Skip to content
2000
image of Stimuli-Responsive Nano/Biomaterials for Smart Drug Delivery in Cardiovascular Diseases: Promises, Challenges and Outlooks

Abstract

Cardiovascular Diseases (CVDs) are responsible for the highest number of deaths and disabilities globally. Although numerous therapeutic options exist for treating CVDs, most traditional strategies have proven ineffective in halting or significantly slowing disease progression, often leading to unfavorable side effects. Using nanocarriers represents an innovative strategy for treating CVD, enabling the personalized delivery of medications to precise locations within the cardiovascular system. Despite significant advancements in pharmacological treatments, challenges persist in effectively administering drugs to the CV system. Employing nanocarriers represents an innovative strategy for treating CVD, enabling the tailored administration of medications to precise locations within the cardiovascular system. Various studies have determined the future outlook of nanomedicines for clinical applications as nanocarrier design continues to improve, leading to enhanced drug delivery and treatment outcomes. The article focuses on the delivery systems of drugs that are effective strategies for treating cardiovascular diseases. This manuscript also seeks to explore new possibilities for how the emerging concept of nanotherapeutics could revolutionize our traditional diagnostic and treatment methods in the coming years.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319981241021063524
2024-11-07
2024-12-27
Loading full text...

Full text loading...

References

  1. Yang P. Ren J. Yang L. Nanoparticles in the new era of cardiovascular therapeutics: Challenges and opportunities. Int. J. Mol. Sci. 2023 24 6 5205 10.3390/ijms24065205 36982284
    [Google Scholar]
  2. Tsao C.W. Aday A.W. Almarzooq Z.I. Alonso A. Beaton A.Z. Bittencourt M.S. Boehme A.K. Buxton A.E. Carson A.P. Commodore-Mensah Y. Elkind M.S.V. Evenson K.R. Eze-Nliam C. Ferguson J.F. Generoso G. Ho J.E. Kalani R. Khan S.S. Kissela B.M. Knutson K.L. Levine D.A. Lewis T.T. Liu J. Loop M.S. Ma J. Mussolino M.E. Navaneethan S.D. Perak A.M. Poudel R. Rezk-Hanna M. Roth G.A. Schroeder E.B. Shah S.H. Thacker E.L. VanWagner L.B. Virani S.S. Voecks J.H. Wang N.Y. Yaffe K. Martin S.S. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022 145 8 e153 e639 10.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  3. Roth G.A. Mensah G.A. Johnson C.O. Addolorato G. Ammirati E. Baddour L.M. Barengo N.C. Beaton A.Z. Benjamin E.J. Benziger C.P. Bonny A. Brauer M. Brodmann M. Cahill T.J. Carapetis J. Catapano A.L. Chugh S.S. Cooper L.T. Coresh J. Criqui M. DeCleene N. Eagle K.A. Emmons-Bell S. Feigin V.L. Fernández-Solà J. Fowkes G. Gakidou E. Grundy S.M. He F.J. Howard G. Hu F. Inker L. Karthikeyan G. Kassebaum N. Koroshetz W. Lavie C. Lloyd-Jones D. Lu H.S. Mirijello A. Temesgen A.M. Mokdad A. Moran A.E. Muntner P. Narula J. Neal B. Ntsekhe M. Moraes de Oliveira G. Otto C. Owolabi M. Pratt M. Rajagopalan S. Reitsma M. Ribeiro A.L.P. Rigotti N. Rodgers A. Sable C. Shakil S. Sliwa-Hahnle K. Stark B. Sundström J. Timpel P. Tleyjeh I.M. Valgimigli M. Vos T. Whelton P.K. Yacoub M. Zuhlke L. Murray C. Fuster V. Roth G.A. Mensah G.A. Johnson C.O. Addolorato G. Ammirati E. Baddour L.M. Barengo N.C. Beaton A. Benjamin E.J. Benziger C.P. Bonny A. Brauer M. Brodmann M. Cahill T.J. Carapetis J.R. Catapano A.L. Chugh S. Cooper L.T. Coresh J. Criqui M.H. DeCleene N.K. Eagle K.A. Emmons-Bell S. Feigin V.L. Fernández-Sola J. Fowkes F.G.R. Gakidou E. Grundy S.M. He F.J. Howard G. Hu F. Inker L. Karthikeyan G. Kassebaum N.J. Koroshetz W.J. Lavie C. Lloyd-Jones D. Lu H.S. Mirijello A. Misganaw A.T. Mokdad A.H. Moran A.E. Muntner P. Narula J. Neal B. Ntsekhe M. Oliveira G.M.M. Otto C.M. Owolabi M.O. Pratt M. Rajagopalan S. Reitsma M.B. Ribeiro A.L.P. Rigotti N.A. Rodgers A. Sable C.A. Shakil S.S. Sliwa K. Stark B.A. Sundström J. Timpel P. Tleyjeh I.I. Valgimigli M. Vos T. Whelton P.K. Yacoub M. Zuhlke L.J. Abbasi-Kangevari M. Abdi A. Abedi A. Aboyans V. Abrha W.A. Abu-Gharbieh E. Abushouk A.I. Acharya D. Adair T. Adebayo O.M. Ademi Z. Advani S.M. Afshari K. Afshin A. Agarwal G. Agasthi P. Ahmad S. Ahmadi S. Ahmed M.B. Aji B. Akalu Y. Akande-Sholabi W. Aklilu A. Akunna C.J. Alahdab F. Al-Eyadhy A. Alhabib K.F. Alif S.M. Alipour V. Aljunid S.M. Alla F. Almasi-Hashiani A. Almustanyir S. Al-Raddadi R.M. Amegah A.K. Amini S. Aminorroaya A. Amu H. Amugsi D.A. Ancuceanu R. Anderlini D. Andrei T. Andrei C.L. Ansari-Moghaddam A. Anteneh Z.A. Antonazzo I.C. Antony B. Anwer R. Appiah L.T. Arabloo J. Ärnlöv J. Artanti K.D. Ataro Z. Ausloos M. Avila-Burgos L. Awan A.T. Awoke M.A. Ayele H.T. Ayza M.A. Azari S. B D.B. Baheiraei N. Baig A.A. Bakhtiari A. Banach M. Banik P.C. Baptista E.A. Barboza M.A. Barua L. Basu S. Bedi N. Béjot Y. Bennett D.A. Bensenor I.M. Berman A.E. Bezabih Y.M. Bhagavathula A.S. Bhaskar S. Bhattacharyya K. Bijani A. Bikbov B. Birhanu M.M. Boloor A. Brant L.C. Brenner H. Briko N.I. Butt Z.A. Caetano dos Santos F.L. Cahill L.E. Cahuana-Hurtado L. Cámera L.A. Campos-Nonato I.R. Cantu-Brito C. Car J. Carrero J.J. Carvalho F. Castañeda-Orjuela C.A. Catalá-López F. Cerin E. Charan J. Chattu V.K. Chen S. Chin K.L. Choi J-Y.J. Chu D-T. Chung S-C. Cirillo M. Coffey S. Conti S. Costa V.M. Cundiff D.K. Dadras O. Dagnew B. Dai X. Damasceno A.A.M. Dandona L. Dandona R. Davletov K. De la Cruz-Góngora V. De la Hoz F.P. De Neve J-W. Denova-Gutiérrez E. Derbew Molla M. Derseh B.T. Desai R. Deuschl G. Dharmaratne S.D. Dhimal M. Dhungana R.R. Dianatinasab M. Diaz D. Djalalinia S. Dokova K. Douiri A. Duncan B.B. Duraes A.R. Eagan A.W. Ebtehaj S. Eftekhari A. Eftekharzadeh S. Ekholuenetale M. El Nahas N. Elgendy I.Y. Elhadi M. El-Jaafary S.I. Esteghamati S. Etisso A.E. Eyawo O. Fadhil I. Faraon E.J.A. Faris P.S. Farwati M. Farzadfar F. Fernandes E. Fernandez Prendes C. Ferrara P. Filip I. Fischer F. Flood D. Fukumoto T. Gad M.M. Gaidhane S. Ganji M. Garg J. Gebre A.K. Gebregiorgis B.G. Gebregzabiher K.Z. Gebremeskel G.G. Getacher L. Obsa A.G. Ghajar A. Ghashghaee A. Ghith N. Giampaoli S. Gilani S.A. Gill P.S. Gillum R.F. Glushkova E.V. Gnedovskaya E.V. Golechha M. Gonfa K.B. Goudarzian A.H. Goulart A.C. Guadamuz J.S. Guha A. Guo Y. Gupta R. Hachinski V. Hafezi-Nejad N. Haile T.G. Hamadeh R.R. Hamidi S. Hankey G.J. Hargono A. Hartono R.K. Hashemian M. Hashi A. Hassan S. Hassen H.Y. Havmoeller R.J. Hay S.I. Hayat K. Heidari G. Herteliu C. Holla R. Hosseini M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Househ M. Huang J. Humayun A. Iavicoli I. Ibeneme C.U. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Iqbal U. Irvani S.S.N. Islam S.M.S. Islam R.M. Iso H. Iwagami M. Jain V. Javaheri T. Jayapal S.K. Jayaram S. Jayawardena R. Jeemon P. Jha R.P. Jonas J.B. Jonnagaddala J. Joukar F. Jozwiak J.J. Jürisson M. Kabir A. Kahlon T. Kalani R. Kalhor R. Kamath A. Kamel I. Kandel H. Kandel A. Karch A. Kasa A.S. Katoto P.D.M.C. Kayode G.A. Khader Y.S. Khammarnia M. Khan M.S. Khan M.N. Khan M. Khan E.A. Khatab K. Kibria G.M.A. Kim Y.J. Kim G.R. Kimokoti R.W. Kisa S. Kisa A. Kivimäki M. Kolte D. Koolivand A. Korshunov V.A. Koulmane Laxminarayana S.L. Koyanagi A. Krishan K. Krishnamoorthy V. Kuate Defo B. Kucuk Bicer B. Kulkarni V. Kumar G.A. Kumar N. Kurmi O.P. Kusuma D. Kwan G.F. La Vecchia C. Lacey B. Lallukka T. Lan Q. Lasrado S. Lassi Z.S. Lauriola P. Lawrence W.R. Laxmaiah A. LeGrand K.E. Li M-C. Li B. Li S. Lim S.S. Lim L-L. Lin H. Lin Z. Lin R-T. Liu X. Lopez A.D. Lorkowski S. Lotufo P.A. Lugo A. M N.K. Madotto F. Mahmoudi M. Majeed A. Malekzadeh R. Malik A.A. Mamun A.A. Manafi N. Mansournia M.A. Mantovani L.G. Martini S. Mathur M.R. Mazzaglia G. Mehata S. Mehndiratta M.M. Meier T. Menezes R.G. Meretoja A. Mestrovic T. Miazgowski B. Miazgowski T. Michalek I.M. Miller T.R. Mirrakhimov E.M. Mirzaei H. Moazen B. Moghadaszadeh M. Mohammad Y. Mohammad D.K. Mohammed S. Mohammed M.A. Mokhayeri Y. Molokhia M. Montasir A.A. Moradi G. Moradzadeh R. Moraga P. Morawska L. Moreno Velásquez I. Morze J. Mubarik S. Muruet W. Musa K.I. Nagarajan A.J. Nalini M. Nangia V. Naqvi A.A. Narasimha Swamy S. Nascimento B.R. Nayak V.C. Nazari J. Nazarzadeh M. Negoi R.I. Neupane Kandel S. Nguyen H.L.T. Nixon M.R. Norrving B. Noubiap J.J. Nouthe B.E. Nowak C. Odukoya O.O. Ogbo F.A. Olagunju A.T. Orru H. Ortiz A. Ostroff S.M. Padubidri J.R. Palladino R. Pana A. Panda-Jonas S. Parekh U. Park E-C. Parvizi M. Pashazadeh Kan F. Patel U.K. Pathak M. Paudel R. Pepito V.C.F. Perianayagam A. Perico N. Pham H.Q. Pilgrim T. Piradov M.A. Pishgar F. Podder V. Polibin R.V. Pourshams A. Pribadi D.R.A. Rabiee N. Rabiee M. Radfar A. Rafiei A. Rahim F. Rahimi-Movaghar V. Ur Rahman M.H. Rahman M.A. Rahmani A.M. Rakovac I. Ram P. Ramalingam S. Rana J. Ranasinghe P. Rao S.J. Rathi P. Rawal L. Rawasia W.F. Rawassizadeh R. Remuzzi G. Renzaho A.M.N. Rezapour A. Riahi S.M. Roberts-Thomson R.L. Roever L. Rohloff P. Romoli M. Roshandel G. Rwegerera G.M. Saadatagah S. Saber-Ayad M.M. Sabour S. Sacco S. Sadeghi M. Saeedi Moghaddam S. Safari S. Sahebkar A. Salehi S. Salimzadeh H. Samaei M. Samy A.M. Santos I.S. Santric-Milicevic M.M. Sarrafzadegan N. Sarveazad A. Sathish T. Sawhney M. Saylan M. Schmidt M.I. Schutte A.E. Senthilkumaran S. Sepanlou S.G. Sha F. Shahabi S. Shahid I. Shaikh M.A. Shamali M. Shamsizadeh M. Shawon M.S.R. Sheikh A. Shigematsu M. Shin M-J. Shin J.I. Shiri R. Shiue I. Shuval K. Siabani S. Siddiqi T.J. Silva D.A.S. Singh J.A. Mtech A.S. Skryabin V.Y. Skryabina A.A. Soheili A. Spurlock E.E. Stockfelt L. Stortecky S. Stranges S. Suliankatchi Abdulkader R. Tadbiri H. Tadesse E.G. Tadesse D.B. Tajdini M. Tariqujjaman M. Teklehaimanot B.F. Temsah M-H. Tesema A.K. Thakur B. Thankappan K.R. Thapar R. Thrift A.G. Timalsina B. Tonelli M. Touvier M. Tovani-Palone M.R. Tripathi A. Tripathy J.P. Truelsen T.C. Tsegay G.M. Tsegaye G.W. Tsilimparis N. Tusa B.S. Tyrovolas S. Umapathi K.K. Unim B. Unnikrishnan B. Usman M.S. Vaduganathan M. Valdez P.R. Vasankari T.J. Velazquez D.Z. Venketasubramanian N. Vu G.T. Vujcic I.S. Waheed Y. Wang Y. Wang F. Wei J. Weintraub R.G. Weldemariam A.H. Westerman R. Winkler A.S. Wiysonge C.S. Wolfe C.D.A. Wubishet B.L. Xu G. Yadollahpour A. Yamagishi K. Yan L.L. Yandrapalli S. Yano Y. Yatsuya H. Yeheyis T.Y. Yeshaw Y. Yilgwan C.S. Yonemoto N. Yu C. Yusefzadeh H. Zachariah G. Zaman S.B. Zaman M.S. Zamanian M. Zand R. Zandifar A. Zarghi A. Zastrozhin M.S. Zastrozhina A. Zhang Z-J. Zhang Y. Zhang W. Zhong C. Zou Z. Zuniga Y.M.H. Murray C.J.L. Fuster V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 2020 76 25 2982 3021 10.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  4. Zhu C. Ma J. Ji Z. Shen J. Wang Q. Recent advances of cell membrane coated nanoparticles in treating cardiovascular disorders. Molecules 2021 26 11 3428 10.3390/molecules26113428 34198794
    [Google Scholar]
  5. Ren J. Wu N.N. Wang S. Sowers J.R. Zhang Y. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol. Rev. 2021 101 4 1745 1807 10.1152/physrev.00030.2020 33949876
    [Google Scholar]
  6. Manners N. Priya V. Mehata A. Rawat M. Mohan S. Makeen H. Albratty M. Albarrati A. Meraya A. Muthu M. Theranostic nanomedicines for the treatment of cardiovascular and related diseases: Current strategies and future perspectives. Pharmaceuticals 2022 15 4 441 10.3390/ph15040441 35455438
    [Google Scholar]
  7. Kim M. Sahu A. Hwang Y. Kim G.B. Nam G.H. Kim I.S. Chan Kwon I. Tae G. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/- mice. Biomaterials 2020 226 119550 10.1016/j.biomaterials.2019.119550 31645012
    [Google Scholar]
  8. de Castro Leão M. Raffin Pohlmann A. de Cristo Soares Alves A. Helena Poliselli Farsky S. Klimuk Uchiyama M. Araki K. Sandri S. Stanisçuaski Guterres S. Alves Castro I. Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression. Eur. J. Pharm. Biopharm. 2021 159 99 107 10.1016/j.ejpb.2020.12.016 33358940
    [Google Scholar]
  9. Mog B. Asase C. Chaplin A. Gao H. Rajagopalan S. Maiseyeu A. Nano-antagonist alleviates inflammation and allows for MRI of atherosclerosis. Nanotheranostics 2019 3 4 342 355 10.7150/ntno.37391 31723548
    [Google Scholar]
  10. Ji X. Meng Y. Wang Q. Tong T. Liu Z. Lin J. Li B. Wei Y. You X. Lei Y. Song M. Wang L. Guo Y. Qiu Y. Chen Z. Mai B. Xie S. Wu J. Cao N. Cysteine-based redox-responsive nanoparticles for fibroblast-targeted drug delivery in the treatment of myocardial infarction. ACS Nano 2023 17 6 5421 5434 10.1021/acsnano.2c10042 36929948
    [Google Scholar]
  11. Omidian H. Babanejad N. Cubeddu L.X. Nanosystems in cardiovascular medicine: Advancements, applications, and future perspectives. Pharmaceutics 2023 15 7 1935 10.3390/pharmaceutics15071935 37514121
    [Google Scholar]
  12. Florea A. Sigl J.P. Morgenroth A. Vogg A. Sahnoun S. Winz O.H. Bucerius J. Schurgers L.J. Mottaghy F.M. Sodium [18F]fluoride pet can efficiently monitor in vivo atherosclerotic plaque calcification progression and treatment. Cells 2021 10 2 275 10.3390/cells10020275 33573188
    [Google Scholar]
  13. Naghib S.M. Zare Y. Rhee K.Y. A facile and simple approach to synthesis and characterization of methacrylated graphene oxide nanostructured polyaniline nanocomposites. Nanotechnol. Rev. 2020 9 1 53 60 10.1515/ntrev‑2020‑0005
    [Google Scholar]
  14. Gooneh-Farahani S. Naimi-Jamal M.R. Naghib S.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review. Expert Opin. Drug Deliv. 2019 16 1 79 99 10.1080/17425247.2019.1556257 30514124
    [Google Scholar]
  15. Smith B.R. Edelman E.R. Nanomedicines for cardiovascular disease. Nat. Cardiovasc. Res. 2023 2 4 351 367 10.1038/s44161‑023‑00232‑y 39195953
    [Google Scholar]
  16. Chen J. Zhao Q. Peng J. Yang X. Yu D. Zhao W. Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements. J. Dent. 2020 96 103332 10.1016/j.jdent.2020.103332 32283122
    [Google Scholar]
  17. Zhang J. Wang Y. Bao C. Liu T. Li S. Huang J. Wan Y. Li J. Curcumin‑loaded PEG‑PDLLA nanoparticles for attenuating palmitate‑induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway. Int. J. Mol. Med. 2019 44 2 672 682 10.3892/ijmm.2019.4228 31173176
    [Google Scholar]
  18. Luo B. Zhang H. Liu X. Rao R. Wu Y. Liu W. Novel DiR and SPIO nanoparticles embedded PEG-PLGA nanobubbles as a multimodalimaging contrast agent. Biomed. Mater. Eng. 2015 26 s1 Suppl. 1 S911 S916 10.3233/BME‑151384 26406092
    [Google Scholar]
  19. Sun Y. Lu Y. Yin L. Liu Z. The roles of nanoparticles in stem cell-based therapy for cardiovascular disease. Front. Bioeng. Biotechnol. 2020 8 947 10.3389/fbioe.2020.00947 32923434
    [Google Scholar]
  20. Huang J. Wang D. Huang L.H. Huang H. Roles of reconstituted high-density lipoprotein nanoparticles in cardiovascular disease: A new paradigm for drug discovery. Int. J. Mol. Sci. 2020 21 3 739 10.3390/ijms21030739 31979310
    [Google Scholar]
  21. Modak M. Frey M.A. Yi S. Liu Y. Scott E.A. Employment of targeted nanoparticles for imaging of cellular processes in cardiovascular disease. Curr. Opin. Biotechnol. 2020 66 59 68 10.1016/j.copbio.2020.06.003 32682272
    [Google Scholar]
  22. Sabir F. Barani M. Mukhtar M. Rahdar A. Cucchiarini M. Zafar M.N. Behl T. Bungau S. Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview. Chemosensors 2021 9 4 67 10.3390/chemosensors9040067
    [Google Scholar]
  23. Khizar S. Introduction to stimuli-responsive materials and their biomedical applications. In Stimuli-Responsive Materials for Biomedical Applications. American Chemical Society 2023 1 30 10.1021/bk‑2023‑1436.ch001
    [Google Scholar]
  24. Pawar V. Maske P. Khan A. Ghosh A. Keshari R. Bhatt M. Srivastava R. Responsive nanostructure for targeted drug delivery. J. Nanotheranost. 2023 4 1 55 85 10.3390/jnt4010004
    [Google Scholar]
  25. Kangarshahi B.M. Naghib S.M. Nanogenosensors based on aptamers and peptides for bioelectrochemical cancer detection: An overview of recent advances in emerging materials and technologies. Dis. Appl. Sci. 2024 6 2 47 10.1007/s42452‑024‑05681‑z
    [Google Scholar]
  26. Naghib S.M. Ahmadi B. Mozafari M.R. Stimuli-sensitive chitosan-based nanosystems-immobilized nucleic acids for gene therapy in breast cancer and hepatocellular carcinoma. Curr. Top. Med. Chem. 2024 24 17 1464 1489 10.2174/0115680266293173240506054439 38752630
    [Google Scholar]
  27. Garshasbi H.R. Naghib S.M. Smart stimuli-responsive alginate nanogels for drug delivery systems and cancer therapy: A review. Curr. Pharm. Des. 2023 29 44 3546 3562 10.2174/0113816128283806231211073031 38115614
    [Google Scholar]
  28. Matini A. Naghib S.M. Mozafari M.R. Quantum dots in cancer theranostics: A thorough review of recent advancements in bioimaging, tracking, and therapy across various cancer types. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010294163240407153842 38644717
    [Google Scholar]
  29. Mercy D.J. Harini K. Madhumitha S. Anitha C. Iswariya J. Girigoswami K. Girigoswami A. pH-responsive polymeric nanostructures for cancer theranostics. J. Meta. Mater. Miner. 2023 33 2 1 15 10.55713/jmmm.v33i2.1609
    [Google Scholar]
  30. Felber A.E. Dufresne M.H. Leroux J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012 64 11 979 992 10.1016/j.addr.2011.09.006 21996056
    [Google Scholar]
  31. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006 58 15 1655 1670 10.1016/j.addr.2006.09.020 17125884
    [Google Scholar]
  32. López Ruiz A. Ramirez A. McEnnis K. Single and multiple stimuli-responsive polymer particles for controlled drug delivery. Pharmaceutics 2022 14 2 421 10.3390/pharmaceutics14020421 35214153
    [Google Scholar]
  33. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  34. Fang L. Fang T. Liu X. Ni Y. Lu C. Xu Z. Precise stimulation of near-infrared light responsive shape-memory polymer composites using upconversion particles with photothermal capability. Compos. Sci. Technol. 2017 152 190 197 10.1016/j.compscitech.2017.09.021
    [Google Scholar]
  35. Alvarez-Lorenzo C. Concheiro A. From drug dosage forms to intelligent drug-delivery systems: a change of paradigm. Smart materials for drug delivery. The Royal Society of Chemistry 2013 1 32 10.1039/9781849736800‑00001
    [Google Scholar]
  36. Liu G. Lovell J.F. Zhang L. Zhang Y. Stimulus-responsive nanomedicines for disease diagnosis and treatment. Int. J. Mol. Sci. 2020 21 17 6380 10.3390/ijms21176380 32887466
    [Google Scholar]
  37. Ding X. Heiden P.A. Recent developments in molecularly imprinted nanoparticles by surface imprinting techniques. Macromol. Mater. Eng. 2014 299 3 268 282 10.1002/mame.201300160
    [Google Scholar]
  38. Idil N. Chapter 10 - molecular imprinting-based sensing platforms for recognition of microorganisms. In molecular imprinting for nanosensors and other sensing applications Denizli A. Elsevier 2021 255 281
    [Google Scholar]
  39. Zhang Y. Wang Q. Zhao X. Ma Y. Zhang H. Pan G. Molecularly imprinted nanomaterials with stimuli responsiveness for applications in biomedicine. Molecules 2023 28 3 918 10.3390/molecules28030918 36770595
    [Google Scholar]
  40. Jaganathan S.K. Supriyanto E. Murugesan S. Balaji A. Asokan M.K. Biomaterials in cardiovascular research: applications and clinical implications. BioMed Res. Int. 2014 2014 1 11 10.1155/2014/459465 24895577
    [Google Scholar]
  41. Roger W. Michael N. Chapter 14 cardiovascular biomaterials digital engineering library press. Standard handbook of biomedical engineering and design McGraw-Hill 2004 1 11
    [Google Scholar]
  42. Curtis M.W. Russell B. Cardiac tissue engineering. J. Cardiovasc. Nurs. 2009 24 2 87 92 10.1097/01.JCN.0000343562.06614.49 19125130
    [Google Scholar]
  43. Naseroleslami M. Niri N.M. Akbarzade I. Sharifi M. Aboutaleb N. Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury. Drug Deliv. Transl. Res. 2022 12 6 1423 1432 10.1007/s13346‑021‑01019‑z 34165730
    [Google Scholar]
  44. Varma R.S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem.& Eng. 2016 4 11 5866 5878 10.1021/acssuschemeng.6b01623 32704457
    [Google Scholar]
  45. Varma R.S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain. Chem.& Eng. 2019 7 7 6458 6470 10.1021/acssuschemeng.8b06550
    [Google Scholar]
  46. Iravani S. Varma R.S. Advanced drug delivery micro- and nanosystems for cardiovascular diseases. Molecules 2022 27 18 5843 10.3390/molecules27185843 36144581
    [Google Scholar]
  47. Patel B. Manne R. Patel D.B. Gorityala S. Palaniappan A. Kurakula M. Chitosan as functional biomaterial for designing delivery systems in cardiac therapies. Gels 2021 7 4 253 10.3390/gels7040253 34940314
    [Google Scholar]
  48. Mohamed N.A. Marei I. Crovella S. Abou-Saleh H. Recent developments in nanomaterials-based drug delivery and upgrading treatment of cardiovascular diseases. Int. J. Mol. Sci. 2022 23 3 1404 10.3390/ijms23031404 35163328
    [Google Scholar]
  49. Lv J. Liu W. Shi G. Zhu F. He X. Zhu Z. Chen H. Human cardiac extracellular matrix-chitosan-gelatin composite scaffold and its endothelialization. Exp. Ther. Med. 2020 19 2 1225 1234 32010293
    [Google Scholar]
  50. Ke X. Li M. Wang X. Liang J. Wang X. Wu S. Long M. Hu C. An injectable chitosan/dextran/β -glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydr. Polym. 2020 229 115516 10.1016/j.carbpol.2019.115516 31826493
    [Google Scholar]
  51. Chen J. Zhan Y. Wang Y. Han D. Tao B. Luo Z. Ma S. Wang Q. Li X. Fan L. Li C. Deng H. Cao F. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018 80 154 168 10.1016/j.actbio.2018.09.013 30218777
    [Google Scholar]
  52. Deng B. Shen L. Wu Y. Shen Y. Ding X. Lu S. Jia J. Qian J. Ge J. Delivery of alginate‐chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J. Biomed. Mater. Res. A 2015 103 3 907 918 10.1002/jbm.a.35232 24827141
    [Google Scholar]
  53. Huang Y. Ding Z. Biomaterials for cardiovascular diseases. Biomedical Technology 2024 7 1 14 10.1016/j.bmt.2024.05.001
    [Google Scholar]
  54. Jiménez-Gómez C.P. Cecilia J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020 25 17 3981 10.3390/molecules25173981 32882899
    [Google Scholar]
  55. Hardy N. Viola H.M. Johnstone V.P.A. Clemons T.D. Cserne Szappanos H. Singh R. Smith N.M. Iyer K.S. Hool L.C. Nanoparticle-mediated dual delivery of an antioxidant and a peptide against the L-Type Ca2+ channel enables simultaneous reduction of cardiac ischemia-reperfusion injury. ACS Nano 2015 9 1 279 289 10.1021/nn5061404 25493575
    [Google Scholar]
  56. Singh S. Chapter 4 - Targeted nanotherapeutics for cardiovascular disorders. In: Impact of nanotechnology PhDians 2024 107 123
    [Google Scholar]
  57. Zhang J. Jiang X. Wen X. Xu Q. Zeng H. Zhao Y. Liu M. Wang Z. Hu X. Wang Y. Bio-responsive smart polymers and biomedical applications. JPhys Mater. 2019 2 3 032004 10.1088/2515‑7639/ab1af5
    [Google Scholar]
  58. Amaral A.J.R. Pasparakis G. Stimuli responsive self-healing polymers: Gels, elastomers and membranes. Polym. Chem. 2017 8 42 6464 6484 10.1039/C7PY01386H
    [Google Scholar]
  59. Choi Y.H. Han H.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig. 2018 48 1 43 60 10.1007/s40005‑017‑0370‑4 30546919
    [Google Scholar]
  60. Rösler A. Vandermeulen G.W.M. Klok H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2001 53 1 95 108 10.1016/S0169‑409X(01)00222‑8 11733119
    [Google Scholar]
  61. Davoodi P. Lee L.Y. Xu Q. Sunil V. Sun Y. Soh S. Wang C.H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 2018 132 104 138 10.1016/j.addr.2018.07.002 30415656
    [Google Scholar]
  62. Anselmo A.C. Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 2014 190 15 28 10.1016/j.jconrel.2014.03.053 24747160
    [Google Scholar]
  63. Wang J. Li Y. Nie G. Zhao Y. Precise design of nanomedicines: Perspectives for cancer treatment. Natl. Sci. Rev. 2019 6 6 1107 1110 10.1093/nsr/nwz012 34691989
    [Google Scholar]
  64. Ventola C.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P&T 2017 42 12 742 755 29234213
    [Google Scholar]
  65. Stater E.P. Sonay A.Y. Hart C. Grimm J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021 16 11 1180 1194 10.1038/s41565‑021‑01017‑9 34759355
    [Google Scholar]
  66. Wu T. Cui C. Huang Y. Liu Y. Fan C. Han X. Yang Y. Xu Z. Liu B. Fan G. Liu W. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction. ACS Appl. Mater. Interfaces 2020 12 2 2039 2048 10.1021/acsami.9b17907 31859471
    [Google Scholar]
  67. Wu T. Liu W. Functional hydrogels for the treatment of myocardial infarction. NPG Asia Mater. 2022 14 1 9 10.1038/s41427‑021‑00330‑y
    [Google Scholar]
  68. Zhang Y. Zhu D. Wei Y. Wu Y. Cui W. Liuqin L. Fan G. Yang Q. Wang Z. Xu Z. Kong D. Zeng L. Zhao Q. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomater. 2019 86 223 234 10.1016/j.actbio.2019.01.022 30660010
    [Google Scholar]
  69. Carlini A.S. Gaetani R. Braden R.L. Luo C. Christman K.L. Gianneschi N.C. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat. Commun. 2019 10 1 1735 10.1038/s41467‑019‑09587‑y 30988291
    [Google Scholar]
  70. Peña B. Laughter M. Jett S. Rowland T.J. Taylor M.R.G. Mestroni L. Park D. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 2018 18 6 1800079 10.1002/mabi.201800079 29733514
    [Google Scholar]
  71. Prajnamitra R.P. Chen H.C. Lin C.J. Chen L.L. Hsieh P.C.H. Nanotechnology approaches in tackling cardiovascular diseases. Molecules 2019 24 10 2017 10.3390/molecules24102017 31137787
    [Google Scholar]
  72. Zhang Y. Wu B.M. Current advances in stimuli-responsive hydrogels as smart drug delivery carriers. Gels 2023 9 10 838 10.3390/gels9100838 37888411
    [Google Scholar]
  73. Mauri E. Giannitelli S.M. Trombetta M. Rainer A. Synthesis of nanogels: Current trends and future outlook. Gels 2021 7 2 36 10.3390/gels7020036 33805279
    [Google Scholar]
  74. Oishi M. Nagasaki Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 2010 5 3 451 468 10.2217/nnm.10.18 20394537
    [Google Scholar]
  75. Purcell B.P. Barlow S.C. Perreault P.E. Freeburg L. Doviak H. Jacobs J. Hoenes A. Zellars K.N. Khakoo A.Y. Lee T. Burdick J.A. Spinale F.G. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2018 315 4 H814 H825 10.1152/ajpheart.00076.2018 29979624
    [Google Scholar]
  76. Creemers E.E.J.M. Cleutjens J.P.M. Smits J.F.M. Daemen M.J.A.P. Matrix metalloproteinase inhibition after myocardial infarction: A new approach to prevent heart failure? Circ. Res. 2001 89 3 201 210 10.1161/hh1501.094396 11485970
    [Google Scholar]
  77. An H. Deng X. Wang F. Xu P. Wang N. Dendrimers as nanocarriers for the delivery of drugs obtained from natural products. Polymers 2023 15 10 2292 10.3390/polym15102292 37242865
    [Google Scholar]
  78. Abbasi E. Aval S.F. Akbarzadeh A. Milani M. Nasrabadi H.T. Joo S.W. Hanifehpour Y. Nejati-Koshki K. Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014 9 1 247 10.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  79. Gothwal A. Kesharwani P. Gupta U. Khan I. Iqbal Mohd Amin M. Banerjee S. Iyer A. Dendrimers as an effective nanocarrier in cardiovascular disease. Curr. Pharm. Des. 2015 21 30 4519 4526 10.2174/1381612820666150827094341 26311317
    [Google Scholar]
  80. Yu M. Jie X. Xu L. Chen C. Shen W. Cao Y. Lian G. Qi R. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules 2015 16 9 2588 2598 10.1021/acs.biomac.5b00979 26310544
    [Google Scholar]
  81. Bacha K. Chemotti C. Mbakidi J-P. Deleu M. Bouquillon S. Dendrimers: Synthesis, encapsulation applications and specific interaction with the stratum corneum—a review. Macromol 2023 3 2 343 370 10.3390/macromol3020022
    [Google Scholar]
  82. Bagley A.F. Hill S. Rogers G.S. Bhatia S.N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 2013 7 9 8089 8097 10.1021/nn4033757 23961973
    [Google Scholar]
  83. Shen M. Yao S. Li S. Wu X. Liu S. Yang Q. Du J. Wang J. Zheng X. Li Y. A ROS and shear stress dual-sensitive bionic system with cross-linked dendrimers for atherosclerosis therapy. Nanoscale 2021 13 47 20013 20027 10.1039/D1NR05355H 34842887
    [Google Scholar]
  84. Modi H.R. Wang Q. Olmstead S.J. Khoury E.S. Sah N. Guo Y. Gharibani P. Sharma R. Kannan R.M. Kannan S. Thakor N.V. Systemic administration of dendrimer N‐acetyl cysteine improves outcomes and survival following cardiac arrest. Bioeng. Transl. Med. 2022 7 1 e10259 10.1002/btm2.10259 35079634
    [Google Scholar]
  85. Namdari P. Negahdari B. Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017 87 209 222 10.1016/j.biopha.2016.12.108 28061404
    [Google Scholar]
  86. Otun K.O. Amusat S.O. Bello I.T. Abdulsalam J. Ajiboye A.T. Adeleke A.A. Azeez S.O. Recent advances in the synthesis of various analogues of MOF-based nanomaterials: A mini-review. Inorg. Chim. Acta 2022 536 120890 10.1016/j.ica.2022.120890
    [Google Scholar]
  87. Sharmiladevi P. Akhtar N. Haribabu V. Girigoswami K. Chattopadhyay S. Girigoswami A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio Mater. 2019 2 4 1634 1642 10.1021/acsabm.9b00039 35026897
    [Google Scholar]
  88. Purohit D. Jalwal P. Manchanda D. Saini S. Verma R. Kaushik D. Mittal V. Kumar M. Bhattacharya T. Rahman M.H. Dutt R. Pandey P. Nanocapsules: An emerging drug delivery system. Recent Pat. Nanotechnol. 2023 17 3 190 207 10.2174/1872210516666220210113256 35142273
    [Google Scholar]
  89. Chaves P.S. Ourique A.F. Frank L.A. Pohlmann A.R. Guterres S.S. Beck R.C.R. Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa. Eur. J. Pharm. Biopharm. 2017 114 88 95 10.1016/j.ejpb.2017.01.007 28119104
    [Google Scholar]
  90. Molloy C.P. Yao Y. Kammoun H. Bonnard T. Hoefer T. Alt K. Tovar-Lopez F. Rosengarten G. Ramsland P.A. van der Meer A.D. van den Berg A. Murphy A.J. Hagemeyer C.E. Peter K. Westein E. Shear‐sensitive nanocapsule drug release for site‐specific inhibition of occlusive thrombus formation. J. Thromb. Haemost. 2017 15 5 972 982 10.1111/jth.13666 28267256
    [Google Scholar]
  91. Chopra H. Bibi S. Mishra A.K. Tirth V. Yerramsetty S.V. Murali S.V. Ahmad S.U. Mohanta Y.K. Attia M.S. Algahtani A. Islam F. Hayee A. Islam S. Baig A.A. Emran T.B. Nanomaterials: A promising therapeutic approach for cardiovascular diseases. J. Nanomater. 2022 2022 1 4155729 10.1155/2022/4155729
    [Google Scholar]
  92. Sayed M.M. Mousa H.M. El-Aassar M.R. El-Deeb N.M. Ghazaly N.M. Dewidar M.M. Abdal-hay A. Enhancing mechanical and biodegradation properties of polyvinyl alcohol/silk fibroin nanofibers composite patches for cardiac tissue engineering. Mater. Lett. 2019 255 126510 10.1016/j.matlet.2019.126510
    [Google Scholar]
  93. Tang J.M. Wang J.N. Zhang L. Zheng F. Yang J.Y. Kong X. Guo L.Y. Chen L. Huang Y.Z. Wan Y. Chen S.Y. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc. Res. 2011 91 3 402 411 10.1093/cvr/cvr053 21345805
    [Google Scholar]
  94. Khan M. Xu Y. Hua S. Johnson J. Belevych A. Janssen P.M.L. Gyorke S. Guan J. Angelos M.G. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One 2015 10 5 e0126338 10.1371/journal.pone.0126338 25993466
    [Google Scholar]
  95. Pok S. Myers J.D. Madihally S.V. Jacot J.G. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 2013 9 3 5630 5642 10.1016/j.actbio.2012.10.032 23128158
    [Google Scholar]
  96. Ding H. Wang X. Zhang S. Liu X. Applications of polymeric micelles with tumor targeted in chemotherapy. J. Nanopart. Res. 2012 14 11 1254 10.1007/s11051‑012‑1254‑1
    [Google Scholar]
  97. Yang B. Lv Y. Zhu J. Han Y. Jia H. Chen W. Feng J. Zhang X. Zhuo R. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol–boronic acid ester formation. Acta Biomater. 2014 10 8 3686 3695 10.1016/j.actbio.2014.05.018 24879311
    [Google Scholar]
  98. Wang H. Wang Y. Chen Y. Jin Q. Ji J. A biomimic pH-sensitive polymeric prodrug based on polycarbonate for intracellular drug delivery. Polym. Chem. 2014 5 3 854 861 10.1039/C3PY00861D
    [Google Scholar]
  99. Shan X. Mao J. Long M. Ahmed K.S. Sun C. Qiu L. Chen J. Influence of polyethylene glycol molecular weight on the anticancer drug delivery of pH‐sensitive polymeric micelle. J. Appl. Polym. Sci. 2019 136 32 47854 10.1002/app.47854
    [Google Scholar]
  100. Fernandez-Villamarin M. Sousa-Herves A. Porto S. Guldris N. Martínez-Costas J. Riguera R. Fernandez-Megia E. A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polym. Chem. 2017 8 16 2528 2537 10.1039/C7PY00304H
    [Google Scholar]
  101. Zhou J. Yu G. Huang F. Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 2017 46 22 7021 7053 10.1039/C6CS00898D 28980674
    [Google Scholar]
  102. Song N. Lou X.Y. Ma L. Gao H. Yang Y.W. Supramolecular nanotheranostics based on pillarenes. Theranostics 2019 9 11 3075 3093 10.7150/thno.31858 31244942
    [Google Scholar]
  103. Zhou Y. Jie K. Huang F. A redox-responsive selenium-containing pillar[5]arene-based macrocyclic amphiphile: Synthesis, controllable self-assembly in water, and application in controlled release. Chem. Commun. 2017 53 59 8364 8367 10.1039/C7CC04779G 28702568
    [Google Scholar]
  104. Tan L.L. Song N. Zhang S.X.A. Li H. Wang B. Yang Y.W. Ca 2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J. Mater. Chem. B Mater. Biol. Med. 2016 4 1 135 140 10.1039/C5TB01789K 32262817
    [Google Scholar]
  105. Sun Y. Davis E. Nanoplatforms for targeted stimuli-responsive drug delivery: A review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials 2021 11 3 746 10.3390/nano11030746 33809633
    [Google Scholar]
  106. Sharmiladevi P. Breghatha M. Dhanavardhini K. Priya R. Girigoswami K. Girigoswami A. Efficient wormlike micelles for the controlled delivery of anticancer drugs. Nanosci. Nanotechnol. Asia 2021 11 3 350 356 10.2174/2210681210999200728115601
    [Google Scholar]
  107. Liong M. Lu J. Kovochich M. Xia T. Ruehm S.G. Nel A.E. Tamanoi F. Zink J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008 2 5 889 896 10.1021/nn800072t 19206485
    [Google Scholar]
  108. Hung H.I. Klein O.J. Peterson S.W. Rokosh S.R. Osseiran S. Nowell N.H. Evans C.L. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro. Sci. Rep. 2016 6 1 33234 10.1038/srep33234 27686626
    [Google Scholar]
  109. Scafa Udriște A. Burdușel A. Niculescu A.G. Rădulescu M. Grumezescu A. Metal-based nanoparticles for cardiovascular diseases. Int. J. Mol. Sci. 2024 25 2 1001 10.3390/ijms25021001 38256075
    [Google Scholar]
  110. Liu J. Lécuyer T. Seguin J. Mignet N. Scherman D. Viana B. Richard C. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv. Drug Deliv. Rev. 2019 138 193 210 10.1016/j.addr.2018.10.015 30414492
    [Google Scholar]
  111. Zhang C. Wu W. Li R-Q. Qiu W-X. Zhuang Z-N. Cheng S-X. Zhang X-Z. Peptide‐based multifunctional nanomaterials for tumor imaging and therapy. Adv. Funct. Mater. 2018 28 50 1804492 10.1002/adfm.201804492
    [Google Scholar]
  112. Rosenkrans Z.T. Ferreira C.A. Ni D. Cai W. Internally responsive nanomaterials for activatable multimodal imaging of cancer. Adv. Healthc. Mater. 2021 10 5 2000690 10.1002/adhm.202000690 32691969
    [Google Scholar]
  113. Jiang W. Rutherford D. Vuong T. Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact. Mater. 2017 2 4 185 198 10.1016/j.bioactmat.2017.11.002 29744429
    [Google Scholar]
  114. Barani M. Bilal M. Rahdar A. Arshad R. Kumar A. Hamishekar H. Kyzas G.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J. Nanopart. Res. 2021 23 1 18 10.1007/s11051‑020‑05129‑6
    [Google Scholar]
  115. Barani M. Bilal M. Sabir F. Rahdar A. Kyzas G.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci. 2021 266 118914 10.1016/j.lfs.2020.118914 33340527
    [Google Scholar]
  116. Barani M. Mukhtar M. Rahdar A. Sargazi G. Thysiadou A. Kyzas G.Z. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules 2021 26 1 186 10.3390/molecules26010186 33401658
    [Google Scholar]
  117. Barani M. Mukhtar M. Rahdar A. Sargazi S. Pandey S. Kang M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors 2021 11 2 55 10.3390/bios11020055 33672770
    [Google Scholar]
  118. Ghazy E. Kumar A. Barani M. Kaur I. Rahdar A. Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid cancer: Edifying drug targeting by nano-oncotherapeutics. J. Drug Deliv. Sci. Technol. 2021 61 102221 10.1016/j.jddst.2020.102221
    [Google Scholar]
  119. Mukhtar M. Bilal M. Rahdar A. Barani M. Arshad R. Behl T. Brisc C. Banica F. Bungau S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors (Basel) 2020 8 4 117 10.3390/chemosensors8040117
    [Google Scholar]
  120. Qindeel M. Barani M. Rahdar A. Arshad R. Cucchiarini M. Nanomaterials for the diagnosis and treatment of urinary tract infections. Nanomaterials (Basel) 2021 11 2 546 10.3390/nano11020546 33671511
    [Google Scholar]
  121. Rahdar A. Hajinezhad M.R. Sargazi S. Bilal M. Barani M. Karimi P. Kyzas G.Z. Biochemical effects of deferasirox and deferasirox-loaded nanomicellesin iron-intoxicated rats. Life Sci. 2021 270 119146 10.1016/j.lfs.2021.119146 33545199
    [Google Scholar]
  122. Rahdar A. Sargazi S. Barani M. Shahraki S. Sabir F. Aboudzadeh M. Lignin-stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments. Polymers (Basel) 2021 13 4 641 10.3390/polym13040641 33670009
    [Google Scholar]
  123. Sabir F. How to face skin cancer with nanomaterials: A review. Biointerface Res. Appl. Chem. 2021 11 4 11931 11955
    [Google Scholar]
  124. Januzzi J.L. Jr Maisel A.S. Silver M. Xue Y. DeFilippi C. Natriuretic peptide testing for predicting adverse events following heart failure hospitalization. Congest. Heart Fail. 2012 18 s1 Suppl. 1 S9 S13 10.1111/j.1751‑7133.2012.00306.x 22891803
    [Google Scholar]
  125. Al Meslmani B.M. Mahmoud G.F. Bakowsky U. Development of expanded polytetrafluoroethylene cardiovascular graft platform based on immobilization of poly lactic- co -glycolic acid nanoparticles using a wet chemical modification technique. Int. J. Pharm. 2017 529 1-2 238 244 10.1016/j.ijpharm.2017.06.091 28689963
    [Google Scholar]
  126. Ahadian S. Davenport Huyer L. Estili M. Yee B. Smith N. Xu Z. Sun Y. Radisic M. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017 52 81 91 10.1016/j.actbio.2016.12.009 27940161
    [Google Scholar]
  127. Cicha I. Alexiou C. Cardiovascular applications of magnetic particles. J. Magn. Magn. Mater. 2021 518 167428 10.1016/j.jmmm.2020.167428
    [Google Scholar]
  128. Materón E.M. Miyazaki C.M. Carr O. Joshi N. Picciani P.H.S. Dalmaschio C.J. Davis F. Shimizu F.M. Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances 2021 6 100163 10.1016/j.apsadv.2021.100163
    [Google Scholar]
  129. Gad S.A. Influence of Fe2O3 dopant on dielectric, optical conductivity and nonlinear optical properties of doped ZnO-polystyrene composites films. Biointerface Res. Appl. Chem. 2021 12 1 170 179 10.33263/BRIAC121.170179
    [Google Scholar]
  130. Eldesouky M.G. Shahat A. El-Bindary A. El-Bindary M.A. Description, kinetic and equilibrium studies of the adsorption of carbon dioxide in mesoporous iron oxide nanospheres. Biointerf. Res. Appl. Chem. 2021 12 1 1022 1038 10.33263/BRIAC121.10221038
    [Google Scholar]
  131. Vargas-Ortíz J.R. Böhnel H.N. Gonzalez C. Esquivel K. Magnetic nanoparticle behavior evaluation on cardiac tissue contractility through langendorff rat heart technique as a nanotoxicology parameter. Appl. Nanosci. 2021 11 9 2383 2396 10.1007/s13204‑021‑02031‑y
    [Google Scholar]
  132. Bao X. Mao Y. Si G. Kang L. Xu B. Gu N. Iron oxide nanoparticles: A promising approach for diagnosis and treatment of cardiovascular diseases. Nano Res. 2023 16 11 12453 12470 10.1007/s12274‑023‑6158‑0
    [Google Scholar]
  133. Banik B. Surnar B. Askins B.W. Banerjee M. Dhar S. Dual-targeted synthetic nanoparticles for cardiovascular diseases. ACS Appl. Mater. Interfaces 2020 12 6 6852 6862 10.1021/acsami.9b19036 31886643
    [Google Scholar]
  134. Samsulkahar N.F. Biosynthesis of gold nanoparticles using strobilanthes crispa aqueous leaves extract and evaluation of its antibacterial activity. Biointerface Res. Appl. Chem. 2023 13 1 1 6 10.33263/BRIAC131.063
    [Google Scholar]
  135. Chen C.C. Lin Y.P. Wang C.W. Tzeng H.C. Wu C.H. Chen Y.C. Chen C.P. Chen L.C. Wu Y.C. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 2006 128 11 3709 3715 10.1021/ja0570180 16536544
    [Google Scholar]
  136. Chithrani B.D. Chan W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007 7 6 1542 1550 10.1021/nl070363y 17465586
    [Google Scholar]
  137. Karademir F. Ayhan F. Antimicrobial surface functionality of PEG coated and AgNPs immobilized extracorporeal biomaterials. Biointerface Res. Appl. Chem. 2021 12 1 1039 1052 10.33263/BRIAC121.10391052
    [Google Scholar]
  138. Ferdous Z. Beegam S. Zaaba N.E. Elzaki O. Tariq S. Greish Y.E. Ali B.H. Nemmar A. Exacerbation of thrombotic responses to silver nanoparticles in hypertensive mouse model. Oxid. Med. Cell. Longev. 2022 2022 1 10 10.1155/2022/2079630 35111278
    [Google Scholar]
  139. Li L. Zeng Y. Liu G. Metal-based nanoparticles for cardiovascular disease diagnosis and therapy. Particuology 2023 72 94 111 10.1016/j.partic.2022.03.002
    [Google Scholar]
  140. Gherasim O. Puiu R.A. Bîrcă A.C. Burdușel A.C. Grumezescu A.M. An updated review on silver nanoparticles in biomedicine. Nanomaterials 2020 10 11 2318 10.3390/nano10112318 33238486
    [Google Scholar]
  141. Zhang X.F. Liu Z.G. Shen W. Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534 27649147
    [Google Scholar]
  142. Kumawat M. Madhyastha H. Singh M. Revaprasadu N. Srinivas S.P. Daima H.K. Double functionalized haemocompatible silver nanoparticles control cell inflammatory homeostasis. PLoS One 2022 17 10 e0276296 10.1371/journal.pone.0276296 36269783
    [Google Scholar]
  143. Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020 15 1 819 839 10.1515/biol‑2020‑0094 33817269
    [Google Scholar]
  144. Nemmar A. Al-Salam S. Greish Y.E. Beegam S. Zaaba N.E. Ali B.H. Impact of intratracheal administration of polyethylene glycol-coated silver nanoparticles on the heart of normotensive and hypertensive mice. Int. J. Mol. Sci. 2023 24 10 8890 10.3390/ijms24108890 37240239
    [Google Scholar]
  145. Cheng Y. Chen Z. Yang S. Liu T. Yin L. Pu Y. Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. Sci. Total Environ. 2021 800 149584 10.1016/j.scitotenv.2021.149584 34399324
    [Google Scholar]
  146. Manickam V. Periyasamy M. Dhakshinamoorthy V. Panneerselvam L. Perumal E. Recurrent exposure to ferric oxide nanoparticles alters myocardial oxidative stress, apoptosis and necrotic markers in male mice. Chem. Biol. Interact. 2017 278 54 64 10.1016/j.cbi.2017.10.003 28993115
    [Google Scholar]
  147. Shen Y. Gong S. Li J. Wang Y. Zhang X. Zheng H. Zhang Q. You J. Huang Z. Chen Y. Co-loading antioxidant N-acetylcysteine attenuates cytotoxicity of iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes. Int. J. Nanomedicine 2019 14 6103 6115 10.2147/IJN.S209820 31447555
    [Google Scholar]
  148. Wang Z. Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J. Appl. Toxicol. 2021 41 5 683 700 10.1002/jat.4121 33244813
    [Google Scholar]
  149. Prabhakaran D.A. Anand, S.; Gaziano, T.A.; Mbanya, J.-C.; Wu, Y.; Nugent, R. Disease control priorities Cardiovascular, respiratory, and related disorders 3rd Ed. Washington, DC: World Bank 5 1 2
    [Google Scholar]
  150. Kovacic J.C. Castellano J.M. Farkouh M.E. Fuster V. The relationships between cardiovascular disease and diabetes: Focus on pathogenesis. Endocrinol. Metab. Clin. North Am. 2014 43 1 41 57 10.1016/j.ecl.2013.09.007 24582091
    [Google Scholar]
  151. Kjeldsen S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018 129 95 99 10.1016/j.phrs.2017.11.003 29127059
    [Google Scholar]
  152. Martín Giménez V.M. Kassuha D.E. Manucha W. Nanomedicine applied to cardiovascular diseases: Latest developments. Ther. Adv. Cardiovasc. Dis. 2017 11 4 133 142 10.1177/1753944717692293 28198204
    [Google Scholar]
  153. Katsuki S. Matoba T. Koga J. Nakano K. Egashira K. Anti-inflammatory nanomedicine for cardiovascular disease. Front. Cardiovasc. Med. 2017 4 87 10.3389/fcvm.2017.00087 29312961
    [Google Scholar]
  154. Karagkiozaki V. Pappa F. Arvaniti D. Moumkas A. Konstantinou D. Logothetidis S. The melding of nanomedicine in thrombosis imaging and treatment: A review. Future Sci. OA 2016 2 2 FSO113 10.4155/fso.16.3 28031960
    [Google Scholar]
  155. Molinaro R. Boada C. Del Rosal G.M. Hartman K.A. Corbo C. Andrews E.D. Toledano-Furman N.E. Cooke J.P. Tasciotti E. Vascular inflammation: A novel access route for nanomedicine. Methodist DeBakey Cardiovasc. J. 2016 12 3 169 174 10.14797/mdcj‑12‑3‑169 27826372
    [Google Scholar]
  156. Khaja F.A. Koo O.M.Y. Önyüksel H. Nanomedicines for inflammatory diseases. Methods Enzymol. 2012 508 355 375 10.1016/B978‑0‑12‑391860‑4.00018‑5 22449935
    [Google Scholar]
  157. Nakamura K. Matsubara H. Akagi S. Sarashina T. Ejiri K. Kawakita N. Yoshida M. Miyoshi T. Watanabe A. Nishii N. Ito H. Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension. J. Clin. Med. 2017 6 5 48 10.3390/jcm6050048 28468233
    [Google Scholar]
  158. Segura-Ibarra V. Wu S. Hassan N. Moran-Guerrero J.A. Ferrari M. Guha A. Karmouty-Quintana H. Blanco E. Nanotherapeutics for treatment of pulmonary arterial hypertension. Front. Physiol. 2018 9 890 10.3389/fphys.2018.00890 30061840
    [Google Scholar]
  159. Şahin B. İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc. Care Community 2022 30 1 73 80 10.1111/hsc.13156 32909378
    [Google Scholar]
  160. Ohlstein E.H. The grand challenges in cardiovascular drug discovery and development. Front. Pharmacol. 2010 1 125 10.3389/fphar.2010.00125 21811459
    [Google Scholar]
  161. Sun X. Jia X. Tan Z. Fan D. Chen M. Cui N. Liu A. Liu D. Oral nanoformulations in cardiovascular medicine: Advances in atherosclerosis treatment. Pharmaceuticals 2024 17 7 919 10.3390/ph17070919 39065770
    [Google Scholar]
  162. Ren T. Mi Y. Wei J. Han X. Zhang X. Zhu Q. Yue T. Gao W. Niu X. Han C. Wei B. Advances in nano-functional materials in targeted thrombolytic drug delivery. Molecules 2024 29 10 2325 10.3390/molecules29102325 38792186
    [Google Scholar]
  163. Toljan K. Ashok A. Labhasetwar V. Hussain M.S. Nanotechnology in stroke: New trails with smaller scales. Biomedicines 2023 11 3 780 10.3390/biomedicines11030780 36979759
    [Google Scholar]
  164. George T.A. Hsu C.C. Meeson A. Lundy D.J. Nanocarrier-based targeted therapies for myocardial infarction. Pharmaceutics 2022 14 5 930 10.3390/pharmaceutics14050930 35631516
    [Google Scholar]
  165. Pala R. Pattnaik S. Busi S. Nauli S.M. Nanomaterials as novel cardiovascular theranostics. Pharmaceutics 2021 13 3 348 10.3390/pharmaceutics13030348 33799932
    [Google Scholar]
  166. Cervadoro A. Palomba R. Vergaro G. Cecchi R. Menichetti L. Decuzzi P. Emdin M. Luin S. Targeting inflammation with nanosized drug delivery platforms in cardiovascular diseases: Immune cell modulation in atherosclerosis. Front. Bioeng. Biotechnol. 2018 6 177 10.3389/fbioe.2018.00177 30542650
    [Google Scholar]
  167. Peng R. Macrophage-based therapies for atherosclerosis management. J. Immunol. Res. 2020 2020 8131754 10.1155/2020/8131754 32411803
    [Google Scholar]
  168. Talev J. Iron oxide nanoparticles as imaging and therapeutic agents for atherosclerosis. In Seminars in thrombosis and hemostasis Thieme Medical Publishers 333 Seventh Avenue New York NY 10001, USA 2020 10.1055/s‑0039‑3400247
    [Google Scholar]
  169. Ajoolabady A. Bi Y. McClements D.J. Lip G.Y.H. Richardson D.R. Reiter R.J. Klionsky D.J. Ren J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol. Res. 2022 176 106072 10.1016/j.phrs.2022.106072 35007709
    [Google Scholar]
  170. Jiang F. Zhu Y. Gong C. Wei X. Atherosclerosis and nanomedicine potential: Current advances and future opportunities. Curr. Med. Chem. 2020 27 21 3534 3554 10.2174/0929867326666190301143952 30827225
    [Google Scholar]
  171. Henriques J. Amaro A.M. Piedade A.P. Understanding atherosclerosis pathophysiology: Can additive manufacturing be helpful? Polymers 2023 15 3 480 10.3390/polym15030480 36771780
    [Google Scholar]
  172. Sousa A.M. Amaro A.M. Piedade A.P. 3D printing of polymeric bioresorbable stents: A strategy to improve both cellular compatibility and mechanical properties. Polymers 2022 14 6 1099 10.3390/polym14061099 35335430
    [Google Scholar]
  173. Karagkiozaki V. Logothetidis S. Pappa A.M. Nanomedicine for atherosclerosis: Molecular imaging and treatment. J. Biomed. Nanotechnol. 2015 11 2 191 210 10.1166/jbn.2015.1943 26349296
    [Google Scholar]
  174. Zhang Y. Yin Y. Zhang W. Li H. Wang T. Yin H. Sun L. Su C. Zhang K. Xu H. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis. J. Nanobiotechnology 2021 19 1 161 10.1186/s12951‑021‑00897‑2 34059078
    [Google Scholar]
  175. Ziegler M. Xu X. Yap M.L. Hu H. Zhang J. Peter K. A self‐assembled fluorescent nanoprobe for imaging and therapy of cardiac ischemia/reperfusion injury. Adv. Ther. 2019 2 3 1800133 10.1002/adtp.201800133
    [Google Scholar]
  176. Zhong Y. Qin X. Wang Y. Qu K. Luo L. Zhang K. Liu B. Obaid E.A.M.S. Wu W. Wang G. “Plug and play” functionalized erythrocyte nanoplatform for target atherosclerosis management. ACS Appl. Mater. Interfaces 2021 13 29 33862 33873 10.1021/acsami.1c07821 34256560
    [Google Scholar]
  177. Chen J. Zhang X. Millican R. Creutzmann J.E. Martin S. Jun H.W. High density lipoprotein mimicking nanoparticles for atherosclerosis. Nano Converg. 2020 7 1 6 10.1186/s40580‑019‑0214‑1 31984429
    [Google Scholar]
  178. Beldman T.J. Senders M.L. Alaarg A. Pérez-Medina C. Tang J. Zhao Y. Fay F. Deichmöller J. Born B. Desclos E. van der Wel N.N. Hoebe R.A. Kohen F. Kartvelishvily E. Neeman M. Reiner T. Calcagno C. Fayad Z.A. de Winther M.P.J. Lutgens E. Mulder W.J.M. Kluza E. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano 2017 11 6 5785 5799 10.1021/acsnano.7b01385 28463501
    [Google Scholar]
  179. Ford T.J. Berry C. Angina: contemporary diagnosis and management. Heart 2020 106 5 387 398 10.1136/heartjnl‑2018‑314661 32054665
    [Google Scholar]
  180. Navab M. Reddy S.T. Van Lenten B.J. Fogelman A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 2011 8 4 222 232 10.1038/nrcardio.2010.222 21304474
    [Google Scholar]
  181. Sharma V. Dewangan H.K. Maurya L. Vats K. Verma H. Singh S. Rational design and in-vivo estimation of Ivabradine Hydrochloride loaded nanoparticles for management of stable angina. J. Drug Deliv. Sci. Technol. 2019 54 101337 10.1016/j.jddst.2019.101337
    [Google Scholar]
  182. Khan A.A. Abdulbaqi I.M. Abou Assi R. Murugaiyah V. Darwis Y. Lyophilized hybrid nanostructured lipid carriers to enhance the cellular uptake of verapamil: Statistical optimization and in vitro evaluation. Nanoscale Res. Lett. 2018 13 1 323 10.1186/s11671‑018‑2744‑6 30324291
    [Google Scholar]
  183. Singh B. Garg T. Goyal A.K. Rath G. Development, optimization, and characterization of polymeric electrospun nanofiber: A new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artif. Cells Nanomed. Biotechnol. 2016 44 6 1498 1507 10.3109/21691401.2015.1052472 26134924
    [Google Scholar]
  184. Hou L. Kim J.J. Woo Y.J. Huang N.F. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2016 310 4 H455 H465 10.1152/ajpheart.00726.2015 26683902
    [Google Scholar]
  185. Christia P. Frangogiannis N.G. Pathophysiology of acute myocardial infarction. Future Medicine 2013 10.2217/ebo.12.301
    [Google Scholar]
  186. Frangogiannis N.G. Pathophysiology of myocardial infarction. Compr. Physiol. 2015 5 4 1841 1875 10.1002/cphy.c150006 26426469
    [Google Scholar]
  187. Yang L. Peng J. Shi A. Wang X. Li J. Su Y. Yin K. Zhao L. Zhao Y. Myocardium-targeted micelle nanomedicine that salvages the heart from ischemia/reperfusion injury. ACS Appl. Mater. Interfaces 2022 14 34 38562 38574 10.1021/acsami.2c11117 35973832
    [Google Scholar]
  188. Shi H. Huang Z. Xu T. Sun A. Ge J. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. EBioMedicine 2022 78 103968 10.1016/j.ebiom.2022.103968 35367772
    [Google Scholar]
  189. Binsalamah Z.M. Paul A. Prakash S. Shum-Tim D. Nanomedicine in cardiovascular therapy: Recent advancements. Expert Rev. Cardiovasc. Ther. 2012 10 6 805 815 10.1586/erc.12.41 22894635
    [Google Scholar]
  190. Haque M. Fouad H. Seo H-K. Othman A.Y. Kulkarni A. Ansari Z.A. Investigation of Mn doped ZnO nanoparticles towards ascertaining myocardial infarction through an electrochemical detection of myoglobin. IEEE Access 2020 8 164678 164692 10.1109/ACCESS.2020.3021458
    [Google Scholar]
  191. Chen W. Li D. Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front Chem. 2020 8 732 10.3389/fchem.2020.00732 32974285
    [Google Scholar]
  192. Benjamin E.J. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017 135 10 e146 e603 10.1161/CIR.0000000000000485
    [Google Scholar]
  193. Granger D.N. Kvietys P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015 6 524 551 10.1016/j.redox.2015.08.020 26484802
    [Google Scholar]
  194. Su M. Dai Q. Chen C. Zeng Y. Chu C. Liu G. Nano-medicine for thrombosis: A precise diagnosis and treatment strategy. Nano-Micro Lett. 2020 12 1 96 10.1007/s40820‑020‑00434‑0 34138079
    [Google Scholar]
  195. Toita R. Kawano T. Murata M. Kang J.H. Bioinspired macrophage-targeted anti-inflammatory nanomedicine: A therapeutic option for the treatment of myocarditis. Mater. Sci. Eng. C 2021 131 112492 10.1016/j.msec.2021.112492 34857278
    [Google Scholar]
  196. Önyüksel H. Séjourné F. Suzuki H. Rubinstein I. Human VIP-α: A long-acting, biocompatible and biodegradable peptide nanomedicine for essential hypertension. Peptides 2006 27 9 2271 2275 10.1016/j.peptides.2006.03.003 16621151
    [Google Scholar]
  197. Qadri G.R. Ahad A. Aqil M. Imam S.S. Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif. Cells Nanomed. Biotechnol. 2017 45 1 139 145 10.3109/21691401.2016.1138486 26829018
    [Google Scholar]
  198. Al-Ahmady Z.S. Jasim D. Ahmad S.S. Wong R. Haley M. Coutts G. Schiessl I. Allan S.M. Kostarelos K. Selective liposomal transport through blood brain barrier disruption in ischemic stroke reveals two distinct therapeutic opportunities. ACS Nano 2019 13 11 12470 12486 10.1021/acsnano.9b01808 31693858
    [Google Scholar]
  199. Chen H. Kaminski M.D. Pytel P. Macdonald L. Rosengart A.J. Capture of magnetic carriers within large arteries using external magnetic fields. J. Drug Target. 2008 16 4 262 268 10.1080/10611860801900892 18446604
    [Google Scholar]
  200. Xu J. Wang X. Yin H. Cao X. Hu Q. Lv W. Xu Q. Gu Z. Xin H. Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 2019 13 8 8577 8588 10.1021/acsnano.9b01798 31339295
    [Google Scholar]
  201. Zheng S. Bai Y.Y. Changyi Y. Gao X. Zhang W. Wang Y. Zhou L. Ju S. Li C. Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models. Adv. Healthc. Mater. 2014 3 11 1909 1918 10.1002/adhm.201400159 24898608
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319981241021063524
Loading
/content/journals/cmc/10.2174/0109298673319981241021063524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test