Skip to content
2000
image of The Effect of Gallic Acid on the Alleviation of the Chemotherapy-Induced Myelosuppression

Abstract

Objective

This study aims to investigate the effect of Gallic Acid (GA) on the alleviation of chemotherapy-induced bone marrow suppression, with a comparison to Diyu sheng bai tablets (DYSB) and RhG-CSF.

Methods

A mouse model of bone marrow suppression was established in BALB/c mice using intraperitoneal injections of cyclophosphamide (CTX). All procedures were performed after obtaining ethical clearance from the institutional animal ethics committee. Mice were treated with low (100 mg/kg/d), medium (200 mg/kg/d), and high (400 mg/kg/d) doses of Gallic Acid (GA) to mitigate CTX-induced bone marrow suppression. In parallel, mice in the positive control group were also treated with DYSB and RhG-CSF at their respective standard doses (DYSB: 100 mg/kg/day, RhG-CSF: 125 mg/kg/day). The efficacy of GA in alleviating chemotherapy-induced bone marrow suppression was evaluated through blood cell counts, immune organ (thymus and spleen) indices, bone marrow nucleated cell (BMNC) counts, cell cycle analysis, apoptosis, histopathology of bone marrow and spleen, and analysis of splenic hematopoietic factors.

Results

CTX induced a decrease in peripheral blood cells and BMNC counts, reduced spleen and thymus indices, and diminished abnormal pathology of bone marrow and spleen, as well as decreasing disturbances in hematopoietic factors. GA was able to alleviate these abnormalities in the bone marrow. It modulated cell proliferation and apoptosis, adjusted the proportion of cells in the G0/G1 phase, and reduced apoptosis in femoral bone marrow.

Conclusion

Gallic Acid (GA) alleviates chemotherapy-induced bone marrow suppression by improving immune organ function, promoting bone marrow cell recovery, and inhibiting apoptosis. These findings support GA as a potential adjunct therapy for chemotherapy, with promising clinical applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354122241220051407
2025-01-20
2025-04-25
Loading full text...

Full text loading...

References

  1. Mattiuzzi C. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019 9 4 217 222
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Turner N. Biganzoli L. Leo D.A. Continued value of adjuvant anthracyclines as treatment for early breast cancer. Lancet Oncol. 2015 16 7 e362 e369 10.1016/S1470‑2045(15)00079‑0 26149888
    [Google Scholar]
  4. Emadi A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009 6 11 638 647
    [Google Scholar]
  5. Wagenaar H.C. Colombo N. Vergote I. Boes H.G. Zanetta G. Pecorelli S. Lacave A.J. Hoesel v.Q. Cervantes A. Bolis G. Namer M. Lhommé C. Guastalla J.P. Nooij M.A. Poveda A. di Palumbo S.V. Vermorken J.B. Bleomycin, methotrexate, and CCNU in locally advanced or recurrent, inoperable, squamous-cell carcinoma of the vulva: An EORTC gynaecological cancer cooperative group study. Gynecol. Oncol. 2001 81 3 348 354 10.1006/gyno.2001.6180 11371121
    [Google Scholar]
  6. Ares P.L. Dvorkin M. Chen Y. Reinmuth N. Hotta K. Trukhin D. Statsenko G. Hochmair M.J. Özgüroğlu M. Ji J.H. Voitko O. Poltoratskiy A. Ponce S. Verderame F. Havel L. Bondarenko I. Kazarnowicz A. Losonczy G. Conev N.V. Armstrong J. Byrne N. Shire N. Jiang H. Goldman J.W. Batagelj E. Casarini I. Pastor A.V. Sena S.N. Zarba J.J. Burghuber O. Hartl S. Hochmair M.J. Lamprecht B. Studnicka M. Schlittler A.L. de Oliveira A.M.F. Calabrich A. Girotto C.G. Reis D.P. Gorini F.N.C. De Marchi R.M.P. Baldotto S.R.C. Sette C. Zukin M. Conev N.V. Dudov A. Ilieva R. Koynov K. Krasteva R. Tonev I. Valev S. Venkova V. Bi M. Chen C. Chen Y. Chen Z. Fang J. Feng J. Han Z. Hu J. Hu Y. Li W. Liang Z. Lin Z. Ma R. Ma S. Nan K. Shu Y. Wang K. Wang M. Wu G. Yang N. Yang Z. Zhang H. Zhang W. Zhao J. Zhao Y. Zhou C. Zhou J. Zhou X. Havel L. Kolek V. Koubkova L. Roubec J. Skrickova J. Zemanova M. Chouaid C. Hilgers W. Lena H. Sibilot M.D. Robinet G. Souquet P-J. Alt J. Bischoff H. Grohe C. Laack E. Lang S. Panse J. Reinmuth N. Schulz C. Bogos K. Csánky E. Fülöp A. Horváth Z. Kósa J. Laczó I. Losonczy G. Pajkos G. Pápai Z. Székely P.Z. Sárosi V. Somfay A. Ezer S.É. Telekes A. Bar J. Gottfried M. Heching N.I. Kuch Z.A. Bartolucci R. Bettini A.C. Delmonte A. Garassino M.C. Minelli M. Roila F. Verderame F. Atagi S. Azuma K. Goto H. Goto K. Hara Y. Hayashi H. Hida T. Hotta K. Kanazawa K. Kanda S. Kim Y.H. Kuyama S. Maeda T. Morise M. Nakahara Y. Nishio M. Nogami N. Okamoto I. Saito H. Shinoda M. Umemura S. Yoshida T. Claessens N. Cornelissen R. Heniks L. Hiltermann J. Smit E. van den Brekel S.A. Kazarnowicz A. Kowalski D. Mańdziuk S. Mróz R. Wojtukiewicz M. Ciuleanu T. Ganea D. Ungureanu A. Dvorkin M. Luft A. Moiseenko V. Poltoratskiy A. Sakaeva D. Smolin A. Statsenko G. Vasilyev A. Vladimirova L. Anasina I. Chovanec J. Demo P. Godal R. Kasan P. Stresko M. Urda M. Cho E.K. Ji J.H. Kim J-H. Kim S-W. Lee G-W. Lee J-S. Lee K.H. Lee K.H. Lee Y.G. Molla A.I.M. Gomez D.M. Mingorance I.D.J. Casado I.D. Brea L.M. Tarruella M.M. Bueno M.T. Mendivil N.A. Rodríguez P.A.L. Aix P.S. Campelo R.G.M. Chang G-C. Chen Y-H. Chiu C-H. Hsia T-C. Lee K-Y. Li C-T. Wang C-C. Wei Y-F. Wu S-Y. Alacacıoğlu A. Çiçin I. Demirkazik A. Erman M. Göksel T. Özgüroğlu M. Adamchuk H. Bondarenko I. Kolesnik O. Kryzhanivska A. Ostapenko Y. Shevnia S. Shparyk Y. Trukhin D. Ursol G. Voitko N. Voitko O. Vynnychenko I. Babu S. Chen Y. Chiang A. Chua W. Dakhil S. Dowlati A. Goldman J.W. Haque B. Jamil R. Knoble J. Lakhanpal S. Mi K. Nikolinakos P. Powell S. Ross H. Schaefer E. Schneider J. Spahr J. Spigel D. Stilwill J. Sumey C. Williamson M. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial. Lancet 2019 394 10212 1929 1939 10.1016/S0140‑6736(19)32222‑6 31590988
    [Google Scholar]
  7. Shimada K. Yamaguchi M. Atsuta Y. Matsue K. Sato K. Kusumoto S. Nagai H. Takizawa J. Fukuhara N. Nagafuji K. Miyazaki K. Ohtsuka E. Okamoto M. Sugita Y. Uchida T. Kayukawa S. Wake A. Ennishi D. Kondo Y. Izumi T. Kin Y. Tsukasaki K. Hashimoto D. Yuge M. Yanagisawa A. Kuwatsuka Y. Shimada S. Masaki Y. Niitsu N. Kiyoi H. Suzuki R. Tokunaga T. Nakamura S. Kinoshita T. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020 21 4 593 602 10.1016/S1470‑2045(20)30059‑0 32171071
    [Google Scholar]
  8. Liangran G. Combination of trail and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer. Int J Nanomedicine 2012 7 1449 60 10.2147/IJN.S24711
    [Google Scholar]
  9. Adair J.E. Kubek S.P. Kiem H.P. Hematopoietic stem cell approaches to cancer. Hematol. Oncol. Clin. North Am. 2017 31 5 897 912 10.1016/j.hoc.2017.06.012 28895855
    [Google Scholar]
  10. Hong D.Z. Ong T.C.C. Timbadia D.P. Tan H.T.A. Kwa E.D. Chong W.Q. Goh B.C. Loh W.S. Loh K.S. Tan E.C. Tay J.K. Systematic review and meta-analysis of the influence of genetic variation on ototoxicity in platinum-based chemotherapy. Otolaryngol. Head Neck Surg. 2023 168 6 1324 1337 10.1002/ohn.222 36802061
    [Google Scholar]
  11. Abid S.H. Malhotra V. Perry M.C. Radiation-induced and chemotherapy-induced pulmonary injury. Curr. Opin. Oncol. 2001 13 4 242 248 10.1097/00001622‑200107000‑00006 11429481
    [Google Scholar]
  12. Kurt N. Gunes O. Suleyman B. Bakan N. The effect of taxifolin on high-dose-cisplatin-induced oxidative liver injury in rats. Adv. Clin. Exp. Med. 2021 30 10 1025 1030 10.17219/acem/138318 34435476
    [Google Scholar]
  13. Im Z. Management of chemotherapy side effects and their long-term sequelae. Der Urologe. Ausg. A 2021 60 7 862 871
    [Google Scholar]
  14. Yang S. Traditional Chinese medicine on treating myelosuppression after chemotherapy: A protocol for systematic review and meta-analysis. Medicine 2021 Medicine 100 4 e24307
    [Google Scholar]
  15. Elmslie R.E. Glawe P. Dow S.W. Metronomic therapy with cyclophosphamide and piroxicam effectively delays tumor recurrence in dogs with incompletely resected soft tissue sarcomas. J. Vet. Intern. Med. 2008 22 6 1373 1379 10.1111/j.1939‑1676.2008.0179.x 18976288
    [Google Scholar]
  16. Ahlmann M. Hempel G. The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 2016 78 4 661 671 10.1007/s00280‑016‑3152‑1 27646791
    [Google Scholar]
  17. Huyan X.H. Lin Y.P. Gao T. Chen R.Y. Fan Y.M. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. Int. Immunopharmacol. 2011 11 9 1293 1297 10.1016/j.intimp.2011.04.011 21530682
    [Google Scholar]
  18. Ludeman S.M. The chemistry of the metabolites of cyclophosphamide. Curr. Pharm. Des. 1999 5 8 627 643 10.2174/1381612805666230110215458 10469895
    [Google Scholar]
  19. Epstein R.S. Aapro M.S. Roy B.U.K. Salimi T. Krenitsky J. Perkins L.M.L. Girman C. Schlusser C. Crawford J. Patient burden and real-world management of chemotherapy-induced myelosuppression: Results from an online survey of patients with solid tumors. Adv. Ther. 2020 37 8 3606 3618 10.1007/s12325‑020‑01419‑6 32642965
    [Google Scholar]
  20. Wang J. Ying Y-Y. Chen Z-H. Shao K-D. Zhang W-P. Lin S-Y. Guilu erxian glue () inhibits chemotherapy-induced bone marrow hematopoietic stem cell senescence in mice may via p16INK4a-rb signaling pathway. Chin. J. Integr. Med. 2020 26 11 819 824 10.1007/s11655‑020‑3098‑3 32915425
    [Google Scholar]
  21. Ismail Z.M.K. Amin N.M.A. Yacoub M.F.Y. Mohamed A.M.O. Myelo-enhancement by astragalus membranaceus in male albino rats with chemotherapy myelo-suppression. Histological and immunohistochemical study. Int. J. Stem Cells 2014 7 1 12 22 10.15283/ijsc.2014.7.1.12 24921023
    [Google Scholar]
  22. Crawford J. Herndon D. Gmitter K. Weiss J. The impact of myelosuppression on quality of life of patients treated with chemotherapy. Future Oncol. 2024 20 21 1515 1530 10.2217/fon‑2023‑0513
    [Google Scholar]
  23. Song T. TPGS-Modified long-circulating liposomes loading ziyuglycoside I for enhanced therapy of myelosuppression. Int. J. Nanomedicine 2021 16 6281 6295
    [Google Scholar]
  24. Haihong F. Ziyuglycoside II alleviates cyclophosphamide-induced leukopenia in mice via regulation of HSPC proliferation and differentiation. Biomed Pharmacother 2020 132 110862 10.1016/j.biopha.2020.110862
    [Google Scholar]
  25. Silin Z. Ginsenoside compound k regulates HIF-1α-Mediated glycolysis through Bclaf1 to inhibit the proliferation of human liver cancer cells. Front Pharmacol 2020 11 583334 10.3389/fphar.2020.583334
    [Google Scholar]
  26. Hongbo J. Ginsenoside Rh4 suppresses metastasis of gastric cancer via SIX1-dependent TGF-β/Smad2/3 signaling pathway. Nutrients 2022 14 8 1564 10.3390/nu14081564
    [Google Scholar]
  27. Li X. Chu S. Lin M. Gao Y. Liu Y. Yang S. Zhou X. Zhang Y. Hu Y. Wang H. Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur. J. Med. Chem. 2020 203 112627 10.1016/j.ejmech.2020.112627 32702586
    [Google Scholar]
  28. Liu X. Zhang Z. Liu J. Wang Y. Zhou Q. Wang S. Wang X. Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice. Int. Immunopharmacol. 2019 72 98 111 10.1016/j.intimp.2019.04.003 30974284
    [Google Scholar]
  29. Yao F. Phenolic compounds and ginsenosides in ginseng shoots and their antioxidant and anti-inflammatory capacities in LPS-induced RAW264.7 mouse macrophages. Int. J. Mol. Sci. 2019 20 12 2951
    [Google Scholar]
  30. Han J. Xia J. Zhang L. Cai E. Zhao Y. Fei X. Jia X. Yang H. Liu S. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide. J. Ginseng Res. 2019 43 4 618 624 10.1016/j.jgr.2018.07.009 31695568
    [Google Scholar]
  31. Pricci M. Curcumin and colorectal cancer: From basic to clinical evidences. Int. J. Mol. Sci. 2020 21 7 2364
    [Google Scholar]
  32. Wnb W.M.T. Nh L. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients 2019 11 12 2989
    [Google Scholar]
  33. Al-Hawary S.S.I. Jasim A.S. Kadhim M.M. Saadoon J.S. Ahmad I. Parra R.R.M. Hammoodi H.S. Abulkassim R. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother. Res. 2023 37 4 1624 1639 10.1002/ptr.7757 36883769
    [Google Scholar]
  34. Hatamie S. Akhavan O. Sadrnezhaad S.K. Ahadian M.M. Shirolkar M.M. Wang H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 2015 55 482 489 10.1016/j.msec.2015.05.077 26117780
    [Google Scholar]
  35. Peng Y. Ao M. Dong B. Jiang Y. Yu L. Chen Z. Hu C. Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther. 2021 15 4503 4525 10.2147/DDDT.S327378 34754179
    [Google Scholar]
  36. Mohammad J.D. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023 164 156144 10.1016/j.cyto.2023.156144
    [Google Scholar]
  37. Ma P. The influence of curcumin and (-)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem. Toxicol. 2013 36 1 93 101
    [Google Scholar]
  38. Patra K. Bose S. Sarkar S. Rakshit J. Jana S. Mukherjee A. Roy A. Mandal D.P. Bhattacharjee S. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid. Chem. Biol. Interact. 2012 195 3 231 239 10.1016/j.cbi.2012.01.001 22285266
    [Google Scholar]
  39. Zedong X. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024 180 114068 10.1016/j.foodres.2024.114068
    [Google Scholar]
  40. Dong W. Gallic acid impedes non-small cell lung cancer progression via suppression of EGFR-dependent CARM1-PELP1 complex. Drug Des Devel Ther 2020 14 1583 1592 10.2147/DDDT.S228123
    [Google Scholar]
  41. Ran H. Anticancer effect of gallic acid on acidity-induced invasion of MCF7 breast cancer cells. Nutrients 2023 15 16 3596 10.3390/nu15163596
    [Google Scholar]
  42. Jang Y.G. Ko E.B. Choi K.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem. 2020 84 108444 10.1016/j.jnutbio.2020.108444 32615369
    [Google Scholar]
  43. Jinrong B. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021 133 110985 10.1016/j.biopha.2020.110985
    [Google Scholar]
  44. Biaolong D. Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy. J Immunother Cancer 2022 10 7 e004037 10.1136/jitc‑2021‑004037
    [Google Scholar]
  45. Guo M.Z. Meng M. Feng C.C. Wang X. Wang C.L. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct. 2019 10 8 4792 4801 10.1039/C9FO00201D 31314026
    [Google Scholar]
  46. Zeng M. Zhang Y. Zhang X. Zhang W. Yu Q. Zeng W. Ma D. Gan J. Yang Z. Jiang X. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression. J. Ethnopharmacol. 2022 289 115028 10.1016/j.jep.2022.115028 35077825
    [Google Scholar]
  47. Crawford J. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management. Cancer 2004 100 2 228 237
    [Google Scholar]
  48. Hosseinimehr S.J. Ahmadashrafi S. Naghshvar F. Ahmadi A. Ehasnalavi S. Tanha M. Chemoprotective effects of Zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Integr. Cancer Ther. 2010 9 2 219 223 10.1177/1534735409360361 20356951
    [Google Scholar]
  49. Wang S. Yang X. Zhang Y. Cai E. Zheng X. Zhao Y. Li G. Han M. Yang L. Study on the changes of chemical constituents in different compatibilities of ginseng-prepared rehmannia root and their effects on bone marrow inhibition after chemotherapy. Chem. Pharm. Bull. 2020 68 5 428 435 10.1248/cpb.c19‑00994 32188797
    [Google Scholar]
  50. Deng J. Zhong Y.F. Wu Y.P. Luo Z. Sun Y.M. Wang G.E. Kurihara H. Li Y.F. He R.R. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage. Redox Biol. 2018 14 1 6 10.1016/j.redox.2017.08.003 28826042
    [Google Scholar]
  51. Carey P.J. Drug-induced myelosuppression. Drug Saf. 2003 26 10 691 706 10.2165/00002018‑200326100‑00003 12862504
    [Google Scholar]
  52. Zhang W.N. Gong L.L. Liu Y. Zhou Z.B. Wan C.X. Xu J.J. Wu Q-X. Chen L. Lu Y-M. Chen Y. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice. J. Funct. Foods 2020 69 103942 10.1016/j.jff.2020.103942
    [Google Scholar]
  53. Gridley D.S. Mao X.W. Stodieck L.S. Ferguson V.L. Bateman T.A. Moldovan M. Cunningham C.E. Jones T.A. Slater J.M. Pecaut M.J. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013 8 9 e75097 10.1371/journal.pone.0075097 24069384
    [Google Scholar]
  54. Han J. Dai M. Zhao Y. Cai E. Zhang L. Jia X. Sun N. Fei X. Shu H. Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis. J. Ginseng Res. 2020 44 2 291 299 10.1016/j.jgr.2019.01.001 32148411
    [Google Scholar]
  55. Dolgova E.V. Efremov Y.R. Orishchenko K.E. Andrushkevich O.M. Alyamkina E.A. Proskurina A.S. Bayborodin S.I. Nikolin V.P. Popova N.A. Chernykh E.R. Ostanin A.A. Taranov O.S. Omigov V.V. Minkevich A.M. Rogachev V.A. Bogachev S.S. Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene 2013 528 2 74 83 10.1016/j.gene.2013.06.058 23911305
    [Google Scholar]
  56. Chen Q. Han X. Wang W. Zhao L. Chen A. Danggui sini decoction ameliorates myelosuppression in animal model by upregulating Thrombopoietin expression. Cell Biochem. Biophys. 2015 71 2 945 950 10.1007/s12013‑014‑0291‑z 25308860
    [Google Scholar]
  57. Veiby O.P. Mikhail A.A. Snodgrass H.R. Growth factors and hematopoietic stem cells. Hematol. Oncol. Clin. North Am. 1997 11 6 1173 1184 10.1016/S0889‑8588(05)70487‑1 9443050
    [Google Scholar]
  58. Ioannis M. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 2018 172 1-2 147 161.e12 10.1016/j.cell.2017.11.034
    [Google Scholar]
  59. Garlanda C. The interleukin-1 family: Back to the future. Immunity 2013 39 6 1003 1018
    [Google Scholar]
  60. Eder M. IL-3 in the clinic. Stem Cells 1997 15 5 327 333
    [Google Scholar]
  61. Hunter C.A. Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015 16 5 448 457 10.1038/ni.3153 25898198
    [Google Scholar]
  62. Tsiftsoglou A.S. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): Implications in regenerative medicine. Cells 2021 10 8 2140 10.3390/cells10082140 34440909
    [Google Scholar]
  63. Akkerman J.W. Thrombopoietin and platelet function. Semin. Thromb. Hemost. 2006 32 3 295 304 10.1055/s‑2006‑939442 16673285
    [Google Scholar]
  64. Kumar A. GM-CSF: A double-edged sword in cancer immunotherapy. Front. Immunol. 2022 13 901277
    [Google Scholar]
  65. Waskow C. Spatiotemporal resolution of SCF supply in early hematopoiesis. Cell Stem Cell 2019 24 3 349 350
    [Google Scholar]
  66. Se J Fw J TNF-alpha, the great imitator: Role of p55 and p75 TNF receptors in hematopoiesis. Stem Cells 1994 12 111 26
    [Google Scholar]
  67. Shruthi S. Shenoy B.K. Genoprotective effects of gallic acid against cisplatin induced genotoxicity in bone marrow cells of mice. Toxicol. Res. 2018 7 5 951 958 10.1039/C8TX00058A 30310672
    [Google Scholar]
  68. Shruthi S. Shenoy K.B. Gallic acid: A promising genoprotective and hepatoprotective bioactive compound against cyclophosphamide induced toxicity in mice. Environ. Toxicol. 2021 36 1 123 131 10.1002/tox.23018 32902929
    [Google Scholar]
  69. Baharmi S. Kalantari H. Kalantar M. Goudarzi M. Mansouri E. Kalantar H. Pretreatment with gallic acid mitigates cyclophosphamide induced inflammation and oxidative stress in mice. Curr. Mol. Pharmacol. 2022 15 1 204 212 34061011
    [Google Scholar]
  70. Shruthi S Vijayalaxmi KK Shenoy KB Immunomodulatory effects of gallic acid against cyclophosphamide- and cisplatin-induced immunosuppression in swiss albino mice. Ind. J. Pharm. Sci. 2018 80 1 150 160
    [Google Scholar]
  71. Zhang Y. Liu J. Wang Y. Sun C. Li W. Qiu J. Qiao Y. Wu F. Huo X. An Y. Zhang B. Ma S. Zheng J. Ma X. Nucleosides and amino acids, isolated from Cordyceps sinensis, protected against cyclophosphamide-induced myelosuppression in mice. Nat. Prod. Res. 2022 36 23 6056 6059 10.1080/14786419.2022.2043307 35188001
    [Google Scholar]
  72. Han J. Sun N. Xing J. Fei X. Cai E. Su F. Effect and mechanism of specnuezhenide on chemotherapy-induced myelosuppression. Comb. Chem. High Throughput Screen. 2023 26 13 2393 2400 10.2174/1386207326666230228120608 36852800
    [Google Scholar]
  73. Liu Y.H. Qin H.Y. Zhong Y.Y. Li S. Wang H.J. Wang H. Chen L.L. Tang X. Li Y.L. Qian Z.Y. Li H.Y. Zhang L. Chen T. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice. BMC Cancer 2021 21 1 37 10.1186/s12885‑020‑07742‑z 33413214
    [Google Scholar]
  74. Raghavendran H.R.B. Sathyanath R. Shin J. Kim H.K. Han J.M. Cho J. Son C.G. Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: Ginsenoside Rg1 partially supports myelopoiesis. PLoS One 2012 7 4 e33733 10.1371/journal.pone.0033733 22523542
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354122241220051407
Loading
/content/journals/cmc/10.2174/0109298673354122241220051407
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Natural compounds ; bone marrow suppression ; chemotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test