Skip to content
2000
image of An Azomethine Derivative, 1-(4-nitrophenyl)-N-phenylmethanimine (BCS2) Ameliorated 7,12-dimethylbenz(a)anthracene-induced Mammary Carcinoma through Nrf2-Keap1-HO-1 Pathway

Abstract

Aims

The aim of this study is the evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against mammary carcinoma through the Nrf2-Keap1-HO-1 pathway.

Background

The global prevalence of breast cancer is rising at an alarming rate. The facilitation of abnormal cell proliferation in mammary carcinoma occurs due to the disruption of signaling pathways that balance pro- and antioxidant status, thereby producing oxidative stress that disrupts genomic stability. Therefore, introducing a potent antioxidant molecule with antitumor activity is of paramount importance for treating breast cancer.

Objective

Synthesis, characterization, and , and evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against chemical carcinogen-induced mammary carcinogenesis in Sprague-Dawley rats.

Methods

An azomethine derivative, 1-(4-nitrophenyl)--phenylmethanimine (BCS2), was synthesized and characterized based on its spectral data. The cytotoxic potential was observed on breast cancer cells, MCF-7, MDA-MB-231, and MDA-MB-468. The chemotherapeutic potential of BCS2 was established on 7,12-dimethylbenz(a)anthracene (DMBA) induced breast cancer in Sprague-Dawley (SD) rats. The effect of BCS2 on kelch-like ECH-associated protein-1 (Keap1), Nrf2, heme oxygenase-1 (HO-1), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated-B (NF-κB) was evaluated through ELISA and qPCR techniques. Furthermore, the binding potential and stability of BCS2 with Keap-1, HO-1, and MAPK were predicted using molecular docking and dynamics studies. Additionally, drug-likeness properties of BCS2 were evaluated using ADMET tools.

Results

BCS2 showed remarkable cytotoxic activity on MCF-7 cells followed by MDA-MB-231 and MDA-MB-468 cells having an IC of 2.368 µM, 4.843 µM and 6.472 µM respectively, without affecting normal breast cells, MCF-10A. In the DMBA-induced animal model, BCS2 showed potent antitumor potential and showed protective action on endogenous-enzymatic and non-enzymatic antioxidants in cancer-bearing animals. Marked improvement in cellular architecture and ultrastructure of breast/tumor tissues excised from experimental animals was noted through histopathological and field emission scanning electron microscopy (FESEM) analyses. Significant upregulation of antioxidant proteins, Keap1 and HO-1, and downregulation of inflammatory proteins, MAPK, and NF-κB was observed after BCS2 treatment. The computational studies predicted the potent binding of BCS2 with the active pockets of Keap1, HO-1, and MAPK proteins that validated the biological findings.

Conclusion

The study revealed BCS2's potent antioxidant and antitumor potential against mammary carcinoma through the Nrf2-Keap1-HO-1 signaling pathway.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673356682241205044326
2025-01-06
2025-04-16
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. LiuJ. LiuM. WangS. HeY. HuoY. YangZ. CaoX. Alantolactone induces apoptosis and suppresses migration in MCF-7 human breast cancer cells via the p38-MAPK, NF-κB and Nrf2 signaling pathways.Int. J. Mol. Med.20184241847185610.3892/ijmm.2018.375130015828
    [Google Scholar]
  3. NagyÁ. MunkácsyG. GyőrffyB. Pancancer survival analysis of cancer hallmark genes.Sci. Rep.2021111604710.1038/s41598‑021‑84787‑533723286
    [Google Scholar]
  4. PattanayakS.P. HaqueM.W. Mohd SiddiqueM.U. BoseP. Taxifolin possesses anti-cancer activity on the 7,12-Dimethylbenz(a)anthracene-induced breast cancer in the sprague dawley rats by remodeling nuclear factor erythroid 2- kelch-like ech-associated protein 1-heme oxygenase 1 and anti-oxidant pathways.Pharmacogn. Mag.2018145511010.4103/pm.pm_601_17
    [Google Scholar]
  5. AroraR. SawneyS. SainiV. SteffiC. TiwariM. SalujaD. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1.Mol. Cancer20161516410.1186/s12943‑016‑0550‑227756327
    [Google Scholar]
  6. GuptaS.C. HeviaD. PatchvaS. ParkB. KohW. AggarwalB.B. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy.Antioxid. Redox Signal.201216111295132210.1089/ars.2011.441422117137
    [Google Scholar]
  7. YueJ.M. XuJ. ZhaoY. SunH.D. LinZ.W. Chemical components from Ceratostigma willmottianum.J. Nat. Prod.199760101031103310.1021/np970044u
    [Google Scholar]
  8. JiangZ.Y. LuM.C. XuL.L. YangT.T. XiM.Y. XuX.L. GuoX.K. ZhangX.J. YouQ.D. SunH.P. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis.J. Med. Chem.20145762736274510.1021/jm500052924512214
    [Google Scholar]
  9. ProbstB.L. TrevinoI. McCauleyL. BumeisterR. DulubovaI. WigleyW.C. FergusonD.A. RTA 408, a novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity.PLoS One2015104e012294210.1371/journal.pone.012294225897966
    [Google Scholar]
  10. MedinaD. Mammary tumorigenesis in chemical carcinogen-treated mice. I. Incidence in BALB-c and C57BL mice.J. Natl. Cancer Inst.197453121322110.1093/jnci/53.1.2134835107
    [Google Scholar]
  11. NebertD.W. PetersenD.D. FornaceA.J. Cellular responses to oxidative stress: The [Ah] gene battery as a paradigm.Environ. Health Perspect.199088132510.1289/ehp.9088132272308
    [Google Scholar]
  12. RundleA. TangD. HibshooshH. EstabrookA. SchnabelF. CaoW. GrumetS. PereraF.P. The relationship between genetic damage from polycyclic aromatic hydrocarbons in breast tissue and breast cancer.Carcinogenesis20002171281128910.1093/carcin/21.7.128110874004
    [Google Scholar]
  13. DhallaN.S. TemsahR.M. NetticadanT. Role of oxidative stress in cardiovascular diseases.J. Hypertens.200018665567310.1097/00004872‑200018060‑0000210872549
    [Google Scholar]
  14. DesaiS.R. DesaiV.G. PissurlenkarR.R. Design, synthesis and molecular docking studies of new azomethine derivatives as promising anti-inflammatory agents.Bioorg. Chem.202212010559510.1016/j.bioorg.2021.10559535074576
    [Google Scholar]
  15. AntolinA.A. WorkmanP. MestresJ. Al-LazikaniB. Polypharmacology in precision oncology: Current applications and future prospects.Curr. Pharm. Des.201622466935694510.2174/138161282266616092311582827669965
    [Google Scholar]
  16. RahimovaA.R. IsmailovZ.I. IlyaslyT.M. Synthesis and application of antioxidant properties of azomethines and its complexes.New Mater. Comp. Appli.201822146151
    [Google Scholar]
  17. SirajuddinM. AliS. ShahN.A. KhanM.R. TahirM.N. Synthesis, characterization, biological screenings and interaction with calf thymus DNA of a novel azomethine 3-((3,5-dimethylphenylimino)methyl)benzene-1,2-diol.Spectrochim. Acta A Mol. Biomol. Spectrosc.20129413414210.1016/j.saa.2012.03.06822537938
    [Google Scholar]
  18. GaberM. El-BaradieK. El-WakielN. HafezS. Synthesis and characterization studies of 3-formyl chromone Schiff base complexes and their application as antitumor, antioxidant and antimicrobial.Appl. Organomet. Chem.2020342e534810.1002/aoc.5348
    [Google Scholar]
  19. SahuS.K. MishraS.K. MohantaR.K. PattanayakS.P. PandaC.S. Synthesis and antibacterial activity of 2-(2,4-dinitrophenyl)-3,5-diphenyl (substituted)-6-aryl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d] thiazoles.Indian J. Pharm. Sci.200668337710.4103/0250‑474X.26686
    [Google Scholar]
  20. SahuR. JhaS. PattanayakS.P. Therapeutic silencing of mTOR by systemically administered siRNA-loaded neutral liposomal nanoparticles inhibits DMBA-induced mammary carcinogenesis.Br. J. Cancer2022127122207221910.1038/s41416‑022‑02011‑136261586
    [Google Scholar]
  21. SahuR. KarR.K. SunitaP. BoseP. KumariP. BhartiS. SrivastavaS. PattanayakS.P. LC-MS characterized methanolic extract of zanthoxylum armatum possess anti-breast cancer activity through Nrf2-Keap1 pathway: An in-silico, in-vitro and in-vivo evaluation.J. Ethnopharmacol.202126911375810.1016/j.jep.2020.11375833359860
    [Google Scholar]
  22. BracaA. De TommasiN. Di BariL. PizzaC. PolitiM. MorelliI. Antioxidant Principles from Bauhinia t arapotensis.J. Nat. Prod.200164789289510.1021/np010084511473417
    [Google Scholar]
  23. SimizuS. ImotoM. MasudaN. TakadaM. UmezawaK. Involvement of hydrogen peroxide production in erbstatin-induced apoptosis in human small cell lung carcinoma cells.Cancer Res.19965621497849828895753
    [Google Scholar]
  24. AyoupM.S. Abu-SerieM.M. Abdel-HamidH. TelebM. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy.Eur. J. Med. Chem.202122011347510.1016/j.ejmech.2021.11347533901898
    [Google Scholar]
  25. RidgwayP. Revised fixed dose procedure: OECD Test Guideline 420.Rapp. ISTISAN2002412731
    [Google Scholar]
  26. BoseP. PriyamA. KarR. PattanayakS.P. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats.RSC Advances20201053319613197810.1039/D0RA05793B35518142
    [Google Scholar]
  27. PattanayakS.P. MazumderP.M. Therapeutic potential of Dendrophthoe falcata (L.f) Ettingsh on 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in female rats: Effect on antioxidant system, lipid peroxidation, and hepatic marker enzymes.Comp. Clin. Pathol.201120438139210.1007/s00580‑010‑1008‑3
    [Google Scholar]
  28. PattanayakS.P. MazumderP.M Histopathological approach to rat liver tissue.2008Available from: https://www.researchgate.net/figure/Histopathology-of-rat-liver-H-E-Experimental-protocol-is-described-under-materials-and_fig1_270909274/actions#reference
  29. BoseP. SiddiqueM.U.M. AcharyaR. JayaprakashV. SinhaB.N. LapennaA. PattanayakS.P. Quinazolinone derivative BNUA-3 ameliorated [NDEA+2-AAF]-induced liver carcinogenesis in SD rats by modulating AhR-CYP1B1‐Nrf2-Keap1 pathway.Clin. Exp. Pharmacol. Physiol.202047114315710.1111/1440‑1681.1318431563143
    [Google Scholar]
  30. DevasagayamT.P. BoloorK.K. RamasarmaT. Methods for estimating lipid peroxidation: An analysis of merits and demerits.Indian J. Biochem. Biophys.200340530030822900323
    [Google Scholar]
  31. CandF. VerdettiJ. Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats.Free Radic. Biol. Med.198971596310.1016/0891‑5849(89)90101‑92753396
    [Google Scholar]
  32. ŠtajnA. ŽikićR.V. OgnjanovićB. SaičićZ.S. PavlovićS.Z. KostićM.M. PetrovićV.M. Effect of cadmium and selenium on the antioxidant defense system in rat kidneys.Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol.1997117216717210.1016/S0742‑8413(97)00063‑79214717
    [Google Scholar]
  33. SinhaA.K. Colorimetric assay of catalase.Anal. Biochem.197247238939410.1016/0003‑2697(72)90132‑74556490
    [Google Scholar]
  34. RotruckJ.T. PopeA.L. GantherH.E. SwansonA.B. HafemanD.G. HoekstraW.G. Selenium: Biochemical role as a component of glutathione peroxidase.Science1973179407358859010.1126/science.179.4073.5884686466
    [Google Scholar]
  35. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  36. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑613650640
    [Google Scholar]
  37. DebP.K. MailavaramR. ChandrasekaranB. KakiV.R. KaurR. KachlerS. KlotzK.N. AkkinepallyR.R. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3-d ]pyrimidine derivatives.Chem. Biol. Drug Des.201891496296910.1111/cbdd.1315529194979
    [Google Scholar]
  38. RakshitG. DagurP. SatpathyS. PatraA. JainA. GhoshM. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19).J. Biomol. Struct. Dyn.202240156989700110.1080/07391102.2021.189252933682606
    [Google Scholar]
  39. DebP.K. El-RabieD. JunaidA. NalaiyaJ.A.P. SiongL.C. KulasingamK.A.L. PichikaM.R. In silico binding mode analysis (molecular docking studies) and absorption, distribution, metabolism and excretion prediction of some novel inhibitors of Aurora Kinase A in clinical trials.Asian J. Chem.201426186221622610.14233/ajchem.2014.17175
    [Google Scholar]
  40. AlhakamyN.A. SaquibM. Sanobar KhanM.F. AnsariW.A. ArifD.O. IrfanM. KhanM.I. HussainM.K. Natural product-inspired synthesis of coumarin–chalcone hybrids as potential anti-breast cancer agents.Front. Pharmacol.202314123145010.3389/fphar.2023.123145037745072
    [Google Scholar]
  41. MinottiG. AustS.D. An investigation into thee mechanism of citrate-FE2+-dependent lipid peroxidation.Free Radic. Biol. Med.19873637938710.1016/0891‑5849(87)90016‑53123331
    [Google Scholar]
  42. SosaV. MolinéT. SomozaR. PaciucciR. KondohH. LLeonartM.E. Oxidative stress and cancer: An overview.Ageing Res. Rev.201312137639010.1016/j.arr.2012.10.00423123177
    [Google Scholar]
  43. XuL.L. WuY.F. WangL. LiC.C. LiL. DiB. YouQ.D. JiangZ.Y. Structure-activity and structure-property relationships of novel Nrf2 activators with a 1,2,4-oxadiazole core and their therapeutic effects on acetaminophen (APAP)-induced acute liver injury.Eur. J. Med. Chem.20181571376139410.1016/j.ejmech.2018.08.07130196061
    [Google Scholar]
  44. KumarA.B. JhaS. PattanayakS.P. Effect of naringenin on lipids, lipoproteins and lipid metabolising enzymes in 7, 12-dimethylbenz (a) anthracene-induced mammary carcinogenesis in SD rats.Int. J. Pharm. Pharm. Sci.20158154158
    [Google Scholar]
  45. Leij-HalfwerkS. DagnelieP.C. van den BergJ.W.O. WattimenaJ.D.L. Hordijk-LuijkC.H. WilsonJ.H.P. Weight loss and elevated gluconeogenesis from alanine in lung cancer patients.Am. J. Clin. Nutr.200071258358910.1093/ajcn/71.2.58310648275
    [Google Scholar]
  46. KumarA. SunitaP. JhaS. PattanayakS.P. 7,8-Dihydroxycoumarin exerts antitumor potential on DMBA-induced mammary carcinogenesis by inhibiting ERα, PR, EGFR, and IGF1R: Involvement of MAPK1/2-JNK1/2-Akt pathway.J. Physiol. Biochem.201874222323410.1007/s13105‑018‑0608‑229435821
    [Google Scholar]
  47. AlzainA.A. Insights from computational studies on the potential of natural compounds as inhibitors against SARS- CoV-2 spike omicron variant.SAR QSAR Environ. Res.2022331295396810.1080/1062936X.2022.215248636469669
    [Google Scholar]
  48. LuM.C. JiJ.A. JiangZ.Y. YouQ.D. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: An update.Med. Res. Rev.201636592496310.1002/med.2139627192495
    [Google Scholar]
  49. AlzainA.A. MukhtarR.M. AbdelmoniemN. ElbadwiF.A. HussienA. GarelnabiE.A.E. OsmanW. SherifA.E. KhedrA.I.M. GhazawiK.F. SammanW.A. IbrahimS.R.M. MohamedG.A. AshourA. Computational insights into natural antischistosomal metabolites as SmHDAC8 inhibitors: Molecular docking, ADMET profiling, and molecular dynamics simulation.Metabolites202313565810.3390/metabo1305065837233699
    [Google Scholar]
  50. KhazaeiM. AghazF. Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes.Int. J. Fertil. Steril.2017112637010.22074/ijfs.2017.499528670422
    [Google Scholar]
  51. Radomska-LeśniewskaD.M. HevelkeA. SkopińskiP. BałanB. JóźwiakJ. RokickiD. Skopińska-RóżewskaE. BiałoszewskaA. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications.Pharmacol. Rep.201668246247110.1016/j.pharep.2015.10.00226922554
    [Google Scholar]
  52. ZhangX. WeiH. LiuZ. YuanQ. WeiA. ShiD. YangX. RuanJ. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway.Toxicol. Appl. Pharmacol.2013270212212810.1016/j.taap.2013.04.01123624174
    [Google Scholar]
  53. PradiptaS. UbaidillahM. SiswoyoT.A. Free radical scavenging and metal ion chelating properties of differently pigmented rice varieties.J. Agricult. Sci. Prac.20205315015910.31248/JASP2020.216
    [Google Scholar]
  54. MollardS. MousseauY. BaajY. RichardL. Cook- MoreauJ. MonteilJ. FunalotB. SturtzF.G. How can grafted breast cancer models be optimized?Cancer Biol. Ther.2011121085586410.4161/cbt.12.10.1813922057217
    [Google Scholar]
  55. RayG. BatraS. ShuklaN.K. DeoS. RainaV. AshokS. HusainS.A. Lipid peroxidation, free radical production and antioxidant status in breast cancer.Breast Cancer Res. Treat.200059216317010.1023/A:100635733048610817351
    [Google Scholar]
  56. ArgilésJ.M. Azcón-BietoJ. The metabolic environment of cancer.Mol. Cell. Biochem.198881131710.1007/BF002256483050448
    [Google Scholar]
  57. PattanayakS.P. BoseP. PriyamA. Herniarin, a natural coumarin loaded novel targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy in preclinical model of breast cancer.Pharmacogn. Mag.202016547410.4103/pm.pm_223_20
    [Google Scholar]
  58. HalliwellB. Antioxidant defence mechanisms: From the beginning to the end (of the beginning).Free Radic. Res.199931426127210.1080/1071576990030084110517532
    [Google Scholar]
  59. GönençA. ErtenD. AslanS. AkıncıM. ŞimşekB. TorunM. Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease.Cell Biol. Int.200630437638010.1016/j.cellbi.2006.02.00516616293
    [Google Scholar]
  60. PattanayakS.P. SunitaP. MazumderP.M. Restorative effect of Dendrophthoe falcata (L.f.) Ettingsh on lipids, lipoproteins, and lipid-metabolizing enzymes in DMBA-induced mammary gland carcinogenesis in Wistar female rats.Comp. Clin. Pathol.20142341013102210.1007/s00580‑013‑1736‑2
    [Google Scholar]
  61. MoussaZ. JudehZ.M. AhmedS.A. Nonenzymatic exogenous and endogenous antioxidants.Radical Medical Biology DasK. IntechOpen LimitedLondon, W1W 5PF, UK2019113010.5772/intechopen.87778
    [Google Scholar]
  62. Chandra JagetiaG. Koti ReddyT. VenkateshaV.A. KedlayaR. Influence of naringin on ferric iron induced oxidative damage in vitro.Clin. Chim. Acta20043471-218919710.1016/j.cccn.2004.04.02215313158
    [Google Scholar]
  63. RajaduraiM. Stanely Mainzen PrinceP. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: Biochemical and histopathological evidences.Toxicology20062282-325926810.1016/j.tox.2006.09.00517084010
    [Google Scholar]
  64. GargA. AggarwalB.B. Nuclear transcription factor-κB as a target for cancer drug development.Leukemia20021661053106810.1038/sj.leu.240248212040437
    [Google Scholar]
  65. EitsukaT. TatewakiN. NishidaH. NakagawaK. MiyazawaT. Synergistic anticancer effect of tocotrienol combined with chemotherapeutic agents or dietary components: A review.Int. J. Mol. Sci.20161710160510.3390/ijms1710160527669218
    [Google Scholar]
  66. KoleL. GiriB. MannaS.K. PalB. GhoshS. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation.Eur. J. Pharmacol.20116531-381510.1016/j.ejphar.2010.11.02621147093
    [Google Scholar]
  67. MageshS. ChenY. HuL. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents.Med. Res. Rev.201232468772610.1002/med.2125722549716
    [Google Scholar]
  68. DejardinE. The alternative NF-κB pathway from biochemistry to biology: Pitfalls and promises for future drug development.Biochem. Pharmacol.20067291161117910.1016/j.bcp.2006.08.00716970925
    [Google Scholar]
  69. SeoS. SeoK. KiS.H. ShinS.M. Isorhamnetin inhibits reactive oxygen species-dependent hypoxia inducible factor (HIF)-1α accumulation.Biol. Pharm. Bull.201639111830183810.1248/bpb.b16‑0041427803454
    [Google Scholar]
  70. MaT. JiaL. ZhaoJ. LvL. YuY. RuanH. SongX. ChenH. LiX. ZhangJ. GaoL. Ginkgolide C slows the progression of osteoarthritis by activating Nrf2/HO-1 and blocking the NF-κB pathway.Front. Pharmacol.202213102755310.3389/fphar.2022.102755336386227
    [Google Scholar]
  71. EdrisA. AbdelrahmanM. OsmanW. SherifA.E. AshourA. GarelnabiE.A.E. IbrahimS.R.M. BafailR. SammanW.A. GhazawiK.F. MohamedG.A. AlzainA.A. Design of novel letrozole analogues targeting aromatase for breast cancer: Molecular docking, molecular dynamics, and theoretical studies on gold nanoparticles.Metabolites202313558310.3390/metabo1305058337233624
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673356682241205044326
Loading
/content/journals/cmc/10.2174/0109298673356682241205044326
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: 7,12-dimethylbenz(a)anthracene ; NF-κB ; ELISA ; breast cancer ; Keap1 ; Nrf2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test