Skip to content
2000
image of Exploring Natural Analgesics for Chronic Pain Management: Cannabinoids and other Phytoconstituents

Abstract

Chronic pain lasting more than three months or persisting after normal healing is a significant global health issue. In a healthcare system, it is crucial to ensure proper chronic pain management. Traditional pharmacological and non-pharmacological pain management techniques may not fully meet the requirements of physicians regarding effectiveness and safety. Therefore, researchers are exploring natural analgesics. Plant-based phytoconstituents show promise in relieving chronic pain associated with various diseases. This study aims to review the latest advances in discovering natural bioactive compounds that can help alleviate chronic pain. It discusses the pathways of chronic pain and a multifactorial treatment strategy. It also organizes data on using plant-derived substances, such as cannabinoids, terpenoids, phenolics, and crude extracts. Additionally, it delves into the pharmacodynamics of cannabinoids, including their route of administration and elimination. The review presents the results of 22 clinical trials on various cannabinoids for pain relief. It is important to note that opioids and other alkaloids from plants are not covered in this article due to their primary use in controlling acute rather than chronic pain.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330732241017135054
2025-01-06
2025-06-21
Loading full text...

Full text loading...

References

  1. UddinZ. MacDermidJ.C. HegazyF.A. PackhamT.L. Application of theory in chronic pain rehabilitation research and clinical practice.Open Sports Sci. J.202114110611310.2174/1875399X02114010106
    [Google Scholar]
  2. RajaS.N. CarrD.B. CohenM. FinnerupN.B. FlorH. GibsonS. KeefeF.J. MogilJ.S. RingkampM. SlukaK.A. SongX.J. StevensB. SullivanM.D. TutelmanP.R. UshidaT. VaderK. The revised international association for the study of pain definition of pain: Concepts, challenges, and compromises.Pain202016191976198210.1097/j.pain.000000000000193932694387
    [Google Scholar]
  3. YamM.F. LohY.C. TanC.S. AdamS.K. Abdul MananN. BasirR. General pathways of pain sensation and the major neurotransmitters involved in pain regulation.Int. J. Mol. Sci.2018198216410.3390/ijms1908216430042373
    [Google Scholar]
  4. CohenS.P. VaseL. HootenW.M. Chronic pain: An update on burden, best practices, and new advances.Lancet2021397102892082209710.1016/S0140‑6736(21)00393‑734062143
    [Google Scholar]
  5. TreedeR.D. RiefW. BarkeA. AzizQ. BennettM. BenolielR. CohenM. EversS. FinnerupN.B. FirstM. GiamberardinoM.A. KaasaS. KorwisiB. KosekE. Chronic pain as a symptom or a disease: The IASP classification of chronic pain for the international classification of diseases (ICD-11).Pain20191601192710.1097/j.pain.0000000000001384
    [Google Scholar]
  6. NeogiT. The epidemiology and impact of pain in osteoarthritis.Osteoarthritis Cartilage20132191145115310.1016/j.joca.2013.03.01823973124
    [Google Scholar]
  7. DegenA.S. KrynytskaI.Y. KamyshnyiA.M. Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers.Endocr. Regul.202054316017110.2478/enr‑2020‑001932857721
    [Google Scholar]
  8. GilbertS. Textbook of Addiction Treatment: International Perspectives El-GuebalyN. CarràG. GalanterM. BaldacchinoA.M. ChamSpringer20211255126710.1007/978‑3‑030‑36391‑8_87
    [Google Scholar]
  9. JiJ. HeQ. LuoX. BangS. MatsuokaY. McGinnisA. NackleyA.G. JiR.R. IL-23 enhances C-fiber-mediated and blue light-induced spontaneous pain in female mice.Front. Immunol.20211278756510.3389/fimmu.2021.78756534950149
    [Google Scholar]
  10. ZaliskaO. OleshchukO. FormanR. MossialosE. Health impacts of the Russian invasion in Ukraine: Need for global health action.Lancet2022399103341450145210.1016/S0140‑6736(22)00615‑835367006
    [Google Scholar]
  11. BjørklundG. ChirumboloS. DadarM. PenJ.J. DoşaM.D. PivinaL. SemenovaY. AasethJ. Insights on nutrients as analgesics in chronic pain.Curr. Med. Chem.202027376407642310.2174/092986732666619071217201531309880
    [Google Scholar]
  12. MerighiA. Brain-derived neurotrophic factor, nociception, and pain.Biomolecules202414553910.3390/biom1405053938785946
    [Google Scholar]
  13. BruneK. Next generation of everyday analgesics.Am. J. Ther.20029321522310.1097/00045391‑200205000‑0000711941381
    [Google Scholar]
  14. Hernandez-LeonA. Moreno-PérezG.F. Martínez-GordilloM. Aguirre-HernándezE. Valle-DoradoM.G. Díaz-RevalM.I. González-TrujanoM.E. PellicerF. Lamiaceae in Mexican species, a great but scarcely explored source of secondary metabolites with potential pharmacological effects in pain relief.Molecules20212624763210.3390/molecules2624763234946714
    [Google Scholar]
  15. BjørklundG. DadarM. ChirumboloS. AasethJ. Fibromyalgia and nutrition: Therapeutic possibilities?Biomed. Pharmacother.201810353153810.1016/j.biopha.2018.04.05629677539
    [Google Scholar]
  16. BjørklundG. AasethJ. DoşaM.D. PivinaL. DadarM. PenJ.J. ChirumboloS. Does diet play a role in reducing nociception related to inflammation and chronic pain?Nutrition20196615316510.1016/j.nut.2019.04.00731301604
    [Google Scholar]
  17. DraganS. ȘerbanM.C. DamianG. BuleuF. ValcoviciM. ChristodorescuR. Dietary patterns and interventions to alleviate chronic pain.Nutrients2020129251010.3390/nu1209251032825189
    [Google Scholar]
  18. GasmiA. ShanaidaM. OleshchukO. SemenovaY. MujawdiyaP.K. IvankivY. PokryshkoO. NoorS. PiscopoS. AdamivS. BjørklundG. Natural ingredients to improve immunity.Pharmaceuticals (Basel)202316452810.3390/ph1604052837111285
    [Google Scholar]
  19. BokermannJ. KönigH.H. HajekA. Pain: its prevalence and correlates among the oldest old.Aging Clin. Exp. Res.2024361210.1007/s40520‑023‑02653‑y38252184
    [Google Scholar]
  20. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural compounds and products from an anti-aging perspective.Molecules20222720708410.3390/molecules2720708436296673
    [Google Scholar]
  21. JahromiB. PirvulescuI. CandidoK.D. KnezevicN.N. Herbal medicine for pain management: Efficacy and drug interactions.Pharmaceutics202113225110.3390/pharmaceutics1302025133670393
    [Google Scholar]
  22. WangY. YanJ. LiS. WangW. CaiX. HuangD. GongL. LiX. > Composition of the essential oil from danggui-zhiqiao herb-pair and its analgesic activity and effect on hemorheology in rats with blood stasis syndrome.Pharmacogn. Mag.2016124827127527867268
    [Google Scholar]
  23. TurnerH. ChuehD. OrtizT. StokesA.J. Small-HowardA.L. Cannabinoid therapeutics in Parkinson’s disease: Promise and paradox.J. Herbs Spices Med. Plants201723323124810.1080/10496475.2017.1312724
    [Google Scholar]
  24. Blasco-BenitoS. Seijo-VilaM. Caro-VillalobosM. TundidorI. AndradasC. García-TaboadaE. WadeJ. SmithS. GuzmánM. Pérez-GómezE. GordonM. SánchezC. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer.Biochem. Pharmacol.201815728529310.1016/j.bcp.2018.06.02529940172
    [Google Scholar]
  25. BassoL. AboushoushaR. FanC.Y. IftincaM. MeloH. FlynnR. AgostiF. HollenbergM.D. ThompsonR. BourinetE. TrangT. AltierC. TRPV1 promotes opioid analgesia during inflammation.Sci. Signal.201912575eaav071110.1126/scisignal.aav071130940767
    [Google Scholar]
  26. SainsburyB. BloxhamJ. PourM.H. PadillaM. EncisoR. Efficacy of cannabis-based medications compared to placebo for the treatment of chronic neuropathic pain: A systematic review with meta-analysis.J. Dent. Anesth. Pain Med.202121647950610.17245/jdapm.2021.21.6.47934909469
    [Google Scholar]
  27. CrescenteG. MinerviniG. SpagnuoloC. MocciaS. Cannabis Bioactive compound-based formulations: New perspectives for the management of orofacial pain.Molecules202228110610.3390/molecules2801010636615298
    [Google Scholar]
  28. GrossmanS. TanH. GadiwallaY. Cannabis and orofacial pain: A systematic review.Br. J. Oral Maxillofac. Surg.2022605e677e69010.1016/j.bjoms.2021.06.00535305839
    [Google Scholar]
  29. BițăC.E. DinescuS.C. VrejuF.A. MușetescuA.E. BițăA. CriveanuC. BărbulescuA.L. FlorescuA. CiureaP.L. Preliminary study on the antioxidant effect of natural based products with potential application in complex regional pain syndrome.Curr. Health Sci. J.202349218619237779827
    [Google Scholar]
  30. HasaneinP. Teimuri FarM. EmamjomehA. Salvia officinalis L. attenuates morphine analgesic tolerance and dependence in rats: Possible analgesic and sedative mechanisms.Am. J. Drug Alcohol Abuse201541540541310.3109/00952990.2015.106289326337199
    [Google Scholar]
  31. LeeJ.H. KimN. ParkS. KimS.K. Analgesic effects of medicinal plants and phytochemicals on chemotherapy-induced neuropathic pain through glial modulation.Pharmacol. Res. Perspect.202196e0081910.1002/prp2.81934676990
    [Google Scholar]
  32. ReddonH. LakeS. SocíasM.E. HayashiK. DeBeckK. WalshZ. MilloyM-J. Cannabis use to manage opioid cravings among people who use unregulated opioids during a drug toxicity crisis.Int. J. Drug Policy202311910411310.1016/j.drugpo.2023.10411337481875
    [Google Scholar]
  33. WardE.N. QuayeA.N.A. WilensT.E. Opioid use disorders: Perioperative management of a special population.Anesth. Analg.2018127253954710.1213/ANE.000000000000347729847389
    [Google Scholar]
  34. DerryS. RiceA.S. ColeP. TanT. MooreR.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults.Cochrane Database Syst. Rev.201711CD00739328085183
    [Google Scholar]
  35. GašpariniD. LjubičićR. Mršić-PelčićJ. Capsaicin- Potential solution for chronic pain treatment.Psychiatr. Danub.202032Suppl. 442042833212445
    [Google Scholar]
  36. LyesM. YangK.H. CastellanosJ. FurnishT. Microdosing psilocybin for chronic pain: A case series.Pain2023164469870210.1097/j.pain.000000000000277836066961
    [Google Scholar]
  37. CollocaL. LudmanT. BouhassiraD. BaronR. DickensonA.H. YarnitskyD. FreemanR. TruiniA. AttalN. FinnerupN.B. EcclestonC. KalsoE. BennettD.L. DworkinR.H. RajaS.N. Neuropathic pain.Nat. Rev. Dis. Primers2017311700210.1038/nrdp.2017.228205574
    [Google Scholar]
  38. FinnerupN.B. KunerR. JensenT.S. Neuropathic pain: From mechanisms to treatment.Physiol. Rev.2021101125930110.1152/physrev.00045.201932584191
    [Google Scholar]
  39. GhoshK. PanH.L. Epigenetic mechanisms of neural plasticity in chronic neuropathic pain.ACS Chem. Neurosci.202213443244110.1021/acschemneuro.1c0084135107991
    [Google Scholar]
  40. ChiuI.M. Infection, pain, and itch.Neurosci. Bull.201834110911910.1007/s12264‑017‑0098‑128144843
    [Google Scholar]
  41. DonnellyC.R. ChenO. JiR.R. How do sensory neurons sense danger signals?Trends Neurosci.2020431082283810.1016/j.tins.2020.07.00832839001
    [Google Scholar]
  42. BaralP. UditS. ChiuI.M. Pain and immunity: Implications for host defence.Nat. Rev. Immunol.201919743344710.1038/s41577‑019‑0147‑230874629
    [Google Scholar]
  43. BuchheitT. HuhY. MaixnerW. ChengJ. JiR.R. Neuroimmune modulation of pain and regenerative pain medicine.J. Clin. Invest.202013052164217610.1172/JCI13443932250346
    [Google Scholar]
  44. NajarM. LombardC.A. Fayyad-KazanH. FaourW.H. MerimiM. SokalE.M. LagneauxL. FahmiH. Th17 immune response to adipose tissue-derived mesenchymal stromal cells.J. Cell. Physiol.201923411211452115210.1002/jcp.2871731041809
    [Google Scholar]
  45. VillegasJ.A. Van WassenhoveJ. MerrheimJ. MattaK. HamadacheS. FlaugèreC. PothinP. TruffaultF. HascoëtS. SantelmoN. AlifanoM. Berrih-AkninS. le PanseR. DraginN. Blocking interleukin-23 ameliorates neuromuscular and thymic defects in Myasthenia gravis.J. Neuroinflammation2023201910.1186/s12974‑023‑02691‑336639663
    [Google Scholar]
  46. RaychaudhuriS.K. AbriaC. MitraA. RaychaudhuriS.P. Functional significance of MAIT cells in Psoriatic arthritis.Cytokine202012515485510.1016/j.cyto.2019.15485531541902
    [Google Scholar]
  47. LeeK.M.C. ZhangZ. AchuthanA. FleetwoodA.J. SmithJ.E. HamiltonJ.A. CookA.D. IL-23 in arthritic and inflammatory pain development in mice.Arthritis Res. Ther.202022112310.1186/s13075‑020‑02212‑032471485
    [Google Scholar]
  48. PavlenkoD. FunahashiH. SakaiK. HashimotoT. LozadaT. YosipovitchG. AkiyamaT. IL-23 modulates histamine-evoked itch and responses of pruriceptors in mice.Exp. Dermatol.202029121209121510.1111/exd.1420633010057
    [Google Scholar]
  49. ZhangX. HeY. The role of nociceptive neurons in the pathogenesis of Psoriasis.Front. Immunol.202011198410.3389/fimmu.2020.0198433133059
    [Google Scholar]
  50. ZhangJ. ZhaoS. XingX. ShangL. CaoJ. HeY. Effects of neuropeptides on dendritic cells in the pathogenesis of psoriasis.J. Inflamm. Res.202316354310.2147/JIR.S39707936636251
    [Google Scholar]
  51. KashemS.W. RiedlM.S. YaoC. HondaC.N. VulchanovaL. KaplanD.H. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity.Immunity201543351552610.1016/j.immuni.2015.08.01626377898
    [Google Scholar]
  52. CohenJ.A. EdwardsT.N. LiuA.W. HiraiT. JonesM.R. WuJ. LiY. ZhangS. HoJ. DavisB.M. AlbersK.M. KaplanD.H. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity.Cell20191784919932.e1410.1016/j.cell.2019.06.02231353219
    [Google Scholar]
  53. HouY. ZhuL. TianH. SunH.X. WangR. ZhangL. ZhaoY. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis.Protein Cell20189121027103810.1007/s13238‑018‑0505‑z29508278
    [Google Scholar]
  54. LuoX. ChenO. WangZ. BangS. JiJ. LeeS.H. HuhY. FurutaniK. HeQ. TaoX. KoM.C. BortsovA. DonnellyC.R. ChenY. NackleyA. BertaT. JiR.R. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice.Neuron20211091726912706.e510.1016/j.neuron.2021.06.01534473953
    [Google Scholar]
  55. KopustinskieneD.M. BernatonyteU. MasliiY. HerbinaN. BernatonieneJ. Natural herbal non-opioid topical pain relievers — Comparison with traditional therapy.Pharmaceutics20221412264810.3390/pharmaceutics1412264836559142
    [Google Scholar]
  56. CrocqM.A. History of cannabis and the endocannabinoid system .Dialogues Clin. Neurosci.202022322322810.31887/DCNS.2020.22.3/mcrocq33162765
    [Google Scholar]
  57. PisantiS. BifulcoM. Medical Cannabis: A plurimillennial history of an evergreen.J. Cell. Physiol.201923468342835110.1002/jcp.2772530417354
    [Google Scholar]
  58. TreedeR.D. RiefW. BarkeA. AzizQ. BennettM.I. BenolielR. CohenM. EversS. FinnerupN.B. FirstM.B. GiamberardinoM.A. KaasaS. KosekE. Lavand’hommeP. NicholasM. PerrotS. ScholzJ. SchugS. SmithB.H. SvenssonP. VlaeyenJ.W.S. WangS.J. A classification of chronic pain for ICD-11.Pain201515661003100710.1097/j.pain.000000000000016025844555
    [Google Scholar]
  59. StockingsE. CampbellG. HallW.D. NielsenS. ZagicD. RahmanR. MurnionB. FarrellM. WeierM. DegenhardtL. Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: A systematic review and meta-analysis of controlled and observational studies.Pain2018159101932195410.1097/j.pain.000000000000129329847469
    [Google Scholar]
  60. National conference of state legislatures (state legislatures news).Available from: https://www.ncsl.org/ncsl-search-results/topics/%20/t/1704115326698?searchtext=state%20medical%20marijuana%20laws 2024
  61. Lipnik-ŠtangeljM. RazingerB. A regulatory take on cannabis and cannabinoids for medicinal use in the European Union.Arh. Hig. Rada. Toksikol.2020711121810.2478/aiht‑2020‑71‑330232597142
    [Google Scholar]
  62. EMCDDAPublications Office of the European Union.Luxembourg201848
    [Google Scholar]
  63. PicherskyE. RagusoR. Why do plants produce so many terpenoid compounds?New Phytol.2016220369270227604856
    [Google Scholar]
  64. PennypackerS.D. Romero-SandovalE.A. CBD and THC: Do they complement each other like yin and yang?Pharmacotherapy202040111152116510.1002/phar.246933080058
    [Google Scholar]
  65. YuC.H.J. RupasingheH.P.V. Cannabidiol-based natural health products for companion animals: Recent advances in the management of anxiety, pain, and inflammation.Res. Vet. Sci.2021140384610.1016/j.rvsc.2021.08.00134391060
    [Google Scholar]
  66. MarcuJ. The legalization of cannabinoid products and standardizing cannabis-drug development in the United States: A brief report .Dialogues Clin. Neurosci.202022328929310.31887/DCNS.2020.22.3/jmarcu33162772
    [Google Scholar]
  67. MeadA. Legal and regulatory issues governing cannabis and cannabis-derived products in the united states.Front. Plant Sci.20191069710.3389/fpls.2019.0069731263468
    [Google Scholar]
  68. JinD. DaiK. XieZ. ChenJ. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes.Sci. Rep.2020101330910.1038/s41598‑020‑60172‑632094454
    [Google Scholar]
  69. AminM.R. AliD.W. Pharmacology of medical cannabis.Adv. Exp. Med. Biol.2019116215116510.1007/978‑3‑030‑21737‑2_831332738
    [Google Scholar]
  70. ReidM. A qualitative review of cannabis stigmas at the twilight of prohibition.J. Cannabis Res.2020214610.1186/s42238‑020‑00056‑833526147
    [Google Scholar]
  71. SommanoS.R. ChittasuphoC. RuksiriwanichW. JantrawutP. The cannabis terpenes.Molecules20202524579210.3390/molecules2524579233302574
    [Google Scholar]
  72. Is marijuana safe and effective as medicine?Available from: https://nida.nih.gov/publications/research-reports/marijuana/marijuana-safe-effective-medicine
  73. BridgemanM.B. AbaziaD.T. Medicinal cannabis: History, pharmacology, and implications for the acute care setting.P T201742318018828250701
    [Google Scholar]
  74. BenniciA. MannucciC. CalapaiF. CardiaL. AmmendoliaI. GangemiS. CalapaiG. SolerD.G. Safety of medical cannabis in neuropathic chronic pain management.Molecules20212620625710.3390/molecules2620625734684842
    [Google Scholar]
  75. HensonJ.D. VitettaL. HallS. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions.Inflammopharmacology20223041167117810.1007/s10787‑022‑01020‑z35796920
    [Google Scholar]
  76. McDougallJ.J. McKennaM.K. Anti-inflammatory and analgesic properties of the cannabis terpene myrcene in rat adjuvant monoarthritis.Int. J. Mol. Sci.20222314789110.3390/ijms2314789135887239
    [Google Scholar]
  77. VelaJ. DreyerL. PetersenK.K. Arendt-NielsenL. DuchK.S. KristensenS. Cannabidiol treatment in hand osteoarthritis and psoriatic arthritis: A randomized, double-blind, placebo-controlled trial.Pain202216361206121410.1097/j.pain.000000000000246634510141
    [Google Scholar]
  78. ZouS. KumarU. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system.Int. J. Mol. Sci.201819383310.3390/ijms1903083329533978
    [Google Scholar]
  79. KochM. Cannabinoid receptor signaling in central regulation of feeding behavior: A mini-review.Front. Neurosci.20171129310.3389/fnins.2017.0029328596721
    [Google Scholar]
  80. AlvesV.L. GonçalvesJ.L. AguiarJ. TeixeiraH.M. CâmaraJ.S. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review.Crit. Rev. Toxicol.202050535938210.1080/10408444.2020.176253932530350
    [Google Scholar]
  81. PatelM. ManningJ.J. FinlayD.B. JavitchJ.A. BanisterS.D. GrimseyN.L. GlassM. Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists.Biochem. Pharmacol.202017511387110.1016/j.bcp.2020.11387132088263
    [Google Scholar]
  82. WalshK.B. AndersenH.K. Molecular pharmacology of synthetic cannabinoids: Delineating CB1 receptor-mediated cell signaling.Int. J. Mol. Sci.20202117611510.3390/ijms2117611532854313
    [Google Scholar]
  83. Correia-SáI.B. CarvalhoC.M. SerrãoP.V. LoureiroA.I. Fernandes-LopesC. MarquesM. Vieira-CoelhoM.A. A new role for anandamide: Defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing.Sci. Rep.20201011113410.1038/s41598‑020‑68058‑332636441
    [Google Scholar]
  84. PacherP. KoganN.M. MechoulamR. Beyond THC and endocannabinoids.Annu. Rev. Pharmacol. Toxicol.202060163765910.1146/annurev‑pharmtox‑010818‑02144131580774
    [Google Scholar]
  85. SharkeyK.A. WileyJ.W. The role of the endocannabinoid system in the brain–gut axis.Gastroenterology2016151225226610.1053/j.gastro.2016.04.01527133395
    [Google Scholar]
  86. VulfsonsS. MinerbiA. SaharT. Cannabis and pain treatment - a review of the clinical utility and a practical approach in light of uncertainty.Rambam Maimonides Med. J.2020111e000210.5041/RMMJ.1038532017678
    [Google Scholar]
  87. SchillingJ.M. HughesC.G. WallaceM.S. SextonM. BackonjaM. Moeller-BertramT. Cannabidiol as a treatment for chronic pain: A survey of patients’ perspectives and attitudes.J. Pain Res.2021141241125010.2147/JPR.S27871833981161
    [Google Scholar]
  88. BoggsD. NguyenJ. MorgensonD. TaffeM. RanganathanM. Clinical and preclinical evidence for functional interactions of cannabidiol and Δ9-tetrahydrocannabinol.Neuropsychopharmacology431142154201710.1038/npp.2017.20928875990
    [Google Scholar]
  89. AraújoM. AlmeidaM. AraújoL. The cannabinoids mechanism of action: An overview.Br. J. Pain20236109113
    [Google Scholar]
  90. LucasC.J. GalettisP. SchneiderJ. The pharmacokinetics and the pharmacodynamics of cannabinoids.Br. J. Clin. Pharmacol.201884112477248210.1111/bcp.1371030001569
    [Google Scholar]
  91. SchlienzN.J. SpindleT.R. ConeE.J. HerrmannE.S. BigelowG.E. MitchellJ.M. FlegelR. LoDicoC. VandreyR. Pharmacodynamic dose effects of oral cannabis ingestion in healthy adults who infrequently use cannabis.Drug Alcohol Depend.202021110796910.1016/j.drugalcdep.2020.10796932298998
    [Google Scholar]
  92. ArnoldW.R. CarnevaleL.N. XieZ. BaylonJ.L. TajkhorshidE. HuH. DasA. Anti-inflammatory dopamine and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel.Nat. Commun.202112192610.1038/s41467‑021‑20946‑633568652
    [Google Scholar]
  93. CalapaiF. CardiaL. SorbaraE.E. NavarraM. GangemiS. CalapaiG. MannucciC. Cannabinoids, blood– brain barrier, and brain disposition.Pharmaceutics202012326510.3390/pharmaceutics1203026532183416
    [Google Scholar]
  94. NataleB.V. GustinK.N. LeeK. HollowayA.C. LavioletteS.R. NataleD.R.C. HardyD.B. Δ9-tetrahydrocannabinol exposure during rat pregnancy leads to symmetrical fetal growth restriction and labyrinth-specific vascular defects in the placenta.Sci. Rep.202010154410.1038/s41598‑019‑57318‑631953475
    [Google Scholar]
  95. MichalskiC.A. HungR.J. SeetoR.A. DennisC.L. BrooksJ.D. HendersonJ. LevitanR. LyeS.J. MatthewsS.G. KnightJ.A. Association between maternal cannabis use and birth outcomes: An observational study.BMC Pregnancy Childbirth202020177110.1186/s12884‑020‑03371‑333308186
    [Google Scholar]
  96. ThompsonR. DeJongK. LoJ. Marijuana use in pregnancy: A review.Obstet. Gynecol. Surv.201974741542810.1097/OGX.000000000000068531343707
    [Google Scholar]
  97. UjváryI. HanušL. Human metabolites of cannabidiol: A review on their formation, biological activity, and relevance in therapy.Cannabis Cannabinoid Res.2016119010110.1089/can.2015.001228861484
    [Google Scholar]
  98. MillarS.A. StoneN.L. YatesA.S. O’SullivanS.E. A systematic review on the pharmacokinetics of cannabidiol in humans.Front. Pharmacol.20189136510.3389/fphar.2018.0136530534073
    [Google Scholar]
  99. ZendulkaO. DovrtělováG. NoskováK. TurjapM. ŠulcováA. HanušL. JuřicaJ. Cannabinoids and cytochrome P450 interactions.Curr. Drug Metab.201617320622610.2174/138920021766615121014205126651971
    [Google Scholar]
  100. UritsI. CharipovaK. GressK. LiN. BergerA.A. CornettE.M. KassemH. NgoA.L. KayeA.D. ViswanathO. Adverse effects of recreational and medical cannabis.Psychopharmacol. Bull.20215119410933897066
    [Google Scholar]
  101. WangL. HongP.J. MayC. RehmanY. OparinY. HongC.J. HongB.Y. GalloL. CraigieS. CoubanR.J. Medical cannabis or cannabinoids for chronic non- cancer and cancer related pain: A systematic review and meta-analysis of randomised clinical trials.BMJ2021374n103410.1136/bmj.n1034
    [Google Scholar]
  102. JohalH. DevjiT. ChangY. SimoneJ. VannabouathongC. BhandariM. Cannabinoids in chronic non-cancer pain: A systematic review and meta-analysis.Clin. Med. Insights Arthritis Musculoskelet. Disord.20201310.1177/117954412090646132127750
    [Google Scholar]
  103. LynchM.E. WareM.A. Cannabinoids for the treatment of chronic non-cancer pain: An updated systematic review of randomized controlled trials.J. Neuroimmune Pharmacol.201510229330110.1007/s11481‑015‑9600‑625796592
    [Google Scholar]
  104. ChangY. ZhuM. VannabouathongC. MundiR. ChouR.S. BhandariM. Medical cannabis for chronic noncancer pain: A systematic review of health care recommendations.Pain Res. Manag.202120211910.1155/2021/885794833613794
    [Google Scholar]
  105. Nabilone versus amitriptyline in improving quality of sleep in patients with fibromyalgia.NCT003811992007
  106. A study of Sativex® for pain relief in patients with advanced malignancy. (SPRAY).NCT005307642013
  107. Δ9-THC (Namisol®) in Chronic Pancreatitis Patients Suffering From Persistent Abdominal Pain.NCT015515112014
  108. The analgesic efficacy of Δ9-THC (Namisol®) in patients with persistent postsurgical abdominal pain.NCT015624832014
  109. Trial of dronabinol and vaporized cannabis in chronic low back pain.NCT024606922023
  110. A study to compare sublingual cannabis based medicine extracts with placebo to treat brachial plexus injury pain.NCT016061892023
  111. Vaporized cannabis for chronic pain associated with sickle cell disease (Cannabis-SCD).NCT017717312020
  112. Supporting effect of dronabinol on behavioral therapy in fibromyalgia and chronic back pain.NCT001761632010
  113. Pain Research: Innovative Strategies With Marijuana (PRISM).NCT035223242023
  114. Opioid and cannabinoid pharmacokinetic interactions.NCT003085552016
  115. Study to evaluate the efficacy of dronabinol (marinol) as add-on therapy for patients on opioids for chronic pain.NCT001531922013
  116. Effect of delta-9-tetrahydrocannabinol on the prevention of chronic pain in patients with acute CRPS (ETIC-study).NCT003774682008
  117. Efficacy Trial of Oral Tetrahydrocannabinol in Patients With Fibromyalgia.NCT011490182010
  118. Cannabis oil for chronic non-cancer pain treatment (CONCEPT).NCT036355932018
  119. Safety and efficacy of medical cannabis oil in the treatment of patients with chronic pain.NCT033375032018
  120. Dronabinol opioid sparing evaluation (DOSE) trial.NCT037662692018
  121. Cannabidiol, morphine, pain (CMP).NCT040304422023
  122. Use of the cannabinoid nabilone for the promotion of sleep in chronic, non-malignant pain patientsNCT003844102006
  123. Cannabinoids for the reduction of inflammation and sickle cell related pain (CRISP).NCT055191112023
  124. Treatment of Chronic Pain With Cannabidiol (CBD) and Delta-9-tetrahydrocannabinol (THC).NCT032159402022
  125. The JULI registry - Hemp and cannabis observational registry (JULI).NCT047262542022
  126. Cannabidiol 133 mg + Cannabigerol 66 mg + Tetrahydrocannabinol 4 mg vs. placebo as adjuvant treatment in chronic migraine - (CAMTREA).NCT049894132023
  127. PortenoyR.K. Ganae-MotanE.D. AllendeS. YanagiharaR. ShaiovaL. WeinsteinS. McQuadeR. WrightS. FallonM.T. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: A randomized, placebo-controlled, graded-dose trial.J. Pain201213543844910.1016/j.jpain.2012.01.00322483680
    [Google Scholar]
  128. de VriesM. van RijckevorselD.C.M. VissersK.C.P. Wilder-SmithO.H.G. van GoorH. Tetrahydrocannabinol does not reduce pain in patients with chronic abdominal pain in a phase 2 placebo-controlled study.Clin. Gastroenterol. Hepatol.201715710791086.e410.1016/j.cgh.2016.09.14727720917
    [Google Scholar]
  129. BermanJ.S. SymondsC. BirchR. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: Results of a randomised controlled trial.Pain2004112329930610.1016/j.pain.2004.09.01315561385
    [Google Scholar]
  130. AbramsD.I. CoueyP. DixitN. SagiV. HagarW. VichinskyE. KellyM.E. ConnettJ.E. GuptaK. Effect of inhaled cannabis for pain in adults with sickle cell disease.JAMA Netw. Open202037e201087410.1001/jamanetworkopen.2020.1087432678452
    [Google Scholar]
  131. BergmanM.E. DavisB. PhillipsM.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action.Molecules20192421396110.3390/molecules2421396131683764
    [Google Scholar]
  132. BergmanM.E. PhillipsM.A. Structural diversity and biosynthesis of plant derived p-menthane monoterpenes.Phytochem. Rev.202120243345910.1007/s11101‑020‑09726‑0
    [Google Scholar]
  133. PetitjeanH. HéberléE. HilfigerL. ŁapieśO. RodrigueG. CharletA. TRP channels and monoterpenes: Past and current leads on analgesic properties.Front. Mol. Neurosci.20221594545010.3389/fnmol.2022.94545035966017
    [Google Scholar]
  134. RadwanM.M. ChandraS. GulS. ElSohlyM.A. Cannabinoids, phenolics, terpenes and alkaloids of Cannabis.Molecules2021269277410.3390/molecules2609277434066753
    [Google Scholar]
  135. BaronE.P. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science.Headache20185871139118610.1111/head.1334530152161
    [Google Scholar]
  136. KopustinskieneD.M. MasteikovaR. LazauskasR. BernatonieneJ. Cannabis sativa L. bioactive compounds and their protective role in oxidative stress and inflammation.Antioxidants, 202211466010.3390/antiox11040660
    [Google Scholar]
  137. JansenC. ShimodaL.M.N. KawakamiJ.K. AngL. BacaniA.J. BakerJ.D. BadowskiC. SpeckM. StokesA.J. Small-HowardA.L. TurnerH. Myrcene and terpene regulation of TRPV1.Channels (Austin)201913134436610.1080/19336950.2019.165434731446830
    [Google Scholar]
  138. GouveiaD.N. PinaL.T.S. RabeloT.K. da Rocha SantosW.B. QuintansJ.S.S. GuimarãesA.G. Monoterpenes as perspective to chronic pain management: A systematic review.Curr. Drug Targets201819896097210.2174/138945011866617071114530828699514
    [Google Scholar]
  139. AdamsJ.D. GuhrS. VillaseñorE. Salvia mellifera — How does it alleviate chronic pain?Medicines (Basel)2019611810.3390/medicines601001830678334
    [Google Scholar]
  140. AdamsJ. Chronic pain – Can it be cured?J. Pharm. Drug Dev.20174105109
    [Google Scholar]
  141. KumamotoE. FujitaT. Differential activation of TRP channels in the adult rat spinal substantia gelatinosa by stereoisomers of plant-derived chemicals.Pharmaceuticals (Basel)2016934610.3390/ph903004627483289
    [Google Scholar]
  142. MastrangeloF. FrydasI. RonconiG. KritasS.K. TettamantiL. CaraffaAl. D OvidioC. YounesA. GallengaC.E. ContiP. Low-grade chronic inflammation mediated by mast cells in fibromyalgia: Role of IL-37.J. Biol. Regul. Homeost. Agents201832219519829684996
    [Google Scholar]
  143. ParsadaniantzS.M. RivatC. RostèneW. GoazigoA.R-L. Opioid and chemokine receptor crosstalk: A promising target for pain therapy?Nat. Rev. Neurosci.2015162697810.1038/nrn385825588373
    [Google Scholar]
  144. OzM. El NebrisiE.G. YangK.H.S. HowarthF.C. Al KuryL.T. Cellular and molecular targets of menthol actions.Front. Pharmacol.2017847210.3389/fphar.2017.0047228769802
    [Google Scholar]
  145. NguyenT.H.D. ItohS.G. OkumuraH. TominagaM. Structural basis for promiscuous action of monoterpenes on TRP channels.Commun. Biol.20214129310.1038/s42003‑021‑01776‑033674682
    [Google Scholar]
  146. HilfigerL. TriauxZ. MarcicC. HéberléE. EmhemmedF. DarbonP. MarchioniE. PetitjeanH. CharletA. Anti-hyperalgesic properties of menthol and pulegone.Front. Pharmacol.20211275387310.3389/fphar.2021.75387334916937
    [Google Scholar]
  147. DonatelloN.N. EmerA.A. SalmD.C. LudtkeD.D. BordignonS.A.S.R. FerreiraJ.K. SalgadoA.S.I. VenzkeD. BretanhaL.C. MickeG.A. MartinsD.F. Lavandula angustifolia essential oil inhalation reduces mechanical hyperalgesia in a model of inflammatory and neuropathic pain: The involvement of opioid and cannabinoid receptors.J. Neuroimmunol.202034057714510.1016/j.jneuroim.2020.57714531945593
    [Google Scholar]
  148. BarbosaR. Cruz-MendesY. Silva-AlvesK.S. Ferreira-da-SilvaF.W. RibeiroN.M. MoraisL.P. Leal-CardosoJ.H. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability.Braz. J. Med. Biol. Res.20175012e635110.1590/1414‑431x2017635129069226
    [Google Scholar]
  149. NaikG.G. UniyalA. ChouhanD. TiwariV. SahuA.N. Natural products and some semi-synthetic analogues as potential TRPV1 ligands for attenuating neuropathic pain.Curr. Pharm. Biotechnol.202223676678610.2174/138920102266621071915593134825637
    [Google Scholar]
  150. JadhavB.K. KhandelwalK.R. KetkarA.R. PisalS.S. Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases.Drug Dev. Ind. Pharm.200430219520310.1081/DDC‑12002871515089054
    [Google Scholar]
  151. Gasmi BenahmedA. TippairoteT. GasmiA. NoorS. AvdeevO. ShanaidaY. MojganiN. EmadaliA. DadarM. BjørklundG. Periodontitis continuum: Antecedents, triggers, mediators, and treatment strategies.Curr. Med. Chem.202431416775680010.2174/0109298673265862231020051338
    [Google Scholar]
  152. BoujbihaM.A. ChahdouraH. AdouniK. ZianiB.E.C. SnoussiM. ChakrounY. Ciudad-MuleroM. Fernández-RuizV. AchourL. SelmiB. MoralesP. FlaminiG. MosbahH. Wild Vitex agnus-castus L.: Phytochemical characterization, acute toxicity, and bioactive properties.Molecules20232813509610.3390/molecules2813509637446759
    [Google Scholar]
  153. GuimarãesA.G. QuintansJ.S.S. Quintans-JúniorL.J. Monoterpenes with analgesic activity - A systematic review.Phytother. Res.201327111510.1002/ptr.468623296806
    [Google Scholar]
  154. PerriF. CoricelloA. AdamsJ.D. Monoterpenoids: The next frontier in the treatment of chronic pain?Multidiscip. Sci. J.20203219521410.3390/j3020016
    [Google Scholar]
  155. LiX.J. YangY.J. LiY.S. ZhangW.K. TangH.B. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2.J. Ethnopharmacol.2016179222610.1016/j.jep.2015.12.03926721216
    [Google Scholar]
  156. ZhouH.H. ZhangL. ZhouQ.G. FangY. GeW.H. (+)-Borneol attenuates oxaliplatin-induced neuropathic hyperalgesia in mice.Neuroreport201627316016510.1097/WNR.000000000000051626730517
    [Google Scholar]
  157. AndohT. KobayashiN. UtaD. KuraishiY. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A1 receptors.Phytomedicine2017251710.1016/j.phymed.2016.12.01028190463
    [Google Scholar]
  158. Di Cesare MannelliL. PiccoloM. MaioneF. FerraroM.G. IraceC. De FeoV. GhelardiniC. MascoloN. Tanshinones from Salvia miltiorrhiza Bunge revert chemotherapy-induced neuropathic pain and reduce glioblastoma cells malignancy.Biomed. Pharmacother.20181051042104910.1016/j.biopha.2018.06.04730021339
    [Google Scholar]
  159. BardaC. GrafakouM-E. TomouE-M. SkaltsaH. Phytochemistry and evidence-based traditional uses of the genus Achillea L.: An update (2011–2021).2021Sci. Pharm.4895010.3390/scipharm89040050
    [Google Scholar]
  160. SolimanG.A. AnsariM.N. AlqarniM.H. FoudahA.I. AlamA. SalkiniM.A. YusufogluH.S. Analgesic, antipyretic, anti-inflammatory, and hepatoprotective activities of Pulicaria crispa (Forssk.) Oliv. (Asteraceae).Braz. J. Pharm. Sci.202258e1885110.1590/s2175‑97902022e18851
    [Google Scholar]
  161. Sun-EdelsteinC. MauskopA. Foods and supplements in the management of migraine headaches.Clin. J. Pain200925544645210.1097/AJP.0b013e31819a6f6519454881
    [Google Scholar]
  162. HordieiK.R. GontovaT.N. GubarS.N. YaremenkoM.S. KotovaE.E. Study of the qualitative composition and quantitative content of parthenolide in the feverfew (Tanacetum parthenium) herb cultivated in Ukraine.Eur. Pharm. J.2020672273310.2478/afpuc‑2020‑0011
    [Google Scholar]
  163. SeppJ. KoshovyiO. JakstasV. ŽvikasV. BotsulaI. KireyevI. TsemenkoK. KukhtenkoO. KogermannK. HeinämäkiJ. RaalA. Phytochemical, technological, and pharmacological study on the galenic dry extracts prepared from german chamomile (Matricaria chamomilla L.) Flowers.Plants202413335010.3390/plants1303035038337883
    [Google Scholar]
  164. SeppJ. KoshovyiO. JakštasV. ŽvikasV. BotsulaI. KireyevI. SeverinaH. KukhtenkoO. Põhako-PaluK. KogermannK. HeinämäkiJ. RaalA. Phytochemical, pharmacological, and molecular docking study of dry extracts of Matricaria discoidea DC. with analgesic and soporific activities.Biomolecules202414336110.3390/biom1403036138540779
    [Google Scholar]
  165. ChavesP.F.P. HocayenP.A.S. DallazenJ.L. de Paula WernerM.F. IacominiM. AndreatiniR. CordeiroL.M.C. Chamomile tea: Source of a glucuronoxylan with antinociceptive, sedative and anxiolytic-like effects.Int. J. Biol. Macromol.20201641675168210.1016/j.ijbiomac.2020.08.03932795578
    [Google Scholar]
  166. SahA. NaseefP.P. KuruniyanM.S. JainG.K. ZakirF. AggarwalG. A Comprehensive study of therapeutic applications of chamomile.Pharmaceuticals (Basel)20221510128410.3390/ph1510128436297396
    [Google Scholar]
  167. TikhonovaM.A. TingC.H. KolosovaN.G. HsuC.Y. ChenJ.H. HuangC.W. TsengG.T. HungC.S. KaoP.F. AmstislavskayaT.G. HoY.J. Improving bone microarchitecture in aging with diosgenin treatment: A study in senescence-accelerated OXYS rats.Chin. J. Physiol.201558532233110.4077/CJP.2015.BAD32526387656
    [Google Scholar]
  168. HuangQ. GaoB. WangL. ZhangH.Y. LiX.J. ShiJ. WangZ. ZhangJ.K. YangL. LuoZ.J. LiuJ. OphiopogoninD. Ophiopogonin D: A new herbal agent against osteoporosis.Bone201574182810.1016/j.bone.2015.01.00225582622
    [Google Scholar]
  169. YangM. GuoQ. PengH. XiaoY.Z. XiaoY. HuangY. LiC.J. SuT. ZhangY.L. LeiM.X. ChenH.L. JiangT.J. LuoX.H. Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome.J. Exp. Med.201921681944196410.1084/jem.2018155431196982
    [Google Scholar]
  170. YinZ. ZhuW. WuQ. ZhangQ. GuoS. LiuT. LiS. ChenX. PengD. OuyangZ. Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NF-κB, ERK, and JNK signaling pathways.Eur. J. Pharmacol.201985917255010.1016/j.ejphar.2019.17255031323222
    [Google Scholar]
  171. YuY. WuJ. LiJ. LiuY. ZhengX. DuM. ZhouL. YangY. LuoS. HuW. LiL. YaoW. LiuY. Cycloastragenol prevents age-related bone loss: Evidence in d-galactose-treated and aged rats.Biomed. Pharmacother.202012811030410.1016/j.biopha.2020.11030432497865
    [Google Scholar]
  172. TianK. SuY. DingJ. WangD. ZhanY. LiY. LiangJ. LinX. SongF. WangZ. XuJ. LiuQ. ZhaoJ. Hederagenin protects mice against ovariectomy-induced bone loss by inhibiting RANKL-induced osteoclastogenesis and bone resorption.Life Sci.202024411733610.1016/j.lfs.2020.11733631972206
    [Google Scholar]
  173. YangM. XieJ. LeiX. SongZ. GongY. LiuH. ZhouL. Tubeimoside I suppresses diabetes-induced bone loss in rats, osteoclast formation, and RANKL-induced nuclear factor-κB pathway.Int. Immunopharmacol.20208010620210.1016/j.intimp.2020.10620232004923
    [Google Scholar]
  174. ZhouL. HuangY. ZhaoJ. YangH. KuaiF. Oridonin promotes osteogenesis through Wnt/β-catenin pathway and inhibits RANKL-induced osteoclastogenesis in vitro.Life Sci.202026211856310.1016/j.lfs.2020.11856333038376
    [Google Scholar]
  175. BellaviaD. CaradonnaF. DimarcoE. CostaV. CarinaV. De LucaA. RaimondiL. GentileC. AlessandroR. FiniM. GiavaresiG. Terpenoid treatment in osteoporosis: This is where we have come in research.Trends Endocrinol. Metab.2021321184686110.1016/j.tem.2021.07.01134481733
    [Google Scholar]
  176. BellampalliS.S. JiY. MoutalA. CaiS. WijeratneE.M.K. GandiniM.A. YuJ. ChefdevilleA. DorameA. ChewL.A. MaduraC.L. LuoS. MolnarG. KhannaM. StreicherJ.M. ZamponiG.W. GunatilakaA.A.L. KhannaR. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury–associated peripheral sensory neuropathy via block of N- and T-type calcium channels.Pain2019160111713510.1097/j.pain.000000000000138530169422
    [Google Scholar]
  177. GautamM. RamanathanM. Saponins of Tribulus terrestris attenuated neuropathic pain induced with vincristine through central and peripheral mechanism.Inflammopharmacology201927476177210.1007/s10787‑018‑0502‑029938333
    [Google Scholar]
  178. MncwangiN. ChenW. VermaakI. ViljoenA.M. GerickeN. Devil’s Claw — a review of the ethnobotany, phytochemistry and biological activity of Harpagophytum procumbens.J. Ethnopharmacol.2012143375577110.1016/j.jep.2012.08.01322940241
    [Google Scholar]
  179. SandersM. GrundmannO. The use of glucosamine, devil’s claw (Harpagophytum procumbens), and acupuncture as complementary and alternative treatments for osteoarthritis.Altern. Med. Rev.163201121951024
    [Google Scholar]
  180. WangC. GongX. BoA. ZhangL. ZhangM. ZangE. ZhangC. LiM. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics.Molecules202025228710.3390/molecules25020287
    [Google Scholar]
  181. LimD. KimJ. HanD. KimY. Analgesic effect of Harpagophytum procumbens on postoperative and neuropathic pain in rats.Molecules20141911060106810.3390/molecules1901106024441655
    [Google Scholar]
  182. AbdelhameedM.F. AsaadG.F. RagabT.I.M. AhmedR.F. El GendyA.E.N.G. Abd El-RahmanS.S. ElgamalA.M. ElshamyA.I. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition.Molecules20212619583310.3390/molecules2619583334641376
    [Google Scholar]
  183. QuispeC. Cruz-MartinsN. MancaM.L. ManconiM. SytarO. HudzN. ShanaidaM. KumarM. TaheriY. MartorellM. Sharifi-RadJ. PintusG. ChoW.C. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases.Oxid. Med. Cell. Longev.202120211314922310.1155/2021/314922334584616
    [Google Scholar]
  184. ZhiH.W. JiaY.Z. BoH.Q. LiH.T. ZhangS.S. WangY.H. YangJ. HuM.Z. WuH.Y. CuiW.Q. XuX.D. Curcumin alleviates orofacial allodynia and improves cognitive impairment via regulating hippocampal synaptic plasticity in a mouse model of trigeminal neuralgia.Aging (Albany NY)202315168458847010.18632/aging.20498437632838
    [Google Scholar]
  185. HeY. YueY. ZhengX. ZhangK. ChenS. DuZ. Curcumin, inflammation, and chronic diseases: How are they linked?Molecules20152059183921310.3390/molecules2005918326007179
    [Google Scholar]
  186. Eke-OkoroU.J. RaffaR.B. PergolizziJ.V. BreveF. TaylorR. GroupN.R. Curcumin in turmeric: Basic and clinical evidence for a potential role in analgesia.J. Clin. Pharm. Ther.201843446046610.1111/jcpt.1270329722036
    [Google Scholar]
  187. ZhangL. SongB. ZhangX. JinM. AnL. HanT. LiuF. WangZ. Resveratrol ameliorates trigeminal neuralgia-induced cognitive deficits by regulating neural ultrastructural remodelling and the CREB/BDNF pathway in rats.Oxid. Med. Cell. Longev.2022202211710.1155/2022/492667836478990
    [Google Scholar]
  188. GuiY. ZhangJ. ChenL. DuanS. TangJ. XuW. LiA. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner.Mol. Pain201814174480691876897010.1177/174480691876897029623757
    [Google Scholar]
  189. GaoW. ZanY. WangZ.J. HuX. HuangF. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1.Acta Pharmacol. Sin.20163791166117710.1038/aps.2016.5827498772
    [Google Scholar]
  190. LiuZ. ShanZ. YangH. XingY. GuoW. ChengJ. JiangY. CaiS. WuC. LiuJ.A. CheungC.W. PanY. Quercetin, main active ingredient of moutan cortex, alleviates chronic orofacial pain via block of voltage-gated sodium channel.Anesth. Analg.202413861324133637968831
    [Google Scholar]
  191. WuY. ChenJ. WangR. Puerarin suppresses TRPV1, calcitonin gene-related peptide and substance P to prevent paclitaxel-induced peripheral neuropathic pain in rats.Neuroreport201930428829410.1097/WNR.000000000000119930676543
    [Google Scholar]
  192. SiracusaR. MonacoF. D’AmicoR. GenoveseT. CordaroM. InterdonatoL. GugliandoloE. PeritoreA.F. CrupiR. CuzzocreaS. ImpellizzeriD. FuscoR. Di PaolaR. Epigallocatechin-3-gallate modulates postoperative pain by regulating biochemical and molecular pathways.Int. J. Mol. Sci.20212213687910.3390/ijms2213687934206850
    [Google Scholar]
  193. ArteroN.A. ManchopeM.F. CarvalhoT.T. Saraiva-SantosT. BertozziM.M. CarneiroJ.A. FranciosiA. DionisioA.M. ZaninelliT.H. FattoriV. FerrazC.R. PivaM. MizokamiS.S. Camilios-NetoD. CasagrandeR. VerriW.A. Hesperidin methyl chalcone reduces the arthritis caused by TiO2 in mice: Targeting inflammation, oxidative stress, cytokine production, and nociceptor sensory neuron activation.Molecules202328287210.3390/molecules2802087236677929
    [Google Scholar]
  194. ChaeH.K. KimW. KimS.K. Phytochemicals of cinnamomi cortex: Cinnamic acid, but not cinnamaldehyde, attenuates oxaliplatin-induced cold and mechanical hypersensitivity in rats.Nutrients201911243210.3390/nu1102043230791474
    [Google Scholar]
  195. ShanaidaM. Jasicka-MisiakI. MakowiczE. StanekN. ShanaidaV. WieczorekP. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family.J. Pharm. Bioallied Sci.202012213914510.4103/jpbs.JPBS_322_1932742112
    [Google Scholar]
  196. AretiA. KomirishettyP. KalvalaA.K. NellaiappanK. KumarA. Rosmarinic acid mitigates mitochondrial dysfunction and spinal glial activation in oxaliplatin-induced peripheral neuropathy.Mol. Neurobiol.20185597463747510.1007/s12035‑018‑0920‑429427084
    [Google Scholar]
  197. SinghG. SinghA. SinghP. BhattiR. Bergapten ameliorates vincristine-induced peripheral neuropathy by inhibition of inflammatory cytokines and NFκB signaling.ACS Chem. Neurosci.20191063008301710.1021/acschemneuro.9b0020631064179
    [Google Scholar]
  198. SharaM. StohsS.J. Efficacy and safety of white willow bark (Salix alba) extracts.Phytother. Res.20152981112111610.1002/ptr.537725997859
    [Google Scholar]
  199. ShovoM.A.R.B. TonaM.R. MouahJ. IslamF. ChowdhuryM.H.U. DasT. PaulA. AğagündüzD. RahmanM.M. EmranT.B. CapassoR. Simal-GandaraJ. Computational and pharmacological studies on the antioxidant, thrombolytic, anti-inflammatory, and analgesic activity of Molineria capitulata.Curr. Issues Mol. Biol.202143243445610.3390/cimb4302003534206443
    [Google Scholar]
  200. VenkatakrishnaK. SundeepK. SudeepH.V. GouthamchandraK. ShyamprasadK. ViphyllinTM, a standardized black pepper seed extract exerts antinociceptive effects in murine pain models via activation of cannabinoid receptor CB2, peroxisome proliferator-activated receptor-alpha and TRPV1 ion channels.J. Pain Res.20221535536610.2147/JPR.S35151335153513
    [Google Scholar]
  201. GaleottiN. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions.J. Ethnopharmacol.201720013614610.1016/j.jep.2017.02.01628216196
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330732241017135054
Loading
/content/journals/cmc/10.2174/0109298673330732241017135054
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test