Skip to content
2000
image of Gold Nanoparticles and Chitosan as Innovative Compounds in Medicine and Cosmetology: A Review of Current Applications

Abstract

The medical and cosmetic industries have developed in recent years, and there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications. Au NPs may have potential toxicity depending on their size, shape, charge, surface coatings, and tendency to agglomerate into larger clusters. On the other hand, the CS production process requires strict control due to the possibility of uncontrolled hydrolysis or chemical modifications during polymer isolation. The combination of Au NPs and CS that differ in chemical and phase in one composite (Au NPs/CS) allows for acquiring of new material with many advantages. The obtained composite has good mechanical properties and is biocompatible due to the presence of CS and the antibacterial properties of Au NPs. Therefore, it can be successfully used in many branches of medicine, including gene delivery, cell encapsulation, wound healing process, or as a preservative ingredient of cosmetics. Moreover, Au/CS nanocomposites are used in the food industry and environmental protection. This review highlights the preparation routes, properties, and applications of Au NPs and CS as separate materials. Moreover, the last part presents the advantages of combining these two materials into one nanocomposite. Specifically, we described the role of CS in the synthesis of Au NPs and possible subsequent applications of such nanomaterials as an element of biosensors, scaffolds, and an intelligent drug release system or tissue engineering.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336929241004074529
2025-01-06
2025-04-22
Loading full text...

Full text loading...

References

  1. BhushanB. Introduction to Nanotechnology.Springer Handbook of Nanotechnology. BhushanB. Berlin, HeidelbergSpringer201711910.1007/978‑3‑662‑54357‑3_1
    [Google Scholar]
  2. ModyV. SiwaleR. SinghA. ModyH. Introduction to metallic nanoparticles.J. Pharm. Bioallied Sci.20102428228910.4103/0975‑7406.7212721180459
    [Google Scholar]
  3. YehY.C. CreranB. RotelloV.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology.Nanoscale2012461871188010.1039/C1NR11188D22076024
    [Google Scholar]
  4. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H22109657
    [Google Scholar]
  5. SynowieckiJ. Al-KhateebN.A. Production, properties, and some new applications of chitin and its derivatives.Crit. Rev. Food Sci. Nutr.200343214517110.1080/1040869039082647312705640
    [Google Scholar]
  6. HamedI. ÖzogulF. RegensteinJ.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review.Trends Food Sci. Technol.201648405010.1016/j.tifs.2015.11.007
    [Google Scholar]
  7. MoussianB. Chitin: Structure, Chemistry and Biology.Targeting Chitin-Containing Organisms. YangQ. FukamizoT. SingaporeSpringer201951810.1007/978‑981‑13‑7318‑3_2
    [Google Scholar]
  8. WanY. CreberK.A.M. PeppleyB. BuiV.T. Ionic conductivity of chitosan membranes.Polymer (Guildf.)20034441057106510.1016/S0032‑3861(02)00881‑9
    [Google Scholar]
  9. AminaS.J. GuoB. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle.Int. J. Nanomedicine2020159823985710.2147/IJN.S27909433324054
    [Google Scholar]
  10. PatilS. ChandrasekaranR. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges.J. Genet. Eng. Biotechnol.20201816710.1186/s43141‑020‑00081‑333104931
    [Google Scholar]
  11. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.157787830879351
    [Google Scholar]
  12. MooresA. Bottom up, solid-phase syntheses of inorganic nanomaterials by mechanochemistry and aging.Curr. Opin. Green Sustain. Chem.201812333710.1016/j.cogsc.2018.05.004
    [Google Scholar]
  13. DongJ. CarpinoneP.L. PyrgiotakisG. DemokritouP. MoudgilB.M. Synthesis of precision gold nanoparticles using turkevich method.Kona Powder Particle J.202037022423210.14356/kona.202001132153313
    [Google Scholar]
  14. Daruich De SouzaC. Ribeiro NogueiraB. RostelatoM.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction.J. Alloys Compd.201979871474010.1016/j.jallcom.2019.05.153
    [Google Scholar]
  15. HerizchiR. AbbasiE. MilaniM. AkbarzadehA. Current methods for synthesis of gold nanoparticles.Artif. Cells Nanomed. Biotechnol.201644259660210.3109/21691401.2014.97180725365243
    [Google Scholar]
  16. WangT. JiaoY. ChaiQ. YuX. Gold nanoparticles: Synthesis and biological applications.Nano Life201553154200710.1142/S1793984415420076
    [Google Scholar]
  17. SlepičkaP. Slepičková KasálkováN. SiegelJ. KolskáZ. ŠvorčíkV. Methods of gold and silver nanoparticles preparation.Materials (Basel)2019131110.3390/ma1301000131861259
    [Google Scholar]
  18. MellorR.D. UchegbuI.F. Ultrasmall-in-nano: Why size matters.Nanomaterials (Basel)20221214247610.3390/nano1214247635889699
    [Google Scholar]
  19. Dehdari VaisR. HeliH. SattarahmadyN. Label-free electrochemical DNA biosensing of MR TV 29 18s ribosomal RNA gene of Trichomonas vaginalis by signalization of non-spherical gold nanoparticles.Mater. Today Commun.20233410512310.1016/j.mtcomm.2022.105123
    [Google Scholar]
  20. ZhengJ. ChengX. ZhangH. BaiX. AiR. ShaoL. WangJ. Gold nanorods: The most versatile plasmonic nanoparticles.Chem. Rev.202112121133421345310.1021/acs.chemrev.1c0042234569789
    [Google Scholar]
  21. KouX. SunZ. YangZ. ChenH. WangJ. Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres.Langmuir20092531692169810.1021/la802883p
    [Google Scholar]
  22. ShahM. BadwaikV. KherdeY. WaghwaniH.K. ModiT. AguilarZ.P. RodgersH. HamiltonW. MarutharajT. WebbC. LawrenzM.B. DakshinamurthyR. Gold nanoparticles: various methods of synthesis and antibacterial applications.Front. Biosci.20141981320134410.2741/428424896353
    [Google Scholar]
  23. LeeK.X. ShameliK. YewY.P. TeowS.Y. JahangirianH. Rafiee-MoghaddamR. WebsterT. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications.Int. J. Nanomedicine20201527530010.2147/IJN.S23378932021180
    [Google Scholar]
  24. MikhailovaE.O. Gold nanoparticles.J. Funct. Biomater.20211247010.3390/jfb1204007034940549
    [Google Scholar]
  25. Gholami-ShabaniM. Shams-GhahfarokhiM. Gholami-ShabaniZ. AkbarzadehA. RiaziG. AjdariS. AmaniA. Razzaghi-AbyanehM. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach.Process Biochem.20155071076108510.1016/j.procbio.2015.04.004
    [Google Scholar]
  26. IjazI. GilaniE. NazirA. BukhariA. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  27. HulkotiN.I. TaranathT.C. Biosynthesis of nanoparticles using microbes-a review.Colloids Surf. B Biointerfaces201412147448310.1016/j.colsurfb.2014.05.02725001188
    [Google Scholar]
  28. SanthoshP.B. GenovaJ. ChamatiH. Green synthesis of gold nanoparticles: An eco-friendly approach.Chemistry (Basel)20224234536910.3390/chemistry4020026
    [Google Scholar]
  29. NaikooG.A. MustaqeemM. HassanI.U. AwanT. ArshadF. SalimH. QurashiA. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review.J. Saudi Chem. Soc.202125910130410.1016/j.jscs.2021.101304
    [Google Scholar]
  30. ChughH. SoodD. ChandraI. TomarV. DhawanG. ChandraR. Role of gold and silver nanoparticles in cancer nano-medicine.Artif. Cells Nanomed. Biotechnol.201846sup11210122010.1080/21691401.2018.144911829533101
    [Google Scholar]
  31. LiangA. LiuQ. WenG. JiangZ. The surface-plasmon-resonance effect of nanogold/silver and its analytical applications.Trends Analyt. Chem.201237324710.1016/j.trac.2012.03.015
    [Google Scholar]
  32. SuiM. KunwarS. PandeyP. LeeJ. Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles.Sci. Rep.2019911658210.1038/s41598‑019‑53292‑131719664
    [Google Scholar]
  33. HeM.Q. YuY.L. WangJ.H. Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications.Nano Today20203510100510.1016/j.nantod.2020.101005
    [Google Scholar]
  34. DrazM.S. ShafieeH. Applications of gold nanoparticles in virus detection.Theranostics2018871985201710.7150/thno.2385629556369
    [Google Scholar]
  35. MorsinM. Mat SallehM. Ali UmarA. SahdanM. Gold nanoplates for a localized surface plasmon resonance-based boric acid sensor.Sensors (Basel)201717594710.3390/s1705094728441323
    [Google Scholar]
  36. ChaudharyA. BaijnathP. Bharadwaj KumarP. BhaskarwarA. Sensing materials: Bimetallics and metal mixtures (core-shell microspheres).Encyclopedia of Sensors and Biosensors.Elsevier202320421110.1016/B978‑0‑12‑822548‑6.00034‑0
    [Google Scholar]
  37. KwonN.K. LeeT.K. KwakS.K. KimS.Y. Aggregation-driven controllable plasmonic transition of silica-coated gold nanoparticles with temperature-dependent polymer–nanoparticle interactions for potential applications in optoelectronic devices.ACS Appl. Mater. Interfaces2017945396883969810.1021/acsami.7b1312329053247
    [Google Scholar]
  38. MengL. ZhangJ. LiH. ZhaoW. ZhaoT. Preparation and progress in application of gold nanorods.J. Nanomater.2019201911110.1155/2019/4925702
    [Google Scholar]
  39. YuanZ. HuC.C. ChangH.T. LuC. Gold nanoparticles as sensitive optical probes.Analyst (Lond.)201614151611162610.1039/C5AN02651B26853370
    [Google Scholar]
  40. ShabaninezhadM. RamakrishnaG. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells.J. Chem. Phys.20191501414411610.1063/1.509088530981241
    [Google Scholar]
  41. BaiX. WangY. SongZ. FengY. ChenY. ZhangD. FengL. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment.Int. J. Mol. Sci.2020217248010.3390/ijms2107248032260051
    [Google Scholar]
  42. BanstolaA. EmamiF. JeongJ.H. YookS. Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer.Macromol. Res.2018261195596410.1007/s13233‑018‑6139‑4
    [Google Scholar]
  43. SuliasihB.A. BudiS. KatasH. Synthesis and application of gold nanoparticles as antioxidants.Pharmacia20247111910.3897/pharmacia.71.e112322
    [Google Scholar]
  44. KowalskaA. AdamskaE. GrobelnaB. Medical applications of silver and gold nanoparticles and core-shell nanostructures based on silver or gold core: Recent progress and innovations.ChemMedChem20241912e20230067210.1002/cmdc.20230067238477448
    [Google Scholar]
  45. sobhaniZ. BehnamM.A. EmamiF. DehghanianA. JamhiriI. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.Int. J. Nanomedicine2017124509451710.2147/IJN.S13466128684911
    [Google Scholar]
  46. MendesR. PedrosaP. LimaJ.C. FernandesA.R. BaptistaP.V. Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of gold nanoparticles.Sci. Rep.2017711087210.1038/s41598‑017‑11491‑828883606
    [Google Scholar]
  47. AdnanN.N.M. ChengY.Y. OngN.M.N. KamaruddinT.T. RozlanE. SchmidtT.W. DuongH.T.T. BoyerC. Effect of gold nanoparticle shapes for phototherapy and drug delivery.Polym. Chem.20167162888290310.1039/C6PY00465B
    [Google Scholar]
  48. KimH.S. LeeD.Y. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles.Polymers (Basel)201810996110.3390/polym1009096130960886
    [Google Scholar]
  49. ShiM. PaquetteB. ThippayamontriT. GendronL. GuérinB. SancheL. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles.Int. J. Nanomedicine2016115323533310.2147/IJN.S9754127789945
    [Google Scholar]
  50. KongF.Y. ZhangJ.W. LiR.F. WangZ.X. WangW.J. WangW. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications.Molecules2017229144510.3390/molecules2209144528858253
    [Google Scholar]
  51. SiddiqueS. ChowJ.C.L. Gold nanoparticles for drug delivery and cancer therapy.Appl. Sci.20201038210.3390/app10113824
    [Google Scholar]
  52. SharifiM. AttarF. SabouryA.A. AkhtariK. HooshmandN. HasanA. El-SayedM.A. FalahatiM. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy.J. Control. Release2019311-31217018910.1016/j.jconrel.2019.08.03231472191
    [Google Scholar]
  53. EllipilliS. WangH. LeeW.J. ShuD. GuoP. Proof-of-concept for speedy development of rapid and simple at-home method for potential diagnosis of early COVID-19 mutant infections using nanogold and aptamer.Nanomedicine20224510259010.1016/j.nano.2022.10259035905841
    [Google Scholar]
  54. ReicheltS. BoschkeE. ReinhardtO. WaltherT. LenkF. Development of a gold nanoparticle-based colorimetric sensor for water for injection at-line impurity testin.SLAS Technology202126218224202110.1177/2472630320978187
    [Google Scholar]
  55. LuoD. WangX. BurdaC. BasilionJ.P. Basilion, recent development of gold nanoparticles as contrast agents for cancer diagnosis.Cancers202113182510.3390/cancers13081825
    [Google Scholar]
  56. DhawanS. SharmaP. NandaS. Cosmetic nanoformulations and their intended use.Nanocosmetics.Elsevier202014116910.1016/B978‑0‑12‑822286‑7.00017‑6
    [Google Scholar]
  57. Ben HaddadaM. GeromettaE. ChawechR. SorresJ. BialeckiA. PesnelS. SpadavecchiaJ. MorelA.L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient.Colloids Surf. B Biointerfaces202018911085510.1016/j.colsurfb.2020.11085532101788
    [Google Scholar]
  58. ManatungaD.C. GodakandaV.U. HerathH.M.L.P.B. de SilvaR.M. YehC.Y. ChenJ.Y. Akshitha de SilvaA.A. RajapakshaS. NilminiR. Nalin de SilvaK.M. Nanofibrous cosmetic face mask for transdermal delivery of nano gold: synthesis, characterization, release and zebra fish employed toxicity studies.R. Soc. Open Sci.20207920126610.1098/rsos.20126633047067
    [Google Scholar]
  59. TaufikurohmahT. SanjayaI.G.M. SyahraniA. Nanogold Synthesis Using Matrix Mono Glyceryl Stearate as Antiaging Compounds in Modern CosmeticsJ. Mater. Sci. Engin.20111857864
    [Google Scholar]
  60. LiuC. WangY. ZhangG. PangX. YanJ. WuX. QiuY. WangP. HuangH. WangX. ZhangH. Dermal toxicity influence of gold nanomaterials after embedment in cosmetics.Toxics202210627610.3390/toxics1006027635736885
    [Google Scholar]
  61. TaufikurohmahT. WinarniD. BaktirA. SyahraniA. Histology study: Pre-clinic test of nanogold in mus musculus skin, at fibroblast proliferation and collagen biosynthesis.Chem. Mater. Res.201335561
    [Google Scholar]
  62. GuptaV. MohapatraS. MishraH. FarooqU. KumarK. AnsariM. AldawsariM. AlalaiweA. MirzaM. IqbalZ. Nanotechnology in cosmetics and cosmeceuticals—a review of latest advancements.Gels20228317310.3390/gels803017335323286
    [Google Scholar]
  63. LohaniA. VermaA. JoshiH. YadavN. KarkiN. Nanotechnology-based cosmeceuticals.ISRN Dermatol.2014201411410.1155/2014/84368724963412
    [Google Scholar]
  64. AliG. SharmaM. SalamaE-S. LingZ. LiX. Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways, Biomass Conv.Bioref2022144567458110.1007/s13399‑022‑02684‑x
    [Google Scholar]
  65. Elieh-Ali-KomiD. HamblinM.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials.Int. J. Adv. Res. (Indore)20164341142727819009
    [Google Scholar]
  66. PachapurV.L. GuemizaK. RouissiT. SarmaS.J. BrarS.K. Novel biological and chemical methods of chitin extraction from crustacean waste using saline water.J. Chem. Technol. Biotechnol.20169182331233910.1002/jctb.4821
    [Google Scholar]
  67. NoH.K. HurE.Y. Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin.J. Agric. Food Chem.19984693844384610.1021/jf9802676
    [Google Scholar]
  68. BorićM. VicenteF.A. JurkovićD.L. NovakU. LikozarB. Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process.Carbohydr. Polym.202024611664810.1016/j.carbpol.2020.11664832747280
    [Google Scholar]
  69. YounesI. RinaudoM. Chitin and chitosan preparation from marine sources. Structure, properties and applications.Mar. Drugs20151331133117410.3390/md1303113325738328
    [Google Scholar]
  70. AhmedS. IkramS. Chitosan: Derivatives, composites and applications.John Wiley & Sons201710.1002/9781119364849
    [Google Scholar]
  71. CharoenvuttithamP. ShiJ. MittalG.S. Chitin extraction from black tiger shrimp ( penaeus monodon ) waste using organic acids.Sep. Sci. Technol.20064161135115310.1080/01496390600633725
    [Google Scholar]
  72. PercotA. VitonC. DomardA. Characterization of shrimp shell deproteinization.Biomacromolecules2003451380138510.1021/bm034115h12959609
    [Google Scholar]
  73. El KnidriH. BelaabedR. AddaouA. LaajebA. LahsiniA. Extraction, chemical modification and characterization of chitin and chitosan.Int. J. Biol. Macromol.2018120Pt A1181118910.1016/j.ijbiomac.2018.08.13930172808
    [Google Scholar]
  74. ChangK.L.B. TsaiG. LeeJ. FuW.R. Heterogeneous N-deacetylation of chitin in alkaline solution.Carbohydr. Res.1997303332733210.1016/S0008‑6215(97)00179‑1
    [Google Scholar]
  75. MethacanonP. PrasitsilpM. PothsreeT. PattaraarchachaiJ. Heterogeneous N-deacetylation of squid chitin in alkaline solution.Carbohydr. Polym.200352211912310.1016/S0144‑8617(02)00300‑4
    [Google Scholar]
  76. YounesI. HajjiS. FrachetV. RinaudoM. JellouliK. NasriM. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan.Int. J. Biol. Macromol.20146948949810.1016/j.ijbiomac.2014.06.01324950313
    [Google Scholar]
  77. AkiyamaK. KawazuK. KobayashiA. A novel method for chemo-enzymatic synthesis of elicitor-active chitosan oligomers and partially N-deacetylated chitin oligomers using N-acylated chitotrioses as substrates in a lysozyme-catalyzed transglycosylation reaction system.Carbohydr. Res.199527915116010.1016/0008‑6215(95)00288‑X8593620
    [Google Scholar]
  78. TsigosI. MartinouA. KafetzopoulosD. BouriotisV. Chitin deacetylases: new, versatile tools in biotechnology.Trends Biotechnol.200018730531210.1016/S0167‑7799(00)01462‑110856926
    [Google Scholar]
  79. KadokawaJ. ShimohigoshiR. YamashitaK. YamamotoK. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α- d-glucosamine 1-phosphate.Org. Biomol. Chem.201513144336434310.1039/C5OB00167F25766841
    [Google Scholar]
  80. ShanmuganathanR. EdisonT.N.J.I. LewisOscarF. KumarP. ShanmugamS. PugazhendhiA. Chitosan nanopolymers: An overview of drug delivery against cancer.Int. J. Biol. Macromol.201913072773610.1016/j.ijbiomac.2019.02.06030771392
    [Google Scholar]
  81. RaoM.S. StevensW.F. Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan.J. Chem. Technol. Biotechnol.20058091080108710.1002/jctb.1286
    [Google Scholar]
  82. ZhangH. YangS. FangJ. DengY. WangD. ZhaoY. Optimization of the fermentation conditions of Rhizopus japonicus M193 for the production of chitin deacetylase and chitosan.Carbohydr. Polym.2014101576710.1016/j.carbpol.2013.09.01524299749
    [Google Scholar]
  83. CrestiniC. KovacB. Giovannozzi-SermanniG. Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes.Biotechnol. Bioeng.199650220721010.1002/bit.26050020218626937
    [Google Scholar]
  84. Zainol AbidinN.A. KorminF. Zainol AbidinN.A. Mohamed AnuarN.A.F. Abu BakarM.F. The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources.Int. J. Mol. Sci.20202114497810.3390/ijms2114497832679639
    [Google Scholar]
  85. NweN. StevensW.F. Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction.Biotechnol. Lett.200224213113410.1023/A:1013850621734
    [Google Scholar]
  86. MohanK. GanesanA.R. EzhilarasiP.N. KondamareddyK.K. RajanD.K. SathishkumarP. RajarajeswaranJ. ConternoL. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review.Carbohydr. Polym.202228711934910.1016/j.carbpol.2022.11934935422296
    [Google Scholar]
  87. SuryaniS. ChaerunisaaA.Y. JoniI.M. RuslinR. RamadhanL.O.A.N. WardhanaY.W. SabarwatiS.H. Production of low molecular weight chitosan using a combination of weak acid and ultrasonication methods.Polymers (Basel)20221416341710.3390/polym1416341736015674
    [Google Scholar]
  88. DanG. ZhangZ.H. ZengX.A. HanZ. LuoW.B. TangC. QuekS.Y. Synergetic effects of pulsed electric field and ozone treatments on the degradation of high molecular weight chitosan.Int. J. Food Engin.201410010010.1515/ijfe‑2014‑0100
    [Google Scholar]
  89. ChengJ. ZhuH. HuangJ. ZhaoJ. YanB. MaS. ZhangH. FanD. The physicochemical properties of chitosan prepared by microwave heating.Food Sci. Nutr.2020841987199410.1002/fsn3.148632328265
    [Google Scholar]
  90. MirzaeiB.E. RamazaniS.A.A. ShafieeM. DanaeiM. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems.International Journal of Polymeric Materials and Polymeric Biomaterials2013621160561110.1080/00914037.2013.769165
    [Google Scholar]
  91. MadhumathiK. ShalumonK.T. RaniV.V.D. TamuraH. FuruikeT. SelvamuruganN. NairS.V. JayakumarR. Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications.Int. J. Biol. Macromol.2009451121510.1016/j.ijbiomac.2009.03.01119447253
    [Google Scholar]
  92. Abdel-MohsenA.M. AlyA.S. HrdinaR. MontaserA.S. HebeishA. Eco-synthesis of PVA/chitosan hydrogels for biomedical application.J. Polym. Environ.20111941005101210.1007/s10924‑011‑0334‑0
    [Google Scholar]
  93. TanS. KhorE. TanT.K. WongS.M. The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination.Talanta199845471371910.1016/S0039‑9140(97)00288‑918967053
    [Google Scholar]
  94. TolaimateA. DesbrièresJ. RhaziM. AlaguiA. VincendonM. VotteroP. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin.Polymer (Guildf.)20004172463246910.1016/S0032‑3861(99)00400‑0
    [Google Scholar]
  95. GuptaK. JabrailF. Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres.Carbohydr. Polym.2006661435410.1016/j.carbpol.2006.02.019
    [Google Scholar]
  96. LiuZ. GeX. LuY. DongS. ZhaoY. ZengM. Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films.Food Hydrocoll.201226131131710.1016/j.foodhyd.2011.06.008
    [Google Scholar]
  97. KubotaN. TatsumotoN. SanoT. ToyaK. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents.Carbohydr. Res.2000324426827410.1016/S0008‑6215(99)00263‑310744335
    [Google Scholar]
  98. Rong HueiC. HwaH-D. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane.Carbohydr. Polym.199629435335810.1016/S0144‑8617(96)00007‑0
    [Google Scholar]
  99. ŠimůnekJ. BrandysováV. KoppováI. ŠimůnekJ.Jr. The antimicrobial action of chitosan, low molar mass chitosan, and chitooligosaccharides on human colonic bacteria.Folia Microbiol. (Praha)201257434134510.1007/s12223‑012‑0138‑122528310
    [Google Scholar]
  100. PelláM.C.G. Lima-TenórioM.K. Tenório-NetoE.T. GuilhermeM.R. MunizE.C. RubiraA.F. Chitosan-based hydrogels: From preparation to biomedical applications.Carbohydr. Polym.201819623324510.1016/j.carbpol.2018.05.03329891292
    [Google Scholar]
  101. WoźniakA. BiernatM. Methods for crosslinking and stabilization of chitosan structures for potential medical applications.J. Bioact. Compat. Polym.202237315116710.1177/08839115221085738
    [Google Scholar]
  102. RavishankarK. DhamodharanR. Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents.React. Funct. Polym.202014910451710.1016/j.reactfunctpolym.2020.104517
    [Google Scholar]
  103. ZhouH.Y. JiangL.J. CaoP.P. LiJ.B. ChenX.G. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.Carbohydr. Polym.201511752453610.1016/j.carbpol.2014.09.09425498667
    [Google Scholar]
  104. LiangJ. WangR. ChenR. The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite.Polymers2019114910.3390/polym11030491
    [Google Scholar]
  105. MiF.L. ShyuS.S. LeeS.T. WongT.B. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method.J. Polym. Sci., B, Polym. Phys.199937141551156410.1002/(SICI)1099‑0488(19990715)37:14<1551::AID‑POLB1>3.0.CO;2‑H
    [Google Scholar]
  106. WonW. FengX. LawlessD. Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes.Separ. Purif. Tech.200331212914010.1016/S1383‑5866(02)00176‑4
    [Google Scholar]
  107. Rodríguez-FélixD.E. Pérez-CaballeroD. del Castillo- CastroT. Castillo- OrtegaM.M. Garmendía-DiagoY. Alvarado-IbarraJ. Plascencia-JatomeaM. Ledezma-PérezA.S. Burruel-IbarraS.E. Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery.Polym. Bull.20238032617263610.1007/s00289‑022‑04152‑y
    [Google Scholar]
  108. MonteiroO.A.C.Jr AiroldiC. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system.Int. J. Biol. Macromol.1999262-311912810.1016/S0141‑8130(99)00068‑910517518
    [Google Scholar]
  109. GuerreroP. MuxikaA. ZarandonaI. de la CabaK. Crosslinking of chitosan films processed by compression molding.Carbohydr. Polym.201920682082610.1016/j.carbpol.2018.11.06430553389
    [Google Scholar]
  110. MuzzarelliR.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids.Carbohydr. Polym.20097711910.1016/j.carbpol.2009.01.016
    [Google Scholar]
  111. LiQ. WangX. LouX. YuanH. TuH. LiB. ZhangY. Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility.Carbohydr. Polym.201513016617410.1016/j.carbpol.2015.05.03926076613
    [Google Scholar]
  112. AbrahamS. RajamanickD. SrinivasanB. Preparation, characterization and cross-linking of chitosan by microwave assisted synthesis.Sci. Int. (Lahore)201861183010.17311/sciintl.2018.18.30
    [Google Scholar]
  113. SinghA. NarviS.S. DuttaP.K. PandeyN.D. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde.Bull. Mater. Sci.200629323323810.1007/BF02706490
    [Google Scholar]
  114. RodriguesI.R. de Camargo ForteM.M. AzambujaD.S. CastagnoK.R.L. Synthesis and characterization of hybrid polymeric networks (HPN) based on polyvinyl alcohol/chitosan.React. Funct. Polym.200767870871510.1016/j.reactfunctpolym.2007.05.010
    [Google Scholar]
  115. MansurH.S. E. de S. Costa, A.A.P. Mansur, E.F. Barbosa-Stancioli, Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels.Mater. Sci. Eng. C2009291574158310.1016/j.msec.2008.12.012
    [Google Scholar]
  116. ShahinA. RamazaniA. MehrajiS.A.S. EslamiH. Synthesis and characterization of a chitosan/gelatin transparent film crosslinked with a combination of EDC/NHS for corneal epithelial cell culture scaffold with potential application in cornea implantation.Int. J. Polym. Mater.20227156857810.1080/00914037.2020.1865349
    [Google Scholar]
  117. BidgoliH. KhodadadiA.A. MortazaviY. A hydrophobic/oleophilic chitosan-based sorbent: Toward an effective oil spill remediation technology.J. Environ. Chem. Eng.20197510334010.1016/j.jece.2019.103340
    [Google Scholar]
  118. DongF. XueQ. LiuJ. GuoZ. ZhongH. SunH. The Influence of Amino and Hydroxyl of Chitosan on Hydroxyl Radical Scavenging Activity2009 3rd International Conference on Bioinformatics and Biomedical EngineeringBeijing, China, 2009, pp. 1–4.10.1109/ICBBE.2009.5163624
    [Google Scholar]
  119. AhmedS. AnnuA. AliA. SheikhJ. A review on chitosan centred scaffolds and their applications in tissue engineering.Int. J. Biol. Macromol.201811684986210.1016/j.ijbiomac.2018.04.17629730001
    [Google Scholar]
  120. SogiasI.A. WilliamsA.C. KhutoryanskiyV.V. Why is chitosan mucoadhesive?Biomacromolecules2008971837184210.1021/bm800276d18540644
    [Google Scholar]
  121. Abd El-HackM.E. El-SaadonyM.T. ShafiM.E. ZabermawiN.M. ArifM. BatihaG.E. KhafagaA.F. Abd El-HakimY.M. Al-SagheerA.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review.Int. J. Biol. Macromol.20201642726274410.1016/j.ijbiomac.2020.08.15332841671
    [Google Scholar]
  122. HosseinnejadM. JafariS.M. Evaluation of different factors affecting antimicrobial properties of chitosan.Int. J. Biol. Macromol.20168546747510.1016/j.ijbiomac.2016.01.02226780706
    [Google Scholar]
  123. VerleeA. MinckeS. StevensC.V. Recent developments in antibacterial and antifungal chitosan and its derivatives.Carbohydr. Polym.201716426828310.1016/j.carbpol.2017.02.00128325326
    [Google Scholar]
  124. RomanazziG. FelizianiE. SivakumarD. Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film- forming properties.Front. Microbiol.20189274510.3389/fmicb.2018.0274530564200
    [Google Scholar]
  125. SzymańskaE. WinnickaK. Stability of chitosan—a challenge for pharmaceutical and biomedical applications.Marine Drugs2015131819184610.3390/md13041819
    [Google Scholar]
  126. KeanT. ThanouM. Biodegradation, biodistribution and toxicity of chitosan.Adv. Drug Deliv. Rev.201062131110.1016/j.addr.2009.09.00419800377
    [Google Scholar]
  127. AranazI. AlcántaraA.R. CiveraM.C. AriasC. ElorzaB. Heras CaballeroA. AcostaN. Chitosan: An overview of its properties and applications.Polymers (Basel)20211319325610.3390/polym1319325634641071
    [Google Scholar]
  128. ForsstenS.D. BjörklundM. OuwehandA.C. Streptococcus mutans, caries and simulation models.Nutrients20102329029810.3390/nu203029022254021
    [Google Scholar]
  129. RezaeiT. MehramouzB. GholizadehP. YousefiL. GanbarovK. GhotaslouR. TaghizadehS. KafilH.S. Factors associated with Streptococcus mutans pathogenicity in the oral cavity.Biointerface Res. Appl. Chem.202213436810.33263/BRIAC134.368
    [Google Scholar]
  130. WangM. MuhammadT. GaoH. LiuJ. LiangH. Targeted pH-responsive chitosan nanogels with Tanshinone IIA for enhancing the antibacterial/anti-biofilm efficacy.Int. J. Biol. Macromol.202323712417710.1016/j.ijbiomac.2023.12417736972823
    [Google Scholar]
  131. MármolI. Sánchez-de-DiegoC. Pradilla DiesteA. CerradaE. Rodriguez YoldiM. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer.Int. J. Mol. Sci.201718119710.3390/ijms1801019728106826
    [Google Scholar]
  132. CentellesJ.J. General aspects of colorectal cancer.ISRN Oncol.2012201211910.5402/2012/13926823209942
    [Google Scholar]
  133. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z32296018
    [Google Scholar]
  134. ChenL. ZhangL. ZhaoR. ShenJ. WangY. ZhuJ. FangH. LiuN. WangC. WeiT. ChaiY. LiM. WuC. ChenQ. LiuZ. Oral delivery of anti-PD-L1 antibody for cancer immunotherapy against orthotopic colorectal tumors.Nano Today20235010183410.1016/j.nantod.2023.101834
    [Google Scholar]
  135. LiS. QingY. LouY. LiR. WangH. WangX. YingB. TangX. QinY. Injectable thermosensitive black phosphorus nanosheet- and doxorubicin-loaded hydrogel for synergistic bone tumor photothermal-chemotherapy and osteogenesis enhancement.Int. J. Biol. Macromol.202323912420910.1016/j.ijbiomac.2023.12420936972826
    [Google Scholar]
  136. ShenZ.S. CuiX. HouR.X. LiQ. DengH.X. FuJ. Tough biodegradable chitosan–gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering.RSC Advances2015569556405564710.1039/C5RA06835E
    [Google Scholar]
  137. MouryaV.K. InamdarN.N. Trimethyl chitosan and its applications in drug delivery.J. Mater. Sci. Mater. Med.20092051057107910.1007/s10856‑008‑3659‑z19112609
    [Google Scholar]
  138. GargU. ChauhanS. NagaichU. JainN. Current advances in chitosan nanoparticles based drug delivery and targeting.Adv. Pharm. Bull.20199219520410.15171/apb.2019.02331380245
    [Google Scholar]
  139. ChuS. WangJ. GaoF. The application of chitosan nanostructures in stomatology.Molecules202126631510.3390/molecules26206315
    [Google Scholar]
  140. SuoL. JiangN. WangY. WangP. ChenJ. PeiX. WangJ. WanQ. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition.J. Biomed. Mater. Res. B Appl. Biomater.2019107363564510.1002/jbm.b.3415629802685
    [Google Scholar]
  141. Kodolova-ChukhontsevaV.V. DresvyaninaE.N. NashchekinaY.A. Dobrovol’skayaI.P. BystrovS.G. Ivan’kovaE.M. YudinV.E. MorgantiP. Application of the composite fibers based on chitosan and chitin nanofibrils in cosmetology.J. Funct. Biomater.202213419810.3390/jfb1304019836278667
    [Google Scholar]
  142. Kodolova-ChukhontsevaV.V. RozovaE.Y. DresvyaninaE.N. NashchekinaY.A. Dobrovol’skayaI.P. VlasovaE.N. BystrovS.G. PopovaE.N. MaslennikovaT.P. YudinV.E. MorgantiP. New composite materials based on chitosan films reinforced with chitin nanofibrils for cosmetic application.Cosmetics20231025110.3390/cosmetics10020051
    [Google Scholar]
  143. SionkowskaA. KaczmarekB. MichalskaM. LewandowskaK. GrabskaS. Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics.Pure Appl. Chem.201789121829183910.1515/pac‑2017‑0314
    [Google Scholar]
  144. ChenK. GuoB. LuoJ. Quaternized carboxymethyl chitosan/organic montmorillonite nanocomposite as a novel cosmetic ingredient against skin aging.Carbohydr. Polym.201717310010610.1016/j.carbpol.2017.05.08828732847
    [Google Scholar]
  145. BudinčićJ.M. PetrovićL. ĐekićL. FrajJ. BučkoS. KatonaJ. SpasojevićL. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules.Carbohydr. Polym.202125111698810.1016/j.carbpol.2020.11698833142560
    [Google Scholar]
  146. ResendeA.H.M. FariasJ.M. SilvaD.D.B. RufinoR.D. LunaJ.M. StamfordT.C.M. SarubboL.A. Application of biosurfactants and chitosan in toothpaste formulation.Colloids Surf. B Biointerfaces2019181778410.1016/j.colsurfb.2019.05.03231125921
    [Google Scholar]
  147. Mondéjar-LópezM. López-JimenezA.J. García MartínezJ.C. AhrazemO. Gómez-GómezL. NizaE. Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics.Int. J. Biol. Macromol.202220628829710.1016/j.ijbiomac.2022.02.16435240208
    [Google Scholar]
  148. TaQ. TingJ. HarwoodS. BrowningN. SimmA. RossK. OlierI. Al-KassasR. Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin.Eur. J. Pharm. Sci.202116010576510.1016/j.ejps.2021.10576533607243
    [Google Scholar]
  149. ShanH. MoH. LiuY. ZengC. PengS. ZhanH. As(III) removal by a recyclable granular adsorbent through dopping Fe-Mn binary oxides into graphene oxide chitosan.Int. J. Biol. Macromol.202323712418410.1016/j.ijbiomac.2023.12418436972821
    [Google Scholar]
  150. Mohd Abdull MajidM.A.H. OsmanN.H. TamchekN. Ahmad SukriN.A. MazlanH.I. MazuN.N. IdrisA. LiewJ.Y.C. RamliM.M. Physical, mechanical and electrical properties of chitosan/graphene oxide composite films for copper ions (Cu2+) detection.J. Polym. Environ.20233183565357210.1007/s10924‑023‑02831‑z
    [Google Scholar]
  151. MahmoodiN.M. SalehiR. AramiM. BahramiH. Dye removal from colored textile wastewater using chitosan in binary systems.Desalination20112671647210.1016/j.desal.2010.09.007
    [Google Scholar]
  152. TanC. LiN. WangY. YuX. YangL. CaoR. YeX. Integrated physiological and transcriptomic analyses revealed improved cold tolerance in cucumber (cucumis sativus L.) by exogenous chitosan oligosaccharide.Int. J. Mol. Sci.2023247620210.3390/ijms2407620237047175
    [Google Scholar]
  153. GrandeC.D. MangadlaoJ. FanJ. De LeonA. Delgado-OspinaJ. RojasJ.G. RodriguesD.F. AdvinculaR. Chitosan cross-linked graphene oxide nanocomposite films with antimicrobial activity for application in food industry.Macromol Symposia2017374160011410.1002/masy.201600114
    [Google Scholar]
  154. JiangY. LanW. SameenD.E. AhmedS. QinW. ZhangQ. ChenH. DaiJ. HeL. LiuY. Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging.Int. J. Biol. Macromol.202016034035110.1016/j.ijbiomac.2020.05.20232470587
    [Google Scholar]
  155. IvanovaN.A. PhilipchenkoA.B. Superhydrophobic chitosan-based coatings for textile processing.Appl. Surf. Sci.201226378378710.1016/j.apsusc.2012.09.173
    [Google Scholar]
  156. SzadkowskiB. PiotrowskaM. RybińskiP. MarzecA. Natural bioactive formulations for biodegradable cotton eco-fabrics with antimicrobial and fire-shielding properties.Int. J. Biol. Macromol.202323712414310.1016/j.ijbiomac.2023.12414336972831
    [Google Scholar]
  157. LiX. HuZ. MaJ. WangX. ZhangY. WangW. YuanZ. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles.Colloids Surf. B Biointerfaces201816726026610.1016/j.colsurfb.2018.04.00529677597
    [Google Scholar]
  158. WangS. LuW. TovmachenkoO. RaiU.S. YuH. RayP.C. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes.Chem. Phys. Lett.20084631-314514910.1016/j.cplett.2008.08.03924068836
    [Google Scholar]
  159. AlkilanyA.M. NagariaP.K. HexelC.R. ShawT.J. MurphyC.J. WyattM.D. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.Small20095670170810.1002/smll.20080154619226599
    [Google Scholar]
  160. RahmanL. GoswamiJ. Recent development on physical and biological properties of chitosan-based composite films with natural extracts: A review.J. Bioact. Compat. Polym.202136322523610.1177/08839115211014218
    [Google Scholar]
  161. CazónP. VázquezM. Mechanical and barrier properties of chitosan combined with other components as food packaging film.Environ. Chem. Lett.202018225726710.1007/s10311‑019‑00936‑3
    [Google Scholar]
  162. SukpaitaT. ChirachanchaiS. PimkhaokhamA. AmpornaramvethR.S. Chitosan-based scaffold for mineralized tissues regeneration.Mar. Drugs2021191055110.3390/md1910055134677450
    [Google Scholar]
  163. KatasH. ModenN.Z. LimC.S. CelesistinusT. ChanJ.Y. GanasanP. Suleman Ismail AbdallaS. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine.J. Nanotechnol.2018201811310.1155/2018/4290705
    [Google Scholar]
  164. PotaraM. ManiuD. AstileanS. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.Nanotechnology2009203131560210.1088/0957‑4484/20/31/31560219597258
    [Google Scholar]
  165. SunL. LiJ. CaiJ. ZhongL. RenG. MaQ. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight.Carbohydr. Polym.201717810511410.1016/j.carbpol.2017.09.03229050575
    [Google Scholar]
  166. PhanT.T.V. PhanD.T. CaoX.T. HuynhT.-C. OhJ. Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications.Nanomaterials20211127310.3390/nano11020273
    [Google Scholar]
  167. ZhuQ. ZhangW. CaiJ. LiJ. ZhongL. PuS. LiA. Morphology-controlled synthesis of gold nanoparticles with chitosan for catalytic reduction of nitrophenol.Colloids Surf. A Physicochem. Eng. Asp.202264012847110.1016/j.colsurfa.2022.128471
    [Google Scholar]
  168. LocatelliE. MonacoI. Comes FranchiniM. Surface modifications of gold nanorods for applications in nanomedicine.RSC Advances2015528216812169910.1039/C4RA16473C
    [Google Scholar]
  169. M FathilM.A. Faris TaufeqF.Y. Suleman Ismail AbdallaS. KatasH. Roles of chitosan in synthesis, antibacterial and anti-biofilm properties of bionano silver and gold.RSC Advances20221230192971931210.1039/D2RA01734B35865585
    [Google Scholar]
  170. FranconettiA. CarnereroJ.M. Prado-GotorR. Cabrera-EscribanoF. JaimeC. Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles.Carbohydr. Polym.201920780681410.1016/j.carbpol.2018.12.04630600069
    [Google Scholar]
  171. MohanC.O. GunasekaranS. RavishankarC.N. Chitosan-capped gold nanoparticles for indicating temperature abuse in frozen stored products.NPJ Sci. Food201931210.1038/s41538‑019‑0034‑z31304274
    [Google Scholar]
  172. HuangH. YangX. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate.Biomacromolecules2004562340234610.1021/bm049711615530050
    [Google Scholar]
  173. Regiel-FutyraA. Kus-LiśkiewiczM. SebastianV. IrustaS. ArrueboM. StochelG. KyziołA. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials.ACS Appl. Mater. Interfaces2015721087109910.1021/am508094e25522372
    [Google Scholar]
  174. SaravanakumarK. MariadossA.V.A. SathiyaseelanA. WangM.H. Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties.Int. J. Biol. Macromol.2020165Pt A74775710.1016/j.ijbiomac.2020.09.17732980412
    [Google Scholar]
  175. El-KhawagaA.M. ZidanA. El-MageedA.I.A.A. Preparation methods of different nanomaterials for various potential applications: A review.J. Mol. Struct.2023128113514810.1016/j.molstruc.2023.135148
    [Google Scholar]
  176. InobemeA. AdetunjiC. MalikiM. OnyeachuB. KelaniT. EziukwuC. OloriE. MathewJ. BamigboyeM. Strategies to synthesize, advantages, and disadvantages of pharmaceutical nanoparticles.Nanotechnology for Drug Delivery and Pharmaceuticals.Elsevier202337138510.1016/B978‑0‑323‑95325‑2.00006‑7
    [Google Scholar]
  177. HuangK.J. LiJ. WuY.Y. LiuY.M. Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform.Bioelectrochemistry201390182310.1016/j.bioelechem.2012.10.00523165290
    [Google Scholar]
  178. FangY. ZhangD. GuoY. GuoY. ChenQ. Simple one-pot preparation of chitosan-reduced graphene oxide-Au nanoparticles hybrids for glucose sensing.Sens. Actuators B Chem.201522126527210.1016/j.snb.2015.06.098
    [Google Scholar]
  179. AfkhamiA. HashemiP. BagheriH. SalimianJ. AhmadiA. MadrakianT. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite.Biosens. Bioelectron.20179312413110.1016/j.bios.2016.09.05927665169
    [Google Scholar]
  180. SamanmanS. NumnuamA. LimbutW. KanatharanaP. ThavarungkulP. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode.Anal. Chim. Acta201585352153210.1016/j.aca.2014.10.00625467499
    [Google Scholar]
  181. DuanF. ZhangS. YangL. ZhangZ. HeL. WangM. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen.Anal. Chim. Acta2018103612113210.1016/j.aca.2018.06.07030253822
    [Google Scholar]
  182. ZhaoH. JiX. WangB. WangN. LiX. NiR. RenJ. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection.Biosens. Bioelectron.201565233010.1016/j.bios.2014.10.00725461134
    [Google Scholar]
  183. MironenkoA.Y. SergeevA.A. NazirovA.E. ModinE.B. VoznesenskiyS.S. BratskayaS.Y. H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites.Sens. Actuators B Chem.201622534835310.1016/j.snb.2015.11.073
    [Google Scholar]
  184. KleszczK. HebdaM. KyziołA. KrawiecH. KyziołK. Towards prevention of biofilm formation: Ti6Al7Nb modified with nanocomposite layers of chitosan and Ag/Au nanoparticles.Appl. Surf. Sci.202155714979510.1016/j.apsusc.2021.149795
    [Google Scholar]
  185. WuZ. LiW. ChengS. LiuJ. WangS. Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction.Nanomedicine20234710261610.1016/j.nano.2022.10261636374915
    [Google Scholar]
  186. HuL. ZhangL. ZhouY. MengG. YuY. YaoW. YanZ. Chitosan-stabilized gold nano composite modified glassy carbon electrode for electrochemical sensing trace Hg2+ in practice.J. Electrochem. Soc.201816516B900B90510.1149/2.1101816jes
    [Google Scholar]
  187. JalehB. MoradiA. EslamipanahM. KhazalpourS. TahzibiH. AzizianS. GawandeM.B. Gawande, Laser-assisted synthesis of Au NPs on MgO/chitosan: Applications in electrochemical hydrogen storage.J. Magn. Alloys2023202300310.1016/j.jma.2023.05.003
    [Google Scholar]
  188. DuY. LuoX.L. XuJ.J. ChenH.Y. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor.Bioelectrochemistry200770234234710.1016/j.bioelechem.2006.05.00216793348
    [Google Scholar]
  189. JiangC. ZhuJ. LiZ. LuoJ. WangJ. SunY. Chitosan–gold nanoparticles as peroxidase mimic and their application in glucose detection in serum.RSC Advances2017770444634446910.1039/C7RA08967H
    [Google Scholar]
  190. XuS. ZhangR. ZhaoW. ZhuY. WeiW. LiuX. LuoJ. Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen.Biosens. Bioelectron.20179257057610.1016/j.bios.2016.10.05827829564
    [Google Scholar]
  191. WangC.H. ChangC.W. PengC.A. Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment.J. Nanopart. Res.20111372749275810.1007/s11051‑010‑0162‑5
    [Google Scholar]
  192. Nezhad-MokhtariP. Akrami-Hasan-KohalM. GhorbaniM. An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications.Int. J. Biol. Macromol.202015419820510.1016/j.ijbiomac.2020.03.11232184143
    [Google Scholar]
  193. BaeiP. Jalili-FiroozinezhadS. Rajabi-ZeletiS. Tafazzoli-ShadpourM. BaharvandH. AghdamiN. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering.Mater. Sci. Eng. C20166313114110.1016/j.msec.2016.02.05627040204
    [Google Scholar]
  194. HungH.S. YangY.C. ChangC.H. ChangK.B. ShenC.C. TangC.L. LiuS.Y. LeeC.H. YenC.M. YangM.Y. Neural differentiation potential of mesenchymal stem cells enhanced by biocompatible chitosan-gold nanocomposites.Cells20221112186110.3390/cells1112186135740991
    [Google Scholar]
  195. LinY.L. JenJ.C. HsuS. ChiuI.M. Sciatic nerve repair by microgrooved nerve conduits made of chitosan- gold nanocomposites.Surg. Neurol.200870Suppl. 1S9S18, 9-1810.1016/j.surneu.2008.01.05718440619
    [Google Scholar]
  196. WangY. HuangN. YangZ. Revealing the role of zinc ions in atherosclerosis therapy via an engineered three-dimensional pathological model.Adv. Sci. (Weinh.)20231018230047510.1002/advs.20230047537092571
    [Google Scholar]
  197. PrakashJ. PremaD. VenkataprasannaK.S. BalagangadharanK. SelvamuruganN. VenkatasubbuG.D. Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering.Int. J. Biol. Macromol.2020154627110.1016/j.ijbiomac.2020.03.09532173442
    [Google Scholar]
  198. Abrica-GonzálezP. Zamora-JustoJ.A. Sotelo-LópezA. Vázquez-MartínezG.R. Balderas-LópezJ.A. Muñoz-DiosdadoA. Ibáñez-HernándezM. Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers.Nanoscale Res. Lett.201914125810.1186/s11671‑019‑3083‑y31363863
    [Google Scholar]
  199. RazaviS. SeyedebrahimiR. JahromiM. Biodelivery of nerve growth factor and gold nanoparticles encapsulated in chitosan nanoparticles for schwann-like cells differentiation of human adipose-derived stem cells.Biochem. Biophys. Res. Commun.2019513368168710.1016/j.bbrc.2019.03.18930982578
    [Google Scholar]
  200. HashemA.H. ShehabeldineA.M. AliO.M. SalemS.S. Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities.Polymers (Basel)20221411229310.3390/polym1411229335683965
    [Google Scholar]
  201. Hernández MartínezS.P. Rivera GonzálezT.I. Franco MolinaM.A. Bollain y GoytiaJ.J. Martínez SanmiguelJ.J. Zárate TriviñoD.G. Rodríguez PadillaC. A novel gold calreticulin nanocomposite based on chitosan for wound healing in a diabetic mice model.Nanomaterials (Basel)2019917510.3390/nano901007530625974
    [Google Scholar]
  202. HemalathaT. PrabuP. GunadhariniD.N. GowthamanM.K. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging.Int. J. Biol. Macromol.201811225025710.1016/j.ijbiomac.2018.01.15929378272
    [Google Scholar]
  203. Mohamady HusseinM.A. BañosF.G.D. GrinholcM. Abo DenaA.S. El-SherbinyI.M. MegahedM. Exploring the physicochemical and antimicrobial properties of gold-chitosan hybrid nanoparticles composed of varying chitosan amounts.Int. J. Biol. Macromol.20201621760176910.1016/j.ijbiomac.2020.08.04632784029
    [Google Scholar]
  204. MendozaG. Regiel-FutyraA. AndreuV. SebastiánV. KyziołA. StochelG. ArrueboM. Bactericidal effect of gold–chitosan nanocomposites in coculture models of pathogenic bacteria and human macrophages.ACS Appl. Mater. Interfaces2017921176931770110.1021/acsami.6b1512328225263
    [Google Scholar]
  205. HusseinM.A.M. GrinholcM. DenaA.S.A. El-SherbinyI.M. MegahedM. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract.Carbohydr. Polym.202125611749810.1016/j.carbpol.2020.11749833483025
    [Google Scholar]
  206. Al-MusawiS. AlbukhatyS. Al-KaragolyH. SulaimanG.M. AlwahibiM.S. DewirY.H. SolimanD.A. RizwanaH. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing.Molecules202025477010.3390/molecules25204770
    [Google Scholar]
  207. FusterM.G. MontalbánM.G. CarissimiG. LimaB. FeresinG.E. CanoM. Giner-CasaresJ.J. López-CascalesJ.J. EnrizR.D. VílloraG. Antibacterial effect of chitosan–gold nanoparticles and computational modeling of the interaction between chitosan and a lipid bilayer model.Nanomaterials (Basel)20201012234010.3390/nano1012234033255714
    [Google Scholar]
  208. CzechowskaJ. CichońE. BelcarzA. ŚlósarczykA. ZimaA. Effect of gold nanoparticles and silicon on the bioactivity and antibacterial properties of hydroxyapatite/chitosan/tricalcium phosphate-based biomicroconcretes.Materials (Basel)20211414385410.3390/ma1414385434300772
    [Google Scholar]
  209. ChittratanP. ChalitangkoonJ. WongsariyaK. MathaweesansurnA. DetsriE. MonvisadeP. New Chitosan- Grafted Thymol Coated on Gold Nanoparticles for Control of Cariogenic Bacteria in the Oral Cavity.ACS Omega2022730265822659010.1021/acsomega.2c0277635936441
    [Google Scholar]
  210. Al-SarrajF. AlotibiI. Al-ZahraniM. AlbiheyriR. AlghamdiM.A. NassN.M. Abd-EllatifS. MakhlofR.T.M. AlsaadM.A. SajerB.H. ElshafieH.S. Green Synthesis of Chitosan-Capped Gold Nanoparticles Using Salvia officinalis Extract: Biochemical Characterization and Antimicrobial and Cytotoxic Activities.Molecules20232823776210.3390/molecules2823776238067495
    [Google Scholar]
  211. SarfrazN. KhanI. Plasmonic gold nanoparticles (AuNPs): Properties, synthesis and their advanced energy, environmental and biomedical applications.Chem. Asian J.202116772074210.1002/asia.20200120233440045
    [Google Scholar]
  212. BhumkarD.R. JoshiH.M. SastryM. PokharkarV.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin.Pharm. Res.20072481415142610.1007/s11095‑007‑9257‑917380266
    [Google Scholar]
  213. AsalH.A. ShoueirK.R. El-HagrasyM.A. TosonE.A. Controlled synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin delivery.Int. J. Biol. Macromol.2022209Pt B2188219610.1016/j.ijbiomac.2022.04.20035504421
    [Google Scholar]
  214. SalemD.S. SliemM.A. El-SesyM. ShoumanS.A. BadrY. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles.J. Photochem. Photobiol. B2018182929910.1016/j.jphotobiol.2018.03.02429653312
    [Google Scholar]
  215. ChenR. ChenQ. HuoD. DingY. HuY. JiangX. In situ formation of chitosan–gold hybrid hydrogel and its application for drug delivery.Colloids Surf. B Biointerfaces20129713213710.1016/j.colsurfb.2012.03.02722609593
    [Google Scholar]
  216. SingpannaK. PornpitchanarongC. PatrojanasophonP. RojanarataT. NgawhirunpatT. LiS.K. OpanasopitP. Chitosan capped-gold nanoparticles as skin penetration enhancer for small molecules: A study in porcine skin.Int. J. Pharm.202364012303410.1016/j.ijpharm.2023.12303437172630
    [Google Scholar]
  217. GubitosaJ. RizziV. FiniP. Del SoleR. LopedotaA. LaquintanaV. DenoraN. AgostianoA. CosmaP. Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties.Mater. Sci. Eng. C202010611017010.1016/j.msec.2019.11017031753365
    [Google Scholar]
  218. Zainol AbidinN.A. KorminF. Zainol AbidinN.A. BakarM.F.A. MoujdinI.A. Synthesis and characterization of curcumin-chitosan loaded gold nanoparticles by oryctes rhinoceros’ chitin for cosmeceutical application.Molecules2023284179910.3390/molecules2804179936838785
    [Google Scholar]
  219. DuyN.N. DuD.X. Van PhuD. QuocL.A. DuB.D. HienN.Q. Synthesis of gold nanoparticles with seed enlargement size by γ-irradiation and investigation of antioxidant activity.Colloids Surf. A Physicochem. Eng. Asp.201343663363810.1016/j.colsurfa.2013.07.038
    [Google Scholar]
  220. VedhanayagamM. NairB.U. SreeramK.J. Effect of functionalized gold nanoparticle on collagen stabilization for tissue engineering application.Int. J. Biol. Macromol.20191231211122010.1016/j.ijbiomac.2018.11.17930465845
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336929241004074529
Loading
/content/journals/cmc/10.2174/0109298673336929241004074529
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanocomposites ; cell encapsulation ; chitosan ; Gold nanoparticles ; nanogold ; hydrogels
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test