardwaj A. Kaur J. Knaus E.E. Can nitric oxide-releasing hybrid drugs alleviate adverse cardiovascular risks? Future Med. Chem. 2013 5 4 381 383 10.4155/fmc.13.23 23495685
    [Google Scholar]
  239. Abdelall E.K.A. Abdelhamid A.O. Azouz A.A. Synthesis and biological evaluations of new nitric oxide-anti-inflammatory drug hybrids. Bioorg. Med. Chem. Lett. 2017 27 18 4358 4369 10.1016/j.bmcl.2017.08.023 28844389
    [Google Scholar]
  240. Montanaro G. Bertinaria M. Rolando B. Fruttero R. Lucas C.D. Dorward D.A. Rossi A.G. Megson I.L. Gasco A. Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents. Bioorg. Med. Chem. 2013 21 7 2107 2116 10.1016/j.bmc.2013.01.009 23394865
    [Google Scholar]
  241. Kodela R. Chattopadhyay M. Kashfi K. NOSH-aspirin: A novel nitric oxide-hydrogen sulfide-releasing hybrid: A new class of anti-inflammatory pharmaceuticals. ACS Med. Chem. Lett. 2012 3 3 257 262 10.1021/ml300002m 22916316
    [Google Scholar]
  242. Abadi A.H. Hegazy G.H. El-Zaher A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem. 2005 13 20 5759 5765 10.1016/j.bmc.2005.05.053 16002298
    [Google Scholar]
  243. Chandak S.L. Bansode A.S. Murumkar P.R. Shinde M.G. Bothara K.G. Synthesis and investigation of anti-inflammatory activity of novel nitric oxide donating hybrid drugs. Med. Chem. Res. 2013 22 7 3510 3517 10.1007/s00044‑012‑0345‑y
    [Google Scholar]
  244. Velázquez C. Rao P.N.P. McDonald R. Knaus E.E. Synthesis and biological evaluation of 3,4-diphenyl-1,2,5-oxadiazole-2-oxides and 3,4-diphenyl-1,2,5-oxadiazoles as potential hybrid COX-2 inhibitor/nitric oxide donor agents. Bioorg. Med. Chem. 2005 13 8 2749 2757 10.1016/j.bmc.2005.02.034 15781386
    [Google Scholar]
  245. Hernández P. Cabrera M. Lavaggi M.L. Celano L. Tiscornia I. Rodrigues da Costa T. Thomson L. Bollati-Fogolín M. Miranda A.L.P. Lima L.M. Barreiro E.J. González M. Cerecetto H. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorg. Med. Chem. 2012 20 6 2158 2171 10.1016/j.bmc.2012.01.034 22356737
    [Google Scholar]
  246. Velázquez C.A. Praveen Rao P.N. Citro M.L. Keefer L.K. Knaus E.E. O2-Acetoxymethyl-protected diazeniumdiolate-based NSAIDs (NONO–NSAIDs): Synthesis, nitric oxide release, and biological evaluation studies. Bioorg. Med. Chem. 2007 15 14 4767 4774 10.1016/j.bmc.2007.05.009 17509888
    [Google Scholar]
  247. Abdellatif K.R.A. Chowdhury M.A. Dong Y. Chen Q.H. Knaus E.E. Diazen-1-ium-1,2-diolated and nitrooxyethyl nitric oxide donor ester prodrugs of anti-inflammatory (E)-2-(aryl)-3-(4-methanesulfonylphenyl)acrylic acids: Synthesis, cyclooxygenase inhibition, and nitric oxide release studies. Bioorg. Med. Chem. 2008 16 6 3302 3308 10.1016/j.bmc.2007.12.006 18096394
    [Google Scholar]
  248. Abdellatif K.R.A. Chowdhury M.A. Dong Y. Velázquez C. Das D. Suresh M.R. Knaus E.E. Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-triflu-] oromethyl-1H-pyrazole and its methanesulfonyl analog: Synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. 2008 16 22 9694 9698 10.1016/j.bmc.2008.10.001 18930406
    [Google Scholar]
  249. Abdellatif K.R.A. Chowdhury M.A. Dong Y. Das D. Yu G. Velázquez C. Suresh M.R. Knaus E.E. Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-carboxymethylphenyl)-1-(4-methanesulfonylphenyl)-3-trifluoromethyl-1H-pyrazole and its aminosulfonyl analog: Synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. 2009 17 14 5182 5188 10.1016/j.bmc.2009.05.046 19500994
    [Google Scholar]
  250. Abdellatif K.R.A. Chowdhury M.A. Dong Y. Das D. Yu G. Velázquez C.A. Suresh M.R. Knaus E.E. Dinitroglyceryl and diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of aspirin, indomethacin and ibuprofen: Synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. Lett. 2009 19 11 3014 3018 10.1016/j.bmcl.2009.04.059 19419861
    [Google Scholar]
  251. Abdel-Hafez E.S.M.N. Abuo-Rahma G.E.D.A.A. Abdel-Aziz M. Radwan M.F. Farag H.H. Design, synthesis and biological investigation of certain pyrazole-3-carboxylic acid derivatives as novel carriers for nitric oxide. Bioorg. Med. Chem. 2009 17 11 3829 3837 10.1016/j.bmc.2009.04.037 19419878
    [Google Scholar]
  252. Abdel-Aziz M. Abuo-Rahma G.E.D.A.A. Beshr E.A.M. Ali T.F.S. New nitric oxide donating 1,2,4-triazole/oxime hybrids: Synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg. Med. Chem. 2013 21 13 3839 3849 10.1016/j.bmc.2013.04.022 23665142
    [Google Scholar]
  253. Bi W. Bi Y. Gao X. Yan X. Zhang Y. Xue P. Bammert C.E. Legalley T.D. Michael Gibson K. Bi L. Wang J.X. Anti-inflammatory, analgesic and antioxidant activities of novel kyotorphin-nitroxide hybrid molecules. Bioorg. Med. Chem. Lett. 2016 26 8 2005 2013 10.1016/j.bmcl.2016.02.086 26961795
    [Google Scholar]
  254. Li Y.R. Li C. Liu J.C. Guo M. Zhang T.Y. Sun L.P. Zheng C.J. Piao H.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2015 25 22 5052 5057 10.1016/j.bmcl.2015.10.028 26490095
    [Google Scholar]
  255. Kaur G. Silakari O. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation. Bioorg. Chem. 2018 80 24 35 10.1016/j.bioorg.2018.05.014 29864685
    [Google Scholar]
  256. Ghanim A.M. Rezq S. Ibrahim T.S. Romero D.G. Kothayer H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem. 2021 219 113457 10.1016/j.ejmech.2021.113457 33892270
    [Google Scholar]
  257. Radwan M.F. Dalby K.N. Kaoud T.S. Propyphenazone-based analogues as prodrugs and selective cyclooxygenase-2 inhibitors. ACS Med. Chem. Lett. 2014 5 9 983 988 10.1021/ml500156v 25221653
    [Google Scholar]
  258. Maghraby M.T.E. Abou-Ghadir O.M.F. Abdel-Moty S.G. Ali A.Y. Salem O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem. 2020 28 7 115403 10.1016/j.bmc.2020.115403 32127262
    [Google Scholar]
  259. Sinha S. Manju S.L. Doble M. Chalcone-thiazole hybrids: rational design, synthesis, and lead identification against 5-lipoxygenase. ACS Med. Chem. Lett. 2019 10 10 1415 1422 10.1021/acsmedchemlett.9b00193 31620227
    [Google Scholar]
  260. Abdelazeem A.H. Safi El-Din A.G. Abdel-Fattah M.M. Amin N.H. El-Moghazy S.M. El-Saadi M.T. Discovery of novel urea-diarylpyrazole hybrids as dual COX-2/sEH inhibitors with improved anti-inflammatory activity and highly reduced cardiovascular risks. Eur. J. Med. Chem. 2020 205 112662 10.1016/j.ejmech.2020.112662 32763463
    [Google Scholar]
  261. Martelli A. Testai L. Anzini M. Cappelli A. Di Capua A. Biava M. Poce G. Consalvi S. Giordani A. Caselli G. Rovati L. Ghelardini C. Patrignani P. Sautebin L. Breschi M.C. Calderone V. The novel anti-inflammatory agent VA694, endowed with both NO-releasing and COX2-selective inhibiting properties, exhibits NO-mediated positive effects on blood pressure, coronary flow and endothelium in an experimental model of hypertension and endothelial dysfunction. Pharmacol. Res. 2013 78 1 9 10.1016/j.phrs.2013.09.008 24083950
    [Google Scholar]
  262. Chowdhury M.A. Abdellatif K.R.A. Dong Y. Das D. Suresh M.R. Knaus E.E. Synthesis of celecoxib analogs that possess a N-hydroxypyrid-2(1H)one 5-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2008 18 23 6138 6141 10.1016/j.bmcl.2008.10.009 18945614
    [Google Scholar]
  263. Fu Z.Y. Jin Q.H. Qu Y.L. Guan L.P. Chalcone derivatives bearing chromen or benzo[f]chromen moieties: Design, synthesis, and evaluations of anti-inflammatory, analgesic, selective COX-2 inhibitory activities. Bioorg. Med. Chem. Lett. 2019 29 15 1909 1912 10.1016/j.bmcl.2019.05.051 31160177
    [Google Scholar]
  264. Abbas S.E. Awadallah F.M. Ibrahin N.A. Said E.G. Kamel G.M. New quinazolinone–pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. Eur. J. Med. Chem. 2012 53 141 149 10.1016/j.ejmech.2012.03.050 22551678
    [Google Scholar]
  265. Biava M. Battilocchio C. Poce G. Alfonso S. Consalvi S. Porretta G.C. Schenone S. Calderone V. Martelli A. Testai L. Ghelardini C. Di Cesare Mannelli L. Sautebin L. Rossi A. Giordani A. Patrignani P. Anzini M. Improving the solubility of a new class of antiinflammatory pharmacodynamic hybrids, that release nitric oxide and inhibit cycloxygenase-2 isoenzyme. Eur. J. Med. Chem. 2012 58 287 298 10.1016/j.ejmech.2012.10.014 23131542
    [Google Scholar]
  266. Alsafi M.H.A. Farhan M.S. Synthesis, characterization and acute anti-inflammatory evaluation of new mefenamic acid derivatives having 4-thiazolidinone nucleus. Iraqi J. Pharm Sci. 2019 28 138 146 10.31351/vol28iss1pp138‑146
    [Google Scholar]
  267. Kashid B.B. Salunkhe P.H. Dongare B.B. More K.R. Khedkar V.M. Ghanwat A.A. Synthesis of novel of 2, 5-disubstituted 1, 3, 4- oxadiazole derivatives and their in vitro anti-inflammatory, anti-oxidant evaluation, and molecular docking study. Bioorg. Med. Chem. Lett. 2020 30 12 127136 10.1016/j.bmcl.2020.127136 32280025
    [Google Scholar]
  268. Pan J. Xu T. Xu F. Zhang Y. Liu Z. Chen W. Fu W. Dai Y. Zhao Y. Feng J. Liang G. Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases. Eur. J. Med. Chem. 2017 125 478 491 10.1016/j.ejmech.2016.09.033 27689730
    [Google Scholar]
  269. Kumar R.S. Antonisamy P. Almansour A.I. Arumugam N. Periyasami G. Altaf M. Kim H.R. Kwon K.B. Functionalized spirooxindole-indolizine hybrids: Stereoselective green synthesis and evaluation of anti-inflammatory effect involving TNF-α and nitrite inhibition. Eur. J. Med. Chem. 2018 152 417 423 10.1016/j.ejmech.2018.04.060 29751235
    [Google Scholar]
  270. Hatnapure G.D. Keche A.P. Rodge A.H. Birajdar S.S. Tale R.H. Kamble V.M. Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg. Med. Chem. Lett. 2012 22 20 6385 6390 10.1016/j.bmcl.2012.08.071 22981334
    [Google Scholar]
  271. Machado A.L. Lima L.M. Araújo-, J.X., Jr; Fraga, C.A.M.; Gonçalves Koatz, V.L.; Barreiro, E.J. Design, synthesis and antiinflammatory activity of novel phthalimide derivatives, structurally related to thalidomide. Bioorg. Med. Chem. Lett. 2005 15 4 1169 1172 10.1016/j.bmcl.2004.12.012 15686935
    [Google Scholar]
  272. Zhang Z. Cao P. Fang M. Zou T. Han J. Duan Y. Xu H. Yang X. Li Q.S. Design, synthesis, and SAR study of novel 4,5-dihydropyrazole-thiazole derivatives with anti-inflammatory activities for the treatment of sepsis. Eur. J. Med. Chem. 2021 225 113743 10.1016/j.ejmech.2021.113743 34403978
    [Google Scholar]
  273. Kato T. Fukao K. Ohara T. Naya N. Tokuyama R. Muto S. Fukasawa H. Itai A. Matsumura K. Design, synthesis, and anti-inflammatory evaluation of a novel PPARδ agonist with a 4-(1-pyrrolidinyl)piperidine structure. J. Med. Chem. 2023 66 16 11428 11446 10.1021/acs.jmedchem.3c00932 37552807
    [Google Scholar]
  274. Lima L.M. Castro P. Machado A.L. Fraga C.A.M. Lugnier C. de Moraes V.L.G. Barreiro E.J. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg. Med. Chem. 2002 10 9 3067 3073 10.1016/S0968‑0896(02)00152‑9 12110331
    [Google Scholar]
  275. Lamie P. Philoppes J. El-Gendy A. Rarova L. Gruz J. Design, synthesis and evaluation of novel phthalimide derivatives as antimicrobial, antioxidant and anti-inflammatory agents. Molecules 2015 20 9 16620 16642 10.3390/molecules200916620 26389864
    [Google Scholar]
  276. Lacerda R.B. de Lima C.K.F. da Silva L.L. Romeiro N.C. Miranda A.L.P. Barreiro E.J. Fraga C.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg. Med. Chem. 2009 17 1 74 84 10.1016/j.bmc.2008.11.018 19059783
    [Google Scholar]
  277. Berrino E. Micheli L. Carradori S. di Cesare Mannelli L. Guglielmi P. De Luca A. Carta F. Ghelardini C. Secci D. Supuran C.T. Novel insights on CAI−CORM hybrids: Evaluation of the CO releasing properties and pain-relieving activity of differently substituted coumarins for the treatment of rheumatoid arthritis. J. Med. Chem. 2023 66 3 1892 1908 10.1021/acs.jmedchem.2c01706 36701258
    [Google Scholar]
  278. Hadjipavlou-Litina D. Magoulas G.E. Bariamis S.E. Drainas D. Avgoustakis K. Papaioannou D. Does conjugation of antioxidants improve their antioxidative/anti-inflammatory potential? Bioorg. Med. Chem. 2010 18 23 8204 8217 10.1016/j.bmc.2010.10.012 21041094
    [Google Scholar]
  279. Chen W. Ge X. Xu F. Zhang Y. Liu Z. Pan J. Song J. Dai Y. Zhou J. Feng J. Liang G. Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg. Med. Chem. Lett. 2015 25 15 2998 3004 10.1016/j.bmcl.2015.05.030 26048788
    [Google Scholar]
  280. Aldawsari F.S. Aguiar R.P. Wiirzler L.A.M. Aguayo-Ortiz R. Aljuhani N. Cuman R.K.N. Medina-Franco J.L. Siraki A.G. Velázquez-Martínez C.A. Anti-inflammatory and antioxidant properties of a novel resveratrol–salicylate hybrid analog. Bioorg. Med. Chem. Lett. 2016 26 5 1411 1415 10.1016/j.bmcl.2016.01.069 26850006
    [Google Scholar]
  281. Zheng X.J. Li C.S. Cui M.Y. Song Z.W. Bai X.Q. Liang C.W. Wang H.Y. Zhang T.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2020 30 127237 10.1016/j.bmcl.2020.127237
    [Google Scholar]
  282. Zheng X.J. Li C.S. Cui M.Y. Song Z.W. Bai X.Q. Liang C.W. Wang H.Y. Zhang T.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2020 30 13 127237 10.1016/j.bmcl.2020.127237 32386981
    [Google Scholar]
  283. Kankala S. Kankala R.K. Gundepaka P. Thota N. Nerella S. Gangula M.R. Guguloth H. Kagga M. Vadde R. Vasam C.S. Regioselective synthesis of isoxazole–mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies. Bioorg. Med. Chem. Lett. 2013 23 5 1306 1309 10.1016/j.bmcl.2012.12.101 23357631
    [Google Scholar]
  284. Mengheres G. Rice C.R. Olajide O.A. Hemming K. Synthesis of novel isoflavone/benzo-δ-sultam hybrids as potential anti-inflammatory drugs. Bioorg. Med. Chem. Lett. 2021 34 127761 10.1016/j.bmcl.2020.127761 33359607
    [Google Scholar]
  285. Huang S.T. Liao J.S. Fang H.W. Lin C.M. Synthesis and anti-inflammation evaluation of new C60 fulleropyrrolidines bearing biologically active xanthine. Bioorg. Med. Chem. Lett. 2008 18 1 99 103 10.1016/j.bmcl.2007.11.004 18023183
    [Google Scholar]
  286. Luo X. Xiong H. Jiang Y. Fan Y. Zuo C. Chen D. Chen L. Lin H. Gao J. Macrophage reprogramming via targeted ROS scavenging and COX-2 downregulation for alleviating inflammation. Bioconjug. Chem. 2023 34 7 1316 1326 10.1021/acs.bioconjchem.3c00239 37330989
    [Google Scholar]
  287. Wang W. Wang S.K. Wang Q. Zhang Z. Li B. Zhou Z.D. Zhang J.F. Lin C. Chen T.X. Jin Z. Tang Y.Z. Diclofenac and eugenol hybrid with enhanced anti-inflammatory activity through activating HO-1 and inhibiting NF-κB pathway in vitro and in vivo. Eur. J. Med. Chem. 2023 259 115669 10.1016/j.ejmech.2023.115669 37517204
    [Google Scholar]
  288. Akhtar M. Niu J. Zhu Y. Luo Z. Tian T. Dong Y. Wang Y. Fareed M.S. Lin L. Anti-inflammatory efficacy and relevant SAR investigations of novel chiral pyrazolo isoquinoline derivatives: Design, synthesis, in-vitro, in-vivo, and computational studies targeting iNOS. Eur. J. Med. Chem. 2023 256 115412 10.1016/j.ejmech.2023.115412 37146344
    [Google Scholar]
  289. Li S.M. Chou J.Y. Tsai S.E. Tseng C.C. Chung C.Y. Zeng W.Z. Hu Y.P. Uramaru N. Huang G.J. Wong F.F. Synthesis and anti-inflammatory activity evaluation of NO-releasing furoxan/1,2,4-triazole hybrid derivatives. Eur. J. Med. Chem. 2023 257 115496 10.1016/j.ejmech.2023.115496 37224762
    [Google Scholar]
  290. Li X. Hu Y. He B. Li L. Tian Y. Xiao Y. Shang H. Zou Z. Design, synthesis and evaluation of ursodeoxycholic acid-cinnamic acid hybrids as potential anti-inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways. Eur. J. Med. Chem. 2023 260 115785 10.1016/j.ejmech.2023.115785 37678142
    [Google Scholar]
  291. Auvin S. Auguet M. Navet E. Harnett J.J. Viossat I. Schulz J. Bigg D. Chabrier P.E. Novel inhibitors of neuronal nitric oxide synthase with potent antioxidant properties. Bioorg. Med. Chem. Lett. 2003 13 2 209 212 10.1016/S0960‑894X(02)00883‑1 12482425
    [Google Scholar]
  292. Vázquez-Jiménez L. Garrido M. Miceli M. Prats E. Ferrer-Montiel A. Teixidó M. Jimeno C. Messeguer A. Synthesis and in vitro, ex-vivo and in vivo activity of hybrid compounds linking a potent ROS and RNS scavenger activity with diverse substrates addressed to pass across the blood-brain barrier. Eur. J. Med. Chem. 2016 123 788 802 10.1016/j.ejmech.2016.08.007 27541262
    [Google Scholar]
  293. Yoo Y.J. Nam D.H. Jung S.Y. Jang J.W. Kim H.J. Jin C. Pae A.N. Lee Y.S. Synthesis of cinnamoyl ketoamides as hybrid structures of antioxidants and calpain inhibitors. Bioorg. Med. Chem. Lett. 2011 21 10 2850 2854 10.1016/j.bmcl.2011.03.077 21504847
    [Google Scholar]
  294. Sahu P.K. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues. Eur. J. Med. Chem. 2016 121 510 516 10.1016/j.ejmech.2016.05.037 27318975
    [Google Scholar]
  295. Sahu P.K. Sahu P.K. Sahu P.L. Agarwal D.D. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives. Bioorg. Med. Chem. Lett. 2016 26 4 1342 1347 10.1016/j.bmcl.2015.12.013 26810315
    [Google Scholar]
  296. Matos M. Mura F. Vazquez-Rodriguez S. Borges F. Santana L. Uriarte E. Olea-Azar C. Study of coumarin-resveratrol hybrids as potent antioxidant compounds. Molecules 2015 20 2 3290 3308 10.3390/molecules20023290 25690290
    [Google Scholar]
  297. Buendia I. Navarro E. Michalska P. Gameiro I. Egea J. Abril S. López A. González-Lafuente L. López M.G. León R. New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med. Chem. 2015 7 15 1961 1969 10.4155/fmc.15.99 26496465
    [Google Scholar]
  298. Durand G. Polidori A. Salles J.P. Prost M. Durand P. Pucci B. Synthesis and antioxidant efficiency of a new amphiphilic spin-trap derived from PBN and lipoic acid. Bioorg. Med. Chem. Lett. 2003 13 16 2673 2676 10.1016/S0960‑894X(03)00545‑6 12873491
    [Google Scholar]
  299. Dowarah J. Singh V.P. Anti-diabetic drugs recent approaches and advancements. Bioorg. Med. Chem. 2020 28 5 115263 10.1016/j.bmc.2019.115263 32008883
    [Google Scholar]
  300. Liu C. Miao R. Raza F. Qian H. Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur. J. Med. Chem. 2023 245 Pt 1 114893 10.1016/j.ejmech.2022.114893 36395649
    [Google Scholar]
  301. Ibrahim M.K. Eissa I.H. Alesawy M.S. Metwaly A.M. Radwan M.M. ElSohly M.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists. Bioorg. Med. Chem. 2017 25 17 4723 4744 10.1016/j.bmc.2017.07.015 28720328
    [Google Scholar]
  302. Satish S. Srivastava A. Yadav P. Varshney S. Choudhary R. Balaramnavar V.M. Narender T. Gaikwad A.N. Aegeline inspired synthesis of novel amino alcohol and thiazolidinedione hybrids with antiadipogenic activity in 3T3-L1 cells. Eur. J. Med. Chem. 2018 143 780 791 10.1016/j.ejmech.2017.11.041 29220798
    [Google Scholar]
  303. Huang F. Zeng Z. Zhang W. Yan Z. Chen J. Yu L. Yang Q. Li Y. Yu H. Chen J. Wu C. Zhang X. Su Y. Zhou H. Design, synthesis, and biological evaluation of novel sulindac derivatives as partial agonists of PPARγ with potential anti-diabetic efficacy. Eur. J. Med. Chem. 2021 222 113542 10.1016/j.ejmech.2021.113542 34118723
    [Google Scholar]
  304. Rajan S. Puri S. Kumar D. Babu M.H. Shankar K. Varshney S. Srivastava A. Gupta A. Reddy M.S. Gaikwad A.N. Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur. J. Med. Chem. 2018 143 1345 1360 10.1016/j.ejmech.2017.10.034 29153558
    [Google Scholar]
  305. Kinfe H.H. Belay Y.H. Joseph J.S. Mukwevho E. Evaluation of the Influence of thiosemicarbazone–triazole hybrids on genes implicated in lipid oxidation and accumulation as potential anti-obesity agents. Bioorg. Med. Chem. Lett. 2013 23 19 5275 5278 10.1016/j.bmcl.2013.08.028 23988353
    [Google Scholar]
  306. Xiao D. Lu L. Liang B. Xiong Z. Xu X. Chen W.H. Identification of 1,3,4-oxadiazolyl-containing β-carboline derivatives as novel α-glucosidase inhibitors with antidiabetic activity. Eur. J. Med. Chem. 2023 261 115795 10.1016/j.ejmech.2023.115795 37688939
    [Google Scholar]
  307. Shah M. Jan M.S. Sadiq A. Khan S. Rashid U. SAR and lead optimization of (Z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl)thiazolidine-2,4-dione as a potential multi-target antidiabetic agent. Eur. J. Med. Chem. 2023 258 115591 10.1016/j.ejmech.2023.115591 37393789
    [Google Scholar]
  308. Mushtaq A. Azam U. Mehreen S. Naseer M.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur. J. Med. Chem. 2023 249 115119 10.1016/j.ejmech.2023.115119 36680985
    [Google Scholar]
  309. Calderone V. Rapposelli S. Martelli A. Digiacomo M. Testai L. Torri S. Marchetti P. Breschi M.C. Balsamo A. NO-glibenclamide derivatives: Prototypes of a new class of nitric oxide-releasing anti-diabetic drugs. Bioorg. Med. Chem. 2009 17 15 5426 5432 10.1016/j.bmc.2009.06.049 19595600
    [Google Scholar]
  310. Digiacomo M. Martelli A. Testai L. Lapucci A. Breschi M.C. Calderone V. Rapposelli S. Synthesis and evaluation of multi-functional NO-donor/insulin-secretagogue derivatives for the treatment of type II diabetes and its cardiovascular complications. Bioorg. Med. Chem. 2015 23 3 422 428 10.1016/j.bmc.2014.12.043 25577707
    [Google Scholar]
  311. Xie Y.D. Liu J.P. Wang W. Shi Y.H. Wang X.P. Sun M. Xu X.Y. Li N. 3,4-Dihydroxyphenethyl nitrate with nitric oxide releasing, antioxidant, hypoglycemic and hypolipidemic effects. Bioorg. Med. Chem. Lett. 2020 30 15 127277 10.1016/j.bmcl.2020.127277 32527456
    [Google Scholar]
  312. Li Z. Xu X. Deng L. Liao R. Liang R. Zhang B. Zhang L. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents. Bioorg. Med. Chem. 2018 26 14 3947 3952 10.1016/j.bmc.2018.06.017 29954682
    [Google Scholar]
  313. Li Z. Xu X. Liu R. Deng F. Zeng X. Zhang L. Nitric oxide donor-based FFA1 agonists: Design, synthesis and biological evaluation as potential anti-diabetic and anti-thrombotic agents. Bioorg. Med. Chem. 2018 26 15 4560 4566 10.1016/j.bmc.2018.07.050 30082106
    [Google Scholar]
  314. Yang Q. Zhou F. Tang X. Wang J. Feng H. Jiang W. Jin L. Jiang N. Yuan Y. Han J. Yan Z. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur. J. Med. Chem. 2022 233 114214 10.1016/j.ejmech.2022.114214 35231829
    [Google Scholar]
  315. Inoue T. Morita M. Tojo T. Yoshihara K. Nagashima A. Moritomo A. Ohkubo M. Miyake H. Synthesis and SAR study of new thiazole derivatives as vascular adhesion protein-1 (VAP-1) inhibitors for the treatment of diabetic macular edema. Bioorg. Med. Chem. 2013 21 5 1219 1233 10.1016/j.bmc.2012.12.025 23337801
    [Google Scholar]
  316. Shah K. Patel D. Jadav P. Sheikh M. Sairam K.V.V.M. Joharapurkar A. Jain M.R. Bahekar R. Discovery of liver selective non-steroidal glucocorticoid receptor antagonist as novel antidiabetic agents. Bioorg. Med. Chem. Lett. 2012 22 18 5857 5862 10.1016/j.bmcl.2012.07.078 22917520
    [Google Scholar]
  317. Chaidam S. Saehlim N. Athipornchai A. Sirion U. Saeeng R. Synthesis and biological evaluation of 1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett. 2021 50 128331 10.1016/j.bmcl.2021.128331 34418573
    [Google Scholar]
  318. Sheng R. Yang L. Zhang Y. Xing E. Shi R. Wen X. Wang H. Sun H. Discovery of novel selective GPR120 agonists with potent anti-diabetic activity by hybrid design. Bioorg. Med. Chem. Lett. 2018 28 15 2599 2604 10.1016/j.bmcl.2018.06.047 29980358
    [Google Scholar]
  319. Hernández-Vázquez E. Salgado-Barrera S. Ramírez-Espinosa J.J. Estrada-Soto S. Hernández-Luis F. SAR and lead optimization of (z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl) thiazolidine-2,4-dione as a potential multi-target antidiabetic agent. Bioorg. Med. Chem. 2016 24 2298 2306 10.1016/j.bmc.2016.04.007 27079123
    [Google Scholar]
  320. Hernández-Vázquez E. Castañeda-Arriaga R. Ramírez-Espinosa J.J. Medina-Campos O.N. Hernández-Luis F. Chaverri J.P. Estrada-Soto S. 1,5-Diarylpyrazole and vanillin hybrids: Synthesis, biological activity and DFT studies. Eur. J. Med. Chem. 2015 100 106 118 10.1016/j.ejmech.2015.06.010 26079087
    [Google Scholar]
  321. Shukla P. Singh A.B. Srivastava A.K. Pratap R. Chalcone based aryloxypropanolamines as potential antihyperglycemic agents. Bioorg. Med. Chem. Lett. 2007 17 3 799 802 10.1016/j.bmcl.2006.10.068 17095211
    [Google Scholar]
  322. Montero A. Goya P. Jagerovic N. Callado L.F. Meana J.J. Girón R. Goicoechea C. Martín M.I. Guanidinium and aminoimidazolinium derivatives of N-(4-piperidyl)propanamides as potential ligands for μ opioid and I2-imidazoline receptors: Synthesis and pharmacological screening. Bioorg. Med. Chem. 2002 10 4 1009 1018 10.1016/S0968‑0896(01)00356‑X 11836109
    [Google Scholar]
  323. Dardonville C. Jagerovic N. Callado L.F. Meana J.J. Fentanyl derivatives bearing aliphatic alkaneguanidinium moieties: A new series of hybrid molecules with significant binding affinity for μ-opioid receptors and I2-imidazoline binding sites. Bioorg. Med. Chem. Lett. 2004 14 2 491 493 10.1016/j.bmcl.2003.10.048 14698188
    [Google Scholar]
  324. Romero-Hernández L.L. Merino-Montiel P. Montiel-Smith S. Meza-Reyes S. Vega-Báez J.L. Abasolo I. Schwartz S. López Ó. Fernández-Bolaños J.G. Diosgenin-based thio(seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile. Eur. J. Med. Chem. 2015 99 67 81 10.1016/j.ejmech.2015.05.018 26046314
    [Google Scholar]
  325. Huang Y. Huang W. Yang G. Wang R. Ma L. Design and synthesis of novel diosgenin-triazole hybrids targeting inflammation as potential neuroprotective agents. Bioorg. Med. Chem. Lett. 2021 43 128092 10.1016/j.bmcl.2021.128092 33964436
    [Google Scholar]
  326. Zhou L.C. Liang Y.F. Huang Y. Yang G.X. Zheng L.L. Sun J.M. Li Y. Zhu F.L. Qian H.W. Wang R. Ma L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2021 219 113426 10.1016/j.ejmech.2021.113426 33848787
    [Google Scholar]
  327. Wang W. Wang W. Yao G. Ren Q. Wang D. Wang Z. Liu P. Gao P. Zhang Y. Wang S. Song S. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2018 151 351 362 10.1016/j.ejmech.2018.03.082 29635167
    [Google Scholar]
  328. Narender T. Madhur G. Jaiswal N. Agrawal M. Maurya C.K. Rahuja N. Srivastava A.K. Tamrakar A.K. Synthesis of novel triterpene and N-allylated/N-alkylated niacin hybrids as α-glucosidase inhibitors. Eur. J. Med. Chem. 2013 63 162 169 10.1016/j.ejmech.2013.01.053 23474902
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673305662240702071354
Loading
/content/journals/cmc/10.2174/0109298673305662240702071354
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: synergy ; antiviral hybrids ; linking bridges ; dimeric drugs ; CNS ; hybrids ; Drug hybrids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test