Skip to content
2000
image of Elucidating the Mechanisms of Astragalus Membranaceus in Colorectal Cancer Patients through Bioinformatics Analysis

Abstract

Background

Astragalus membranaceus has shown positive clinical efficacy in treating colorectal cancer (CRC).

Objective

This study aimed to identify the key active components of Astragalus and determine effective targets of these components in CRC patients.

Methods

We identified active components of Astragalus membranaceus and differentially expressed genes in traditional Chinese medicine systems pharmacology database and The Cancer Genome Atlas. Additionally, the enrichment analysis of differential target genes (DTGs) was performed using the R-package clusterProfiler. Immunocyte correlation analysis and non-coding regulatory network construction were performed for biomarkers using Spearman’s method and NetworkAnalyst. Finally, molecular docking of biomarkers and their corresponding molecule drugs was done with Autodock Vina software.

Results

We identified 20 active components of Astragalus membranaceus and 1 403 target genes through screening. A total of 2 300 differentially expressed genes, and 3 035 hub genes in CRC were screened. The integration of the target genes with the significantly differentially expressed genes and Hub genes identified resulted in a total of 86 DTGs. Subsequently, the results showed 828 enriched GO biological processes, 184 enriched GO molecular functions, 59 enriched GO cellular components, and 46 enriched KEGG pathways. We also obtained a total of 143 PPI pairs involving 67 nodes. Additionally, we constructed 45 mRNA-TF pairs, 101 miRNA-mRNA pairs, and 200 miRNA-mRNA-TF triplets. Finally, molecular docking was performed for the active component quercetin with F2 and UGT1A1 and formic acid with FGA, AHSG, and KNG1.

Conclusion

This study identified the active components of Astragalus membranaceus and their corresponding targets in CRC. These findings provide robust evidence for precision drug therapy in patients with CRC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673344265241014114804
2024-10-31
2024-11-26
Loading full text...

Full text loading...

References

  1. Song M. Global epidemiology and prevention of colorectal cancer. Lancet Gastroenterol. Hepatol. 2022 7 7 588 590 10.1016/S2468‑1253(22)00089‑9 35397797
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Cervantes A. Adam R. Roselló S. Arnold D. Normanno N. Taïeb J. Seligmann J. De Baere T. Osterlund P. Yoshino T. Martinelli E. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023 34 1 10 32 10.1016/j.annonc.2022.10.003 36307056
    [Google Scholar]
  4. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020 70 1 7 30 10.3322/caac.21590 31912902
    [Google Scholar]
  5. Tabernero J. Velez L. Trevino T.L. Grothey A. Yaeger R. Van Cutsem E. Wasan H. Desai J. Ciardiello F. Yoshino T. Gollerkeri A. Maharry K. Christy-Bittel J. Kopetz S. Management of adverse events from the treatment of encorafenib plus cetuximab for patients with BRAF V600E-mutant metastatic colorectal cancer: Insights from the BEACON CRC study. ESMO Open 2021 6 6 100328 10.1016/j.esmoop.2021.100328 34896698
    [Google Scholar]
  6. Choi C.S. Kin K. Cao K. Hutcheon E. Lee M. Chan S.T.F. Arafat Y. Baird P.N. Yeung J.M.C. The association of body composition on chemotherapy toxicities in non-metastatic colorectal cancer patients: A systematic review. ANZ J. Surg. 2023 38059530
    [Google Scholar]
  7. Yang Y. Shen J. Deng P. Chen P. Mechanism investigation of Forsythoside A against esophageal squamous cell carcinoma in vitro and in vivo. Cancer Biol. Ther. 2024 25 1 2380023 10.1080/15384047.2024.2380023 39046082
    [Google Scholar]
  8. Wang Y. Guan W.X. Zhou Y. Zhang X.Y. Zhao H.J. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Cancer Biol. Ther. 2024 25 1 2284849 10.1080/15384047.2023.2284849 38051132
    [Google Scholar]
  9. Liu K. Li Q. Lu X. Fan X. Yang Y. Xie W. Kang J. Sun S. Zhao J. Seven oral traditional Chinese medicine combined with chemotherapy for the treatment of non-small cell lung cancer: A network meta-analysis. Pharm. Biol. 2024 62 1 404 422 10.1080/13880209.2024.2351940 38739082
    [Google Scholar]
  10. Wang S. Fu J.L. Hao H.F. Jiao Y.N. Li P.P. Han S.Y. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol. Res. 2021 170 105728 10.1016/j.phrs.2021.105728 34119622
    [Google Scholar]
  11. Wang K. Chen Q. Shao Y. Yin S. Liu C. Liu Y. Wang R. Wang T. Qiu Y. Yu H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother. 2021 133 111044 10.1016/j.biopha.2020.111044 33378952
    [Google Scholar]
  12. Ma F. Wang Q. Zhang D. Wang Z. Xie H. Liu X. Zhang H. Song H. Sun S. Comparative efficacy and safety of Chinese medicine injections as an adjunctive therapy for cervical cancer in Chinese patients: A network meta-analysis. Pharm. Biol. 2024 62 1 170 182 10.1080/13880209.2024.2312217 38334090
    [Google Scholar]
  13. Zhang Z. Wu C. Liu N. Wang Z. Pan Z. Jiang Y. Tian J. Sun M. Modified Banxiaxiexin decoction benefitted chemotherapy in treating gastric cancer by regulating multiple targets and pathways. J. Ethnopharmacol. 2024 331 118277 10.1016/j.jep.2024.118277 38697407
    [Google Scholar]
  14. Chen Z. Liu L. Gao C. Chen W. Vong C.T. Yao P. Yang Y. Li X. Tang X. Wang S. Wang Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol. 2020 258 112895 10.1016/j.jep.2020.112895 32330511
    [Google Scholar]
  15. Sheik A. Kim K. Varaprasad G.L. Lee H. Kim S. Kim E. Shin J.Y. Oh S.Y. Huh Y.S. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021 91 153698 10.1016/j.phymed.2021.153698 34479785
    [Google Scholar]
  16. Yu H. Ding G. Gong Q. Ma J. Zhao Y. Wang Y. Qiao X. Cheng X. Modulation of PD-L1 by Astragalus polysaccharide attenuates the induction of melanoma stem cell properties and overcomes immune evasion. BMC Cancer 2024 24 1 1034 10.1186/s12885‑024‑12788‑4 39169294
    [Google Scholar]
  17. Wang X. Zhu B. Hua Y. Sun R. Tan X. Chang X. Tang D. Gu J. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. modulate gut microbiome and bile acid metabolism to inhibit colon cancer progression. Front. Microbiol. 2024 15 1395634 10.3389/fmicb.2024.1395634 38952445
    [Google Scholar]
  18. Zhang Q. Gao L. Huang S. Liang Y. Hu J. Zhang Y. Wei S. Hu X. Cocktail of Astragalus membranaceus and Radix trichosanthis suppresses melanoma tumor growth and cell migration through regulation of akt-related signaling pathway. Front. Pharmacol. 2022 13 880215 10.3389/fphar.2022.880215 35721145
    [Google Scholar]
  19. Yang Y. Lin Z. He P. Nie H. Yao Q. Zhang S. Inhibitory effect of Astragalus polysaccharide combined with cisplatin on cell cycle and migration of nasopharyngeal carcinoma cell lines. Biol. Pharm. Bull. 2021 44 7 926 931 10.1248/bpb.b20‑00959 33952795
    [Google Scholar]
  20. Li W. Hu X. Li Y. Song K. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. J. Nat. Med. 2021 75 4 854 870 10.1007/s11418‑021‑01525‑x 34043154
    [Google Scholar]
  21. Hao Z. Li Z. Huo J. Chu Y. Li J. Yu X. Liu F. Yin P. Effects of Chinese wolfberry and astragalus extracts on growth performance, pork quality, and unsaturated fatty acid metabolism regulation in Tibetan fragrant pigs. Anim. Sci. J. 2021 92 1 e13581 10.1111/asj.13581 34236125
    [Google Scholar]
  22. Wu C.T. Tsai Y.T. Lai J.N. Demographic and medication characteristics of traditional Chinese medicine users among colorectal cancer survivors: A nationwide database study in Taiwan. J. Tradit. Complement. Med. 2017 7 2 188 194 10.1016/j.jtcme.2016.07.001 28417089
    [Google Scholar]
  23. Chen G. Han R. Wang L. Ma W. Zhang W. Lu Z. Wang L. Establishment of patient-derived organoids and a characterization based drug discovery platform for treatment of gastric cancer. Cancer Cell Int. 2024 24 1 288 10.1186/s12935‑024‑03460‑9 39143546
    [Google Scholar]
  24. Li K. Yang H. Lin A. Xie J. Wang H. Zhou J. Carr S.R. Liu Z. Li X. Zhang J. Cheng Q. Schrump D.S. Luo P. Wei T. CPADS: A web tool for comprehensive pancancer analysis of drug sensitivity. Brief. Bioinform. 2024 25 3 bbae237 10.1093/bib/bbae237 38770717
    [Google Scholar]
  25. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  26. Tomczak K. Czerwińska P. Wiznerowicz M. Review The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. (Pozn.) 2015 1A 1A 68 77 10.5114/wo.2014.47136 25691825
    [Google Scholar]
  27. Xu H. Liu L. Li W. Zou D. Yu J. Wang L. Wong C.C. Transcription factors in colorectal cancer: Molecular mechanism and therapeutic implications. Oncogene 2021 40 9 1555 1569 10.1038/s41388‑020‑01587‑3 33323976
    [Google Scholar]
  28. Huang X. Zhu X. Yu Y. Zhu W. Jin L. Zhang X. Li S. Zou P. Xie C. Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett. 2021 501 66 82 10.1016/j.canlet.2020.12.025 33385486
    [Google Scholar]
  29. Danese E. Montagnana M. Epigenetics of colorectal cancer: Emerging circulating diagnostic and prognostic biomarkers. Ann. Transl. Med. 2017 5 13 279 10.21037/atm.2017.04.45 28758105
    [Google Scholar]
  30. Fang W. Ni M. Zhang M. Chen H. Prognostic value of OCT4 in colorectal cancer: Analysis using immunohistochemistry and bioinformatics validation. Biomarkers Med. 2020 14 15 1473 1484 10.2217/bmm‑2020‑0069 33185466
    [Google Scholar]
  31. Chalikonda G. Lee H. Sheik A. Huh Y.S. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol. Cell. Biochem. 2021 476 9 3219 3228 10.1007/s11010‑021‑04156‑8 33866491
    [Google Scholar]
  32. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  33. Mullan K.A. Bramberger L.M. Munday P.R. Goncalves G. Revote J. Mifsud N.A. Illing P.T. Anderson A. Kwan P. Purcell A.W. Li C. ggVolcanoR: A Shiny app for customizable visualization of differential expression datasets. Comput. Struct. Biotechnol. J. 2021 19 5735 5740 10.1016/j.csbj.2021.10.020 34745458
    [Google Scholar]
  34. Ding W. Goldberg D. Zhou W. PyComplexHeatmap: A Python package to visualize multimodal genomics data. iMeta 2023 2 3 e115 10.1002/imt2.115 38454967
    [Google Scholar]
  35. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  36. Lam F. Lalansingh C.M. Babaran H.E. Wang Z. Prokopec S.D. Fox N.S. Boutros P.C. VennDiagramWeb: A web application for the generation of highly customizable Venn and Euler diagrams. BMC Bioinformatics 2016 17 1 401 10.1186/s12859‑016‑1281‑5 27716034
    [Google Scholar]
  37. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  38. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  39. Pham D.T. Tran T.D. Drivergene.net: A cytoscape app for the identification of driver nodes of large-scale complex networks and case studies in discovery of drug target genes. Comput. Biol. Med. 2024 179 108888 10.1016/j.compbiomed.2024.108888 39047507
    [Google Scholar]
  40. Sayers E.W. Bolton E.E. Brister J.R. Canese K. Chan J. Comeau D.C. Connor R. Funk K. Kelly C. Kim S. Madej T. Marchler-Bauer A. Lanczycki C. Lathrop S. Lu Z. Thibaud-Nissen F. Murphy T. Phan L. Skripchenko Y. Tse T. Wang J. Williams R. Trawick B.W. Pruitt K.D. Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022 50 D1 D20 D26 10.1093/nar/gkab1112 34850941
    [Google Scholar]
  41. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  42. Wang S. Cheng L. Jing F. Li G. Screening and identification of immune-related genes for immunotherapy and prognostic assessment in colorectal cancer patients. BMC Med. Genomics 2022 15 1 177 10.1186/s12920‑022‑01329‑2 35941638
    [Google Scholar]
  43. Patel S.G. Karlitz J.J. Yen T. Lieu C.H. Boland C.R. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol. Hepatol. 2022 7 3 262 274 10.1016/S2468‑1253(21)00426‑X 35090605
    [Google Scholar]
  44. Siegel R.L. Jakubowski C.D. Fedewa S.A. Davis A. Azad N.S. Colorectal cancer in the young: Epidemiology, prevention, management. Am. Soc. Clin. Oncol. Educ. Book 2020 40 40 e75 e88 10.1200/EDBK_279901 32315236
    [Google Scholar]
  45. Wang Z. Dan W. Zhang N. Fang J. Yang Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023 15 1 2236364 10.1080/19490976.2023.2236364 37482657
    [Google Scholar]
  46. Li J. Ma X. Chakravarti D. Shalapour S. DePinho R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021 35 11-12 787 820 10.1101/gad.348226.120 34074695
    [Google Scholar]
  47. Becker W.R. Nevins S.A. Chen D.C. Chiu R. Horning A.M. Guha T.K. Laquindanum R. Mills M. Chaib H. Ladabaum U. Longacre T. Shen J. Esplin E.D. Kundaje A. Ford J.M. Curtis C. Snyder M.P. Greenleaf W.J. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 2022 54 7 985 995 10.1038/s41588‑022‑01088‑x 35726067
    [Google Scholar]
  48. Schmitt M. Greten F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 2021 21 10 653 667 10.1038/s41577‑021‑00534‑x 33911231
    [Google Scholar]
  49. Yan S. Wang W. Feng Z. Xue J. Liang W. Wu X. Tan Z. Zhang X. Zhang S. Li X. Zhang C. Immune checkpoint inhibitors in colorectal cancer: Limitation and challenges. Front. Immunol. 2024 15 1403533 10.3389/fimmu.2024.1403533 38919624
    [Google Scholar]
  50. La Vecchia S. Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression. Semin. Cell Dev. Biol. 2020 98 63 70 10.1016/j.semcdb.2019.05.018 31129171
    [Google Scholar]
  51. Nikolaou S. Qiu S. Fiorentino F. Rasheed S. Tekkis P. Kontovounisios C. The prognostic and therapeutic role of hormones in colorectal cancer: A review. Mol. Biol. Rep. 2019 46 1 1477 1486 10.1007/s11033‑018‑4528‑6 30535551
    [Google Scholar]
  52. Ma S.C. Zhang J.Q. Yan T.H. Miao M.X. Cao Y.M. Cao Y.B. Zhang L.C. Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med. 2023 12 10 11073 11096 10.1002/cam4.5594 36645225
    [Google Scholar]
  53. Sheng S. Zhao T. Wang X. Comparison of robot-assisted surgery, laparoscopic-assisted surgery, and open surgery for the treatment of colorectal cancer. Medicine (Baltimore) 2018 97 34 e11817 10.1097/MD.0000000000011817 30142771
    [Google Scholar]
  54. Riesco-Martinez M.C. Modrego A. Espinosa-Olarte P. La Salvia A. Garcia-Carbonero R. Perioperative chemotherapy for liver metastasis of colorectal cancer: Lessons learned and future perspectives. Curr. Treat. Options Oncol. 2022 23 9 1320 1337 10.1007/s11864‑022‑01008‑5 35980520
    [Google Scholar]
  55. Dell’Acqua V. Surgo A. Kraja F. Kobiela J. Zerella M.A. Spychalski P. Gandini S. Francia C.M. Ciardo D. Fodor C. Ferrari A.M. Piperno G. Cattani F. Vigorito S. Pansini F. Petz W. Orecchia R. Leonardi M.C. Jereczek-Fossa B.A. Stereotactic radiation therapy in oligometastatic colorectal cancer: Outcome of 102 patients and 150 lesions. Clin. Exp. Metastasis 2019 36 4 331 342 10.1007/s10585‑019‑09976‑z 31165360
    [Google Scholar]
  56. Underwood P.W. Ruff S.M. Pawlik T.M. Update on targeted therapy and immunotherapy for metastatic colorectal cancer. Cells 2024 13 3 245 10.3390/cells13030245 38334637
    [Google Scholar]
  57. Aguiar Junior S. Oliveira M.M. Silva D.R.M. Mello C.A.L. Calsavara V.F. Curado M.P. Survival of patients with colorectal cancer in a cancer center. Arq. Gastroenterol. 2020 57 2 172 177 10.1590/s0004‑2803.202000000‑32 33206858
    [Google Scholar]
  58. Shang L. Wang Y. Li J. Zhou F. Xiao K. Liu Y. Zhang M. Wang S. Yang S. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol. 2023 302 Pt A 115876 10.1016/j.jep.2022.115876 36343798
    [Google Scholar]
  59. Picco G. Cattaneo C.M. van Vliet E.J. Crisafulli G. Rospo G. Consonni S. Vieira S.F. Rodríguez I.S. Cancelliere C. Banerjee R. Schipper L.J. Oddo D. Dijkstra K.K. Cinatl J. Michaelis M. Yang F. Di Nicolantonio F. Sartore-Bianchi A. Siena S. Arena S. Voest E.E. Bardelli A. Garnett M.J. Werner helicase is a synthetic-lethal vulnerability in mismatch repair–deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy. Cancer Discov. 2021 11 8 1923 1937 10.1158/2159‑8290.CD‑20‑1508 33837064
    [Google Scholar]
  60. Zeng P. Li J. Chen Y. Zhang L. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog. Mol. Biol. Transl. Sci. 2019 163 423 444 10.1016/bs.pmbts.2019.03.003 31030757
    [Google Scholar]
  61. Lin S. An X. Guo Y. Gu J. Xie T. Wu Q. Sui X. Meta-analysis of astragalus-containing traditional chinese medicine combined with chemotherapy for colorectal cancer: Efficacy and safety to tumor response. Front. Oncol. 2019 9 749 10.3389/fonc.2019.00749 31456940
    [Google Scholar]
  62. Lee Y.K. Park S.Y. Kim Y.M. Lee W.S. Park O.J. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp. Mol. Med. 2009 41 3 201 207 10.3858/emm.2009.41.3.023 19293639
    [Google Scholar]
  63. Zhang X.A. Zhang S. Yin Q. Zhang J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag. 2015 11 42 404 409 10.4103/0973‑1296.153096 25829782
    [Google Scholar]
  64. Xu F. Jiang H.L. Feng W.W. Fu C. Zhou J.C. Characteristics of amino acid metabolism in colorectal cancer. World J. Clin. Cases 2023 11 27 6318 6326 10.12998/wjcc.v11.i27.6318 37900242
    [Google Scholar]
  65. Duan W. Hu J. Liu Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp. Mol. Pathol. 2019 107 171 178 10.1016/j.yexmp.2019.02.004 30817910
    [Google Scholar]
  66. Quesada-Calvo F. Massot C. Bertrand V. Longuespée R. Blétard N. Somja J. Mazzucchelli G. Smargiasso N. Baiwir D. De Pauw-Gillet M.C. Delvenne P. Malaise M. Coimbra Marques C. Polus M. De Pauw E. Meuwis M.A. Louis E. OLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages. Clin. Proteomics 2017 14 1 9 10.1186/s12014‑017‑9143‑3 28344541
    [Google Scholar]
  67. Deng G. Zhou L. Wang B. Sun X. Zhang Q. Chen H. Wan N. Ye H. Wu X. Sun D. Sun Y. Cheng H. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation. J. Immunother. Cancer 2022 10 10 e004874 10.1136/jitc‑2022‑004874 36307151
    [Google Scholar]
  68. Li C. Liu Y. Zhang Y. Li J. Lai J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharm. Res. 2022 45 6 367 389 10.1007/s12272‑022‑01393‑3 35713852
    [Google Scholar]
  69. Zhou L. Liu Z. Wang Z. Yu S. Long T. Zhou X. Bao Y. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci. Rep. 2017 7 1 44822 10.1038/srep44822 28303957
    [Google Scholar]
  70. Yang S. Zhang D. Sun Q. Nie H. Zhang Y. Wang X. Huang Y. Sun Y. Single-cell and spatial transcriptome profiling identifies the transcription factor BHLHE40 as a driver of EMT in metastatic colorectal cancer. Cancer Res. 2024 84 13 2202 2217 10.1158/0008‑5472.CAN‑23‑3264 38657117
    [Google Scholar]
  71. Mullany L.E. Herrick J.S. Wolff R.K. Stevens J.R. Samowitz W. Slattery M.L. Transcription factor‐microRNA associations and their impact on colorectal cancer survival. Mol. Carcinog. 2017 56 11 2512 2526 10.1002/mc.22698 28667784
    [Google Scholar]
  72. Liu F. Wang Y. Cao Y. Wu Z. Ma D. Cai J. Sha J. Chen Q. Transcription factor B-MYB activates lncRNA CCAT1 and upregulates SOCS3 to promote chemoresistance in colorectal cancer. Chem. Biol. Interact. 2023 374 110412 10.1016/j.cbi.2023.110412 36812959
    [Google Scholar]
  73. Wang S.W. Sun Y.M. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. Int. J. Oncol. 2014 44 4 1032 1040 10.3892/ijo.2014.2259 24430672
    [Google Scholar]
  74. Wang X. Wang J. Zhao J. Wang H. Chen J. Wu J. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics 2022 12 2 963 975 10.7150/thno.65411 34976223
    [Google Scholar]
  75. Lu M. Lu F. Liao C. Guo Y. Mao C. Lai Y. Chen X. Chen W. High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development. J. Gene Med. 2023 25 9 e3531 10.1002/jgm.3531 37317697
    [Google Scholar]
  76. Wang H. MicroRNAs and apoptosis in colorectal cancer. Int. J. Mol. Sci. 2020 21 15 5353 10.3390/ijms21155353 32731413
    [Google Scholar]
  77. Wei C. Yang C. Wang S. Shi D. Zhang C. Lin X. Liu Q. Dou R. Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer 2019 18 1 64 10.1186/s12943‑019‑0976‑4 30927925
    [Google Scholar]
  78. Pan G. Liu Y. Shang L. Zhou F. Yang S. EMT‐associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun. (Lond.) 2021 41 3 199 217 10.1002/cac2.12138 33506604
    [Google Scholar]
  79. Bai J. Zhang X. Shi D. Xiang Z. Wang S. Yang C. Liu Q. Huang S. Fang Y. Zhang W. Song J. Xiong B. RETRACTED: Exosomal miR-128-3p promotes epithelial-to-mesenchymal transition in colorectal cancer cells by targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 signaling. Front. Cell Dev. Biol. 2021 9 568738 10.3389/fcell.2021.568738 33634112
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673344265241014114804
Loading
/content/journals/cmc/10.2174/0109298673344265241014114804
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test