Skip to content
2000
image of C-Reactive Protein Biosensor for Diagnosing Infections Caused by Orthopedic Trauma

Abstract

Introduction

Infections linked to orthopedic trauma are common complications that place a significant strain on the healthcare system. Immediate identification of the infection and its severity is essential for providing effective treatment.

Method

C-reactive Protein (CRP) is a commonly used inflammatory marker in orthopedic surgery and has proven to be a valuable biomarker for diagnosing and monitoring infections. Specifically, CRP aids in the early identification of postoperative infections. This research work has focused on developing a highly sensitive CRP biosensor using iron oxide nanomaterial-modified dielectric sensors.

Result

Gold Urchin (GU)-conjugated aptamers and antibodies were used as probes and attached to the electrode amine linkers. The aptamer-GU-antibody-modified electrode detected CRP at concentrations as low as 1 pg/mL, with an R2 value of 0.9942. Furthermore, CRP-spiked serum exhibited an increase in current response at all concentrations of CRP, indicating selective detection of CRP. Additionally, control experiments using complementary sequences of the aptamer, relevant proteins, and non-immune antibodies did not enhance the current responses, confirming the specific identification of CRP.

Conclusion

The sensing strategy has enabled the detection of CRP at its lowest levels, facilitating the identification of infections during orthopedic surgery and subsequent treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322598241021111322
2024-11-07
2025-01-18
Loading full text...

Full text loading...

References

  1. van de Wall B.J.M. Stadhouder A. Houwert R.M. Oner F.C. Beeres F.J.P. Groenwold R.H.H. NEXT Study Group Natural experiments for orthopaedic trauma research: An introduction. Injury 2023 54 2 429 434 10.1016/j.injury.2022.11.028 36402587
    [Google Scholar]
  2. Grzelak S. Bérubé M. Gagnon M.A. Côté C. Turcotte V. Pelet S. Belzile É. Pain management strategies after orthopaedic trauma: A mixed-methods study with a view to optimizing practices. J. Pain Res. 2022 15 385 402 10.2147/JPR.S342627 35177930
    [Google Scholar]
  3. Lee C. Mayer E. Bernthal N. Wenke J. O’Toole R.V. Orthopaedic infections: What have we learned? OTA Int 2023 6 2S Suppl. e250 10.1097/OI9.0000000000000250 37168032
    [Google Scholar]
  4. Neumaier M. Braun K.F. Sandmann G. Siebenlist S. C-reactive protein in orthopaedic surgery. Acta Chir. Orthop. Traumatol. Cech. 2015 82 5 327 331 10.55095/achot2015/054 26516948
    [Google Scholar]
  5. Kanno N. Hayakawa N. Suzuki S. Harada Y. Yogo T. Hara Y. Changes in canine C-reactive protein levels following orthopaedic surgery: A prospective study. Acta Vet. Scand. 2019 61 1 33 10.1186/s13028‑019‑0468‑y 31262326
    [Google Scholar]
  6. Gopinath S.C.B. Methods developed for SELEX. Anal. Bioanal. Chem. 2007 387 1 171 182 10.1007/s00216‑006‑0826‑2 17072603
    [Google Scholar]
  7. Ozalp V.C. Eyidogan F. Oktem H.A. Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 2011 4 8 1137 1157 10.3390/ph4081137
    [Google Scholar]
  8. Geng H. Gopinath S.C.B. Niu W. Highly sensitive Hepatitis B virus identification by Antibody-aptamer sandwich Enzyme-Linked Immunosorbent assay. INNOSC Theranostics and Pharmacological Sciences 2023 5 1 7 14 10.36922/itps.298
    [Google Scholar]
  9. Huang Y. Zhang L. Li Z. Gopinath S.C.B. Chen Y. Xiao Y. Aptamer–17β-estradiol–antibody sandwich ELISA for determination of gynecological endocrine function. Biotechnol. Appl. Biochem. 2021 68 4 881 888 10.1002/bab.2008 33245588
    [Google Scholar]
  10. Vasudevan M. Tai M.J.Y. Perumal V. Gopinath S.C.B. Murthe S.S. Ovinis M. Mohamed N.M. Joshi N. Highly sensitive and selective acute myocardial infarction detection using aptamer-tethered MoS 2 nanoflower and screen-printed electrodes. Biotechnol. Appl. Biochem. 2020 bab.2060 10.1002/bab.2060 33140493
    [Google Scholar]
  11. Lakshmipriya T. Fujimaki M. Gopinath S.C.B. Awazu K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir 2013 29 48 15107 15115 10.1021/la4027283 24200095
    [Google Scholar]
  12. Lakshmipriya T. Horiguchi Y. Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst (Lond.) 2014 139 16 3977 3985 10.1039/C4AN00168K 24922332
    [Google Scholar]
  13. Waltari E. Carabajal E. Sanyal M. Friedland N. McCutcheon K.M. Adaption of a conventional ELISA to a 96-well ELISA-Array for measuring the antibody responses to influenza virus proteins and vaccines. J. Immunol. Methods 2020 481-482 112789 10.1016/j.jim.2020.112789 32380014
    [Google Scholar]
  14. Sarvari P. Sarvari P. Advances in nanoparticle-based drug delivery in cancer treatment Glob. Transl. Med. 2023 2 2 0394 10.36922/gtm.0394
    [Google Scholar]
  15. Gopinath N. Artificial intelligence and neuroscience: An update on fascinating relationships. Process Biochem. 2023 125 113 120 10.1016/j.procbio.2022.12.011
    [Google Scholar]
  16. Gopinath N. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic. Process Biochem. 2021 110 94 99 10.1016/j.procbio.2021.08.001 34366689
    [Google Scholar]
  17. Shao B. Xiao Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review. Anal. Chim. Acta 2020 1114 74 84 10.1016/j.aca.2020.02.041 32359518
    [Google Scholar]
  18. Yang W. Ratinac K.R. Ringer S.R. Thordarson P. Gooding J.J. Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene. International Edition Angewandte Chemie 2010 10.1002/anie.200903463
    [Google Scholar]
  19. Aziz M.A. Oyama M. Nanomaterials in electrochemical biosensor. Adv. Mat. Res. 2014 995 125 143 10.4028/www.scientific.net/AMR.995.125
    [Google Scholar]
  20. Gopinath S.C.B. Lakshmipriya T. Awazu K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron. 2014 51 115 123 10.1016/j.bios.2013.07.037 23948242
    [Google Scholar]
  21. Lee J. Morita M. Takemura K. Park E.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens. Bioelectron. 2018 102 425 431 10.1016/j.bios.2017.11.052 29175218
    [Google Scholar]
  22. Ozansoy Kasap B. Marchenko S.V. Soldatkin O.O. Dzyadevych S.V. Akata Kurc B. Biosensors based on Nano-Gold/Zeolite-Modified Ion selective field-effect transistors for creatinine detection. Nanoscale Res. Lett. 2017 12 1 162 10.1186/s11671‑017‑1943‑x 28264530
    [Google Scholar]
  23. Bi H. Bian P. Gopinath S.C.B. Marimuthu K. Lv G. Yin X. Identifying mineral decrement with bone injury by quantifying osteocalcin on current-volt sensor. Biotechnol. Appl. Biochem. 2022 69 5 2061 2068 10.1002/bab.2267 34622990
    [Google Scholar]
  24. Jarczewska M. Rębiś J. Górski Ł. Malinowska E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta 2018 189 45 54 10.1016/j.talanta.2018.06.035 30086945
    [Google Scholar]
  25. Kurtz S.M. Devine J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007 28 32 4845 4869 10.1016/j.biomaterials.2007.07.013 17686513
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322598241021111322
Loading
/content/journals/cmc/10.2174/0109298673322598241021111322
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: biosensor ; biomarker ; Bone fracture ; gold nanomaterial ; aptamer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test