Skip to content
2000
image of The Pathophysiological Role of Mitochondria-associated Membranes in Coronary Artery Disease and Atherosclerosis

Abstract

Mitochondria-associated membranes (MAMs) are pivotal in cellular homeostasis, mediating communication between the endoplasmic reticulum and mitochondria. They are increasingly recognized for their role in atherosclerosis and coronary artery disease (CAD). This review delves into the cellular perspective of MAMs' impact on atherosclerosis and CAD, highlighting their influence on disease progression and the potential for therapeutic intervention. MAMs are implicated in key pathophysiological processes such as the generation of reactive oxygen species, calcium homeostasis, myocardial ischemia-reperfusion injury, autophagy, lipid synthesis and transport, and energy metabolism—fundamental to the development and progression of atherosclerosis and CAD. The complex interplay of MAMs with these pathological processes underscores their potential as therapeutic targets. This review synthesizes current understanding and emphasizes the need for further research to elucidate the multifaceted roles of MAMs in atherosclerosis and CAD, offering avenues for developing novel strategies aimed at improving mitochondrial health and mitigating the impact of these conditions.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673343245250128093845
2025-02-12
2025-04-01
Loading full text...

Full text loading...

References

  1. Barazzuol L. Giamogante F. Calì T. Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. Cell Calcium 2021 94 102343 10.1016/j.ceca.2020.102343 33418313
    [Google Scholar]
  2. Yang M. Li C. Sun L. Mitochondria-Associated Membranes (MAMs): A novel therapeutic target for treating metabolic syndrome. Curr. Med. Chem. 2021 28 7 1347 1362 10.2174/1875533XMTA0iNDEoz 32048952
    [Google Scholar]
  3. Li Y.E. Sowers J.R. Hetz C. Ren J. Cell death regulation by MAMs: From molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis. 2022 13 5 504 10.1038/s41419‑022‑04942‑2 35624099
    [Google Scholar]
  4. Poston C.N. Krishnan S.C. Bazemore-Walker C.R. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteomics 2013 79 219 230 10.1016/j.jprot.2012.12.018 23313214
    [Google Scholar]
  5. Talmor-Barkan Y. Bar N. Shaul A.A. Shahaf N. Godneva A. Bussi Y. Lotan-Pompan M. Weinberger A. Shechter A. Chezar-Azerrad C. Arow Z. Hammer Y. Chechi K. Forslund S.K. Fromentin S. Dumas M.E. Ehrlich S.D. Pedersen O. Kornowski R. Segal E. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat. Med. 2022 28 2 295 302 10.1038/s41591‑022‑01686‑6 35177859
    [Google Scholar]
  6. Weber C. Noels H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 2011 17 11 1410 1422 10.1038/nm.2538 22064431
    [Google Scholar]
  7. Boland J. Long C. Update on the inflammatory hypothesis of coronary artery disease. Curr. Cardiol. Rep. 2021 23 2 6 10.1007/s11886‑020‑01439‑2 33409720
    [Google Scholar]
  8. Chistiakov D.A. Shkurat T.P. Melnichenko A.A. Grechko A.V. Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018 50 2 121 127 10.1080/07853890.2017.1417631 29237304
    [Google Scholar]
  9. Wu S. Lu Q. Wang Q. Ding Y. Ma Z. Mao X. Huang K. Xie Z. Zou M.H. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation 2017 136 23 2248 2266 10.1161/CIRCULATIONAHA.117.030235 28942427
    [Google Scholar]
  10. Lebiedzinska M. Duszynski J. Rizzuto R. Pinton P. Wieckowski M.R. Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Arch. Biochem. Biophys. 2009 486 1 73 80 10.1016/j.abb.2009.03.007 19327338
    [Google Scholar]
  11. D’Eletto M. Rossin F. Occhigrossi L. Farrace M.G. Faccenda D. Desai R. Marchi S. Refolo G. Falasca L. Antonioli M. Ciccosanti F. Fimia G.M. Pinton P. Campanella M. Piacentini M. Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75. Cell Rep. 2018 25 13 3573 3581.e4 10.1016/j.celrep.2018.11.094 30590033
    [Google Scholar]
  12. Hayashi T. Su T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007 131 3 596 610 10.1016/j.cell.2007.08.036 17981125
    [Google Scholar]
  13. Yang N. Dong B. Song Y. Li Y. Kou L. Qin Q. Apolipoprotein J. Apolipoprotein J attenuates vascular restenosis by promoting autophagy and inhibiting the proliferation and migration of vascular smooth muscle cells. J. Cardiovasc. Transl. Res. 2022 15 5 1086 1099 10.1007/s12265‑022‑10227‑y 35244876
    [Google Scholar]
  14. Robichaud S. Rasheed A. Pietrangelo A. Doyoung Kim A. Boucher D.M. Emerton C. Vijithakumar V. Gharibeh L. Fairman G. Mak E. Nguyen M.A. Geoffrion M. Wirka R. Rayner K.J. Ouimet M. Autophagy is differentially regulated in leukocyte and nonleukocyte foam cells during atherosclerosis. Circ. Res. 2022 130 6 831 847 10.1161/CIRCRESAHA.121.320047 35137605
    [Google Scholar]
  15. Batty M. Bennett M.R. Yu E. The role of oxidative stress in atherosclerosis. Cells 2022 11 23 3843 10.3390/cells11233843 36497101
    [Google Scholar]
  16. Chen Y. Zhang J. Chang J. Beg M. Zhao Y. Abstract 234: Mitochondrial reactive oxygen species facilitate phagocytosis during initiation of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2022 42 Suppl. 1 A234 A234 10.1161/atvb.42.suppl_1.234
    [Google Scholar]
  17. Jiang H. Zhou Y. Nabavi S.M. Sahebkar A. Little P.J. Xu S. Weng J. Ge J. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front. Cardiovasc. Med. 2022 9 925923 10.3389/fcvm.2022.925923 35722128
    [Google Scholar]
  18. Gilady S.Y. Bui M. Lynes E.M. Benson M.D. Watts R. Vance J.E. Simmen T. Ero1α requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 2010 15 5 619 629 10.1007/s12192‑010‑0174‑1 20186508
    [Google Scholar]
  19. Hajnóczky G. Csordás G. Yi M. Old players in a new role: Mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002 32 5-6 363 377 10.1016/S0143416002001872 12543096
    [Google Scholar]
  20. Hamilton S. Terentyeva R. Kim T.Y. Bronk P. Clements R.T. O-Uchi J. Csordás G. Choi B.R. Terentyev D. Pharmacological modulation of mitochondrial Ca2+ content regulates sarcoplasmic reticulum Ca2+ release via oxidation of the ryanodine receptor by mitochondria-derived reactive oxygen species. Front. Physiol. 2018 9 1831 10.3389/fphys.2018.01831 30622478
    [Google Scholar]
  21. Hansson M.J. Månsson R. Morota S. Uchino H. Kallur T. Sumi T. Ishii N. Shimazu M. Keep M.F. Jegorov A. Elmér E. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic. Biol. Med. 2008 45 3 284 294 10.1016/j.freeradbiomed.2008.04.021 18466779
    [Google Scholar]
  22. El-Bawab E.S.M. Abu El-Fottouh M.M. Salim A.A.E. Evaluation of oxidative status and antioxidants in patients with coronary artery disease. Egypt. J. Hosp. Med. 2022 89 1 5528 5538 10.21608/ejhm.2022.265275
    [Google Scholar]
  23. Zinkevich N.S. Fancher I.S. Gutterman D.D. Phillips S.A. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS -induced ROS release in coronary artery disease. Microcirculation 2017 24 6 e12380 10.1111/micc.12380 28480622
    [Google Scholar]
  24. Li L. Yao Y.C. Gu X.Q. Che D. Ma C.Q. Dai Z.Y. Li C. Zhou T. Cai W.B. Yang Z.H. Yang X. Gao G.Q. Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J. Biol. Chem. 2014 289 47 32628 32638 10.1074/jbc.M114.567792 25296756
    [Google Scholar]
  25. Algoet M. Janssens S. Himmelreich U. Gsell W. Pusovnik M. Van den Eynde J. Oosterlinck W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc. Med. 2023 33 6 357 366 10.1016/j.tcm.2022.02.005 35181472
    [Google Scholar]
  26. Chen M. Li X. Yang H. Tang J. Zhou S. Hype or hope: Vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc. Med. 2020 30 8 481 488 10.1016/j.tcm.2019.10.011 31740206
    [Google Scholar]
  27. Wang R. Wang M. Liu B. Xu H. Ye J. Sun X. Sun G. Calenduloside E. Calenduloside E protects against myocardial ischemia-reperfusion injury induced calcium overload by enhancing autophagy and inhibiting L-type Ca2+ channels through BAG3. Biomed. Pharmacother. 2022 145 112432 10.1016/j.biopha.2021.112432 34798472
    [Google Scholar]
  28. Fernández A.R. Sánchez-Tarjuelo R. Cravedi P. Ochando J. López-Hoyos M. Review: Ischemia reperfusion injury—a translational perspective in organ transplantation. Int. J. Mol. Sci. 2020 21 22 8549 10.3390/ijms21228549 33202744
    [Google Scholar]
  29. Kuo J.R. Wang C.C. Huang S.K. Wang S.J. Tamoxifen depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase Cα in rat cerebral cortex nerve terminals. Neurochem. Int. 2012 60 2 105 114 10.1016/j.neuint.2011.11.014 22142530
    [Google Scholar]
  30. Lambert J.P. Luongo T.S. Tomar D. Jadiya P. Gao E. Zhang X. Lucchese A.M. Kolmetzky D.W. Shah N.S. Elrod J.W. MCUB regulates the molecular composition of the mitochondrial calcium uniporter channel to limit mitochondrial calcium overload during stress. Circulation 2019 140 21 1720 1733 10.1161/CIRCULATIONAHA.118.037968 31533452
    [Google Scholar]
  31. Giorgi C. Bonora M. Missiroli S. Morganti C. Morciano G. Wieckowski M.R. Pinton P. Alterations in mitochondrial and endoplasmic reticulum signaling by p53 mutants. Front. Oncol. 2016 6 42 10.3389/fonc.2016.00042 26942128
    [Google Scholar]
  32. Marchi S. Patergnani S. Missiroli S. Morciano G. Rimessi A. Wieckowski M.R. Giorgi C. Pinton P. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 2018 69 62 72 10.1016/j.ceca.2017.05.003 28515000
    [Google Scholar]
  33. Imahashi K. Pott C. Goldhaber J.I. Steenbergen C. Philipson K.D. Murphy E. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ. Res. 2005 97 9 916 921 10.1161/01.RES.0000187456.06162.cb 16179590
    [Google Scholar]
  34. Chen S. Li S. The Na+/Ca2+ exchanger in cardiac ischemia/reperfusion injury. Med. Sci. Monit. 2012 18 11 RA161 RA165 10.12659/MSM.883533 23111750
    [Google Scholar]
  35. Gaspers L.D. Bartlett P.J. Politi A. Burnett P. Metzger W. Johnston J. Joseph S.K. Höfer T. Thomas A.P. Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Rep. 2014 9 4 1209 1218 10.1016/j.celrep.2014.10.033 25456123
    [Google Scholar]
  36. Lock J.T. Smith I.F. Parker I. Spatial-temporal patterning of Ca2+ signals by the subcellular distribution of IP3 and IP3 receptors. Semin. Cell Dev. Biol. 2019 94 3 10 10.1016/j.semcdb.2019.01.012 30703557
    [Google Scholar]
  37. Qiao X. Jia S. Ye J. Fang X. Zhang C. Cao Y. Xu C. Zhao L. Zhu Y. Wang L. Zheng M. PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Sci. Rep. 2017 7 1 45379 10.1038/srep45379 28345618
    [Google Scholar]
  38. Gómez-Suaga P. Pérez-Nievas B.G. Glennon E.B. Lau D.H.W. Paillusson S. Mórotz G.M. Calì T. Pizzo P. Noble W. Miller C.C.J. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathol. Commun. 2019 7 1 35 10.1186/s40478‑019‑0688‑4 30841933
    [Google Scholar]
  39. Gomez-Suaga P. Paillusson S. Stoica R. Noble W. Hanger D.P. Miller C.C.J. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 2017 27 3 371 385 10.1016/j.cub.2016.12.038 28132811
    [Google Scholar]
  40. Dromparis P. Paulin R. Stenson T.H. Haromy A. Sutendra G. Michelakis E.D. Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 2013 127 1 115 125 10.1161/CIRCULATIONAHA.112.133413 23149668
    [Google Scholar]
  41. Belosludtsev K.N. Dubinin M.V. Belosludtseva N.V. Mironova G.D. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry (Mosc.) 2019 84 6 593 607 10.1134/S0006297919060026 31238859
    [Google Scholar]
  42. Hall A.R. Burke N. Dongworth R.K. Kalkhoran S.B. Dyson A. Vicencio J.M. Dorn G.W. II Yellon D.M. Hausenloy D.J. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 2016 7 5 e2238 10.1038/cddis.2016.139 27228353
    [Google Scholar]
  43. Maneechote C. Palee S. Chattipakorn S.C. Chattipakorn N. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J. Cell. Mol. Med. 2017 21 11 2643 2653 10.1111/jcmm.13330 28941171
    [Google Scholar]
  44. Cao W. Li J. Yang K. Cao D. An overview of autophagy: Mechanism, regulation and research progress. Bull. Cancer 2021 108 3 304 322 10.1016/j.bulcan.2020.11.004 33423775
    [Google Scholar]
  45. Giorgi C. Missiroli S. Patergnani S. Duszynski J. Wieckowski M.R. Pinton P. Mitochondria-associated membranes: Composition, molecular mechanisms, and physiopathological implications. Antioxid. Redox Signal. 2015 22 12 995 1019 10.1089/ars.2014.6223 25557408
    [Google Scholar]
  46. Hamasaki M. Furuta N. Matsuda A. Nezu A. Yamamoto A. Fujita N. Oomori H. Noda T. Haraguchi T. Hiraoka Y. Amano A. Yoshimori T. Autophagosomes form at ER–mitochondria contact sites. Nature 2013 495 7441 389 393 10.1038/nature11910 23455425
    [Google Scholar]
  47. Hailey D.W. Rambold A.S. Satpute-Krishnan P. Mitra K. Sougrat R. Kim P.K. Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010 141 4 656 667 10.1016/j.cell.2010.04.009 20478256
    [Google Scholar]
  48. Betz C. Stracka D. Prescianotto-Baschong C. Frieden M. Demaurex N. Hall M.N. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl. Acad. Sci. USA 2013 110 31 12526 12534 10.1073/pnas.1302455110 23852728
    [Google Scholar]
  49. Colombi M. Molle K.D. Benjamin D. Rattenbacher-Kiser K. Schaefer C. Betz C. Thiemeyer A. Regenass U. Hall M.N. Moroni C. Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 2011 30 13 1551 1565 10.1038/onc.2010.539 21170086
    [Google Scholar]
  50. Barazzuol L. Giamogante F. Brini M. Calì T. PINK1/Parkin mediated mitophagy, Ca2+ signalling, and ER–Mitochondria Contacts in Parkinson’s disease. Int. J. Mol. Sci. 2020 21 5 1772 10.3390/ijms21051772 32150829
    [Google Scholar]
  51. Gelmetti V. De Rosa P. Torosantucci L. Marini E.S. Romagnoli A. Di Rienzo M. Arena G. Vignone D. Fimia G.M. Valente E.M. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 2017 13 4 654 669 10.1080/15548627.2016.1277309 28368777
    [Google Scholar]
  52. Patergnani S. Marchi S. Rimessi A. Bonora M. Giorgi C. Mehta K.D. Pinton P. PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy 2013 9 9 1367 1385 10.4161/auto.25239 23778835
    [Google Scholar]
  53. Hua Y. Zhang J. Liu Q. Su J. Zhao Y. Zheng G. Yang Z. Zhuo D. Ma C. Fan G. The induction of endothelial autophagy and its role in the development of atherosclerosis. Front. Cardiovasc. Med. 2022 9 831847 10.3389/fcvm.2022.831847 35402552
    [Google Scholar]
  54. Ma S. Chen J. Feng J. Zhang R. Fan M. Han D. Li X. Li C. Ren J. Wang Y. Cao F. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid. Med. Cell. Longev. 2018 2018 1 9286458 10.1155/2018/9286458 30254716
    [Google Scholar]
  55. Evans T.D. Jeong S.J. Zhang X. Sergin I. Razani B. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 2018 14 4 724 726 10.1080/15548627.2018.1434373 29394113
    [Google Scholar]
  56. He L. Zhou Q. Huang Z. Xu J. Zhou H. Lv D. Lu L. Huang S. Tang M. Zhong J. Chen J. Luo X. Li L. Chen L. PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKα and exacerbates atherosclerotic lesions. J. Cell. Physiol. 2019 234 6 8668 8682 10.1002/jcp.27527 30456860
    [Google Scholar]
  57. Gao C. Wang R. Li B. Guo Y. Yin T. Xia Y. Zhang F. Lian K. Liu Y. Wang H. Zhang L. Gao E. Yan W. Tao L. TXNIP/Redd1 signalling and excessive autophagy: A novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc. Res. 2020 116 3 645 657 10.1093/cvr/cvz152 31241142
    [Google Scholar]
  58. Sciarretta S. Yee D. Nagarajan N. Bianchi F. Saito T. Valenti V. Tong M. Del Re D.P. Vecchione C. Schirone L. Forte M. Rubattu S. Shirakabe A. Boppana V.S. Volpe M. Frati G. Zhai P. Sadoshima J. Trehalose-induced activation of autophagy improves cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol. 2018 71 18 1999 2010 10.1016/j.jacc.2018.02.066 29724354
    [Google Scholar]
  59. Luo X. Wu S. Jiang Y. Wang L. Li G. Qing Y. Liu J. Zhang D. Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury. Int. Immunopharmacol. 2020 85 106609 10.1016/j.intimp.2020.106609 32446199
    [Google Scholar]
  60. Yang L.G. Wang A.L. Li L. Yang H. Jie X. Zhu Z.F. Zhang X.J. Zhao H.P. Chi R.F. Li B. Qin F.Z. Wang J.P. Wang K. Sphingosine-1-phosphate induces myocyte autophagy after myocardial infarction through mTOR inhibition. Eur. J. Pharmacol. 2021 907 174260 10.1016/j.ejphar.2021.174260 34144026
    [Google Scholar]
  61. Wu X. He L. Chen F. He X. Cai Y. Zhang G. Yi Q. He M. Luo J. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 2014 9 11 e112891 10.1371/journal.pone.0112891 25409294
    [Google Scholar]
  62. Song M. Gong G. Burelle Y. Gustafsson Å.B. Kitsis R.N. Matkovich S.J. Dorn G.W. II Interdependence of parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ. Res. 2015 117 4 346 351 10.1161/CIRCRESAHA.117.306859 26038571
    [Google Scholar]
  63. Huang C. Andres A.M. Ratliff E.P. Hernandez G. Lee P. Gottlieb R.A. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 2011 6 6 e20975 10.1371/journal.pone.0020975 21687634
    [Google Scholar]
  64. Kubli D.A. Zhang X. Lee Y. Hanna R.A. Quinsay M.N. Nguyen C.K. Jimenez R. Petrosyan S. Murphy A.N. Gustafsson Å.B. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 2013 288 2 915 926 10.1074/jbc.M112.411363 23152496
    [Google Scholar]
  65. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018 117 76 89 10.1016/j.freeradbiomed.2018.01.024 29373843
    [Google Scholar]
  66. Zhou T. Prather E. Garrison D. Zuo L. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle. Int. J. Mol. Sci. 2018 19 2 417 10.3390/ijms19020417 29385043
    [Google Scholar]
  67. Aghaei M. Motallebnezhad M. Ghorghanlu S. Jabbari A. Enayati A. Rajaei M. Pourabouk M. Moradi A. Alizadeh A.M. Khori V. Targeting autophagy in cardiac ischemia/reperfusion injury: A novel therapeutic strategy. J. Cell. Physiol. 2019 234 10 16768 16778 10.1002/jcp.28345 30807647
    [Google Scholar]
  68. Matsui Y. Kyoi S. Takagi H. Hsu C.P. Hariharan N. Ago T. Vatner S.F. Sadoshima J. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 2008 4 4 409 415 10.4161/auto.5638 18227645
    [Google Scholar]
  69. van Meer G. Voelker D.R. Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008 9 2 112 124 10.1038/nrm2330 18216768
    [Google Scholar]
  70. Sala-Vila A. Navarro-Lérida I. Sánchez-Alvarez M. Bosch M. Calvo C. López J.A. Calvo E. Ferguson C. Giacomello M. Serafini A. Scorrano L. Enriquez J.A. Balsinde J. Parton R.G. Vázquez J. Pol A. Del Pozo M.A. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep. 2016 6 1 27351 10.1038/srep27351 27272971
    [Google Scholar]
  71. Vance J.E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 1990 265 13 7248 7256 10.1016/S0021‑9258(19)39106‑9 2332429
    [Google Scholar]
  72. Flis V.V. Daum G. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb. Perspect. Biol. 2013 5 6 a013235 10.1101/cshperspect.a013235 23732475
    [Google Scholar]
  73. Osman C. Voelker D.R. Langer T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 2011 192 1 7 16 10.1083/jcb.201006159 21220505
    [Google Scholar]
  74. Bionda C. Portoukalian J. Schmitt D. Rodriguez-Lafrasse C. Ardail D. Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem. J. 2004 382 2 527 533 10.1042/BJ20031819 15144238
    [Google Scholar]
  75. Nwosu Z.C. Ebert M.P. Dooley S. Meyer C. Caveolin-1 in the regulation of cell metabolism: A cancer perspective. Mol. Cancer 2016 15 1 71 10.1186/s12943‑016‑0558‑7 27852311
    [Google Scholar]
  76. Fernandes T. Domingues M.R. Moreira P.I. Pereira C.F. A perspective on the link between Mitochondria-Associated Membranes (MAMs) and lipid droplets metabolism in neurodegenerative diseases. Biology (Basel) 2023 12 3 414 10.3390/biology12030414 36979106
    [Google Scholar]
  77. Tubbs E. Theurey P. Vial G. Bendridi N. Bravard A. Chauvin M.A. Ji-Cao J. Zoulim F. Bartosch B. Ovize M. Vidal H. Rieusset J. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 2014 63 10 3279 3294 10.2337/db13‑1751 24947355
    [Google Scholar]
  78. Townsend L.K. Brunetta H.S. Mori M.A.S. Mitochondria-Associated E.R. Mitochondria-associated ER membranes in glucose homeostasis and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2020 319 6 E1053 E1060 10.1152/ajpendo.00271.2020 32985254
    [Google Scholar]
  79. Wong A-P. Niedzwiecki A. Rath M. Myocardial energetics and the role of micronutrients in heart failure: A critical review. Am. J. Cardiovasc. Dis. 2016 6 3 81 92 27679743
    [Google Scholar]
  80. Palaniswamy C. Mellana W.M. Selvaraj D.R. Mohan D. Metabolic modulation: A new therapeutic target in treatment of heart failure. Am. J. Ther. 2011 18 6 e197 e201 10.1097/MJT.0b013e3181d70453 20393344
    [Google Scholar]
  81. Lopaschuk G.D. Ussher J.R. Folmes C.D.L. Jaswal J.S. Stanley W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010 90 1 207 258 10.1152/physrev.00015.2009 20086077
    [Google Scholar]
  82. Bertero E. Maack C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 2018 15 8 457 470 10.1038/s41569‑018‑0044‑6 29915254
    [Google Scholar]
  83. Ma W.Q. Sun X.J. Zhu Y. Liu N.F. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis. 2020 11 11 991 10.1038/s41419‑020‑03162‑w 33203874
    [Google Scholar]
  84. Opie L.H. Myocardial ischemia?Metabolic pathways and implications of increased glycolysis. Cardiovasc. Drugs Ther. 1990 4 S4 Suppl. 4 777 790 10.1007/BF00051275 1965525
    [Google Scholar]
  85. Halestrap A. Clarke S.J. Javadov S.A. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc. Res. 2004 61 3 372 385 10.1016/S0008‑6363(03)00533‑9 14962470
    [Google Scholar]
  86. McDougal A.D. Dewey C.F. Jr Modeling oxygen requirements in ischemic cardiomyocytes. J. Biol. Chem. 2017 292 28 11760 11776 10.1074/jbc.M116.751826 28487363
    [Google Scholar]
  87. Lopaschuk G.D. Karwi Q.G. Tian R. Wende A.R. Abel E.D. Cardiac energy metabolism in heart failure. Circ. Res. 2021 128 10 1487 1513 10.1161/CIRCRESAHA.121.318241 33983836
    [Google Scholar]
  88. Nicklas W.J. Youngster S.K. Kindt M.V. Heikkila R.E. IV. MPTP, MPP+ and mitochondrial function. Life Sci. 1987 40 8 721 729 10.1016/0024‑3205(87)90299‑2 3100899
    [Google Scholar]
  89. Jeong S.Y. Seol D.W. The role of mitochondria in apoptosis. BMB Rep. 2008 41 1 11 22 10.5483/BMBRep.2008.41.1.011 18304445
    [Google Scholar]
  90. Matsuyama S. Reed J.C. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 2000 7 12 1155 1165 10.1038/sj.cdd.4400779 11175252
    [Google Scholar]
  91. Huang Y. Ji W. Zhang J. Huang Z. Ding A. Bai H. Peng B. Huang K. Du W. Zhao T. Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater. 2024 176 28 50 10.1016/j.actbio.2024.01.027 38280553
    [Google Scholar]
  92. Kolygina D.V. Siek M. Borkowska M. Ahumada G. Barski P. Witt D. Jee A.Y. Miao H. Ahumada J.C. Granick S. Kandere-Grzybowska K. Grzybowski B.A. Mixed-charge nanocarriers allow for selective targeting of mitochondria by otherwise nonselective dyes. ACS Nano 2021 15 7 11470 11490 10.1021/acsnano.1c01232 34142807
    [Google Scholar]
  93. Omran B. Baek K.H. Nanoantioxidants: Pioneer types, advantages, limitations, and future insights. Molecules 2021 26 22 7031 10.3390/molecules26227031 34834124
    [Google Scholar]
  94. Xia F. Hu X. Zhang B. Wang X. Guan Y. Lin P. Ma Z. Sheng J. Ling D. Li F. Ultrasmall ruthenium nanoparticles with boosted antioxidant activity upregulate regulatory T cells for highly efficient liver injury therapy. Small 2022 18 29 2201558 10.1002/smll.202201558 35748217
    [Google Scholar]
  95. Coutinho E. Batista C. Sousa F. Queiroz J. Costa D. Mitochondrial gene therapy: Advances in mitochondrial gene cloning, plasmid production, and nanosystems targeted to mitochondria. Mol. Pharm. 2017 14 3 626 638 10.1021/acs.molpharmaceut.6b00823 28199112
    [Google Scholar]
  96. Guo C. Chi Z. Jiang D. Xu T. Yu W. Wang Z. Chen S. Zhang L. Liu Q. Guo X. Zhang X. Li W. Lu L. Wu Y. Song B.L. Wang D. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 2018 49 5 842 856.e7 10.1016/j.immuni.2018.08.021 30366764
    [Google Scholar]
  97. Chou C.C. Wang C.P. Chen J.H. Lin H.H. Anti-atherosclerotic effect of Hibiscus leaf polyphenols against tumor necrosis factor-alpha-induced abnormal vascular smooth muscle cell migration and proliferation. Antioxidants 2019 8 12 620 10.3390/antiox8120620 31817413
    [Google Scholar]
  98. Lu Q.-B. Wan M.-Y. Wang P.-Y. Zhang C.-X. Xu D.-Y. Liao X. Sun H.-J. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol. 2018 14 656 668 10.1016/j.redox.2017.11.012 29175753
    [Google Scholar]
  99. Xu C. Tang F. Lu M. Yang J. Han R. Mei M. Hu J. Zhou M. Wang H. Astragaloside I.V. Astragaloside IV improves the isoproterenol-induced vascular dysfunction via attenuating eNOS uncoupling-mediated oxidative stress and inhibiting ROS-NF-κB pathways. Int. Immunopharmacol. 2016 33 119 127 10.1016/j.intimp.2016.02.009 26903414
    [Google Scholar]
  100. Stanger O. Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin. Chem. Lab. Med. 2003 41 11 1444 1454 10.1515/CCLM.2003.222 14656024
    [Google Scholar]
  101. Yuan T. Yang T. Chen H. Fu D. Hu Y. Wang J. Yuan Q. Yu H. Xu W. Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019 20 247 260 10.1016/j.redox.2018.09.025 30384259
    [Google Scholar]
  102. Fang S. Wan X. Zou X. Sun S. Hao X. Liang C. Zhang Z. Zhang F. Sun B. Li H. Yu B. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 2021 12 1 88 10.1038/s41419‑020‑03357‑1 33462182
    [Google Scholar]
  103. Fang S. Sun S. Cai H. Zou X. Wang S. Hao X. Wan X. Tian J. Li Z. He Z. Huang W. Liang C. Zhang Z. Yang L. Tian J. Yu B. Sun B. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 +/- mice display increases atherosclerotic plaque stability. Theranostics 2021 11 19 9358 9375 10.7150/thno.62797 34646375
    [Google Scholar]
  104. Mo G. Liu X. Zhong Y. Mo J. Li Z. Li D. Zhang L. Liu Y. IP3R1 regulates Ca2+ transport and pyroptosis through the NLRP3/Caspase-1 pathway in myocardial ischemia/reperfusion injury. Cell Death Discov. 2021 7 1 31 10.1038/s41420‑021‑00404‑4 33568649
    [Google Scholar]
  105. Mazure N.M. VDAC in cancer. Biochim. Biophys. Acta Bioenerg. 2017 1858 8 665 673 10.1016/j.bbabio.2017.03.002 28283400
    [Google Scholar]
  106. Honrath B. Metz I. Bendridi N. Rieusset J. Culmsee C. Dolga A.M. Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 2017 3 1 17076 10.1038/cddiscovery.2017.76 29367884
    [Google Scholar]
  107. Yen C.L.E. Stone S.J. Koliwad S. Harris C. Farese R.V. Jr Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008 49 11 2283 2301 10.1194/jlr.R800018‑JLR200 18757836
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673343245250128093845
Loading
/content/journals/cmc/10.2174/0109298673343245250128093845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test