Skip to content
2000
image of The Interplay of Diet, Genome, Metabolome, and Gut Microbiome in Cardiovascular Disease: A Narrative Review

Abstract

Introduction/Objective

The responsiveness to dietary interventions is influenced by complex, multifactorial interactions among genetics, diet, lifestyle, gut microbiome, environmental factors, and clinical characteristics, such as the metabolic phenotype. Detailed metabolic and microbial phenotyping using large human datasets is essential for better understanding the link between diet, the gut microbiome, and host metabolism in cardiovascular diseases (CVD). This review provides an overview of the interplay between diet, genome, metabolome, and gut microbiome in CVD.

Methods

A literature review was conducted using PubMed and Scopus databases to identify pertinent cohort studies published between January 2022 and May 2024. This review focused on English articles that assessed the interplay of diet, genome, metabolome, and gut microbiome in relation to CVD in humans.

Results

This narrative review explored the role of single-omics technologies-genomics, metabolomics, and the gut microbiome-and multi-omics approaches to understand the molecular basis of the relationship between diet and CVD. Omics technologies enabled the identification of new genes, metabolites, and molecular mechanisms related to the association of diet and CVD. The multiple omics approaches allows for more detailed phenotyping, offering a broader perspective on how dietary factors influence CVD.

Conclusion

Omics approaches hold great potential for deciphering the intricate crosstalk between diet, genome, gut microbiome, and metabolome, as well as their roles in CVD. Although large-scale studies integrating multiple omics in CVD research are still limited, notable progress has been made in uncovering molecular mechanisms. These findings could guide the development of targeted dietary strategies and guidelines to prevent CVD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673342364241119114722
2025-01-06
2025-04-16
Loading full text...

Full text loading...

References

  1. MensahG.A. FusterV. MurrayC.J.L. RothG.A. DiseasesG.B.C. CollaboratorsR. The global burden of cardiovascular diseases and risks collaborators.J. Am. Coll. Cardiol.202382252350247310.1016/j.jacc.2023.11.00738092509
    [Google Scholar]
  2. MartinS.S. AdayA.W. AlmarzooqZ.I. AndersonC.A.M. AroraP. AveryC.L. SmithB.C.M. GibbsB.B. BeatonA.Z. BoehmeA.K. MensahC.Y. CurrieM.E. ElkindM.S.V. EvensonK.R. GenerosoG. HeardD.G. HiremathS. JohansenM.C. KalaniR. KaziD.S. KoD. LiuJ. MagnaniJ.W. MichosE.D. MussolinoM.E. NavaneethanS.D. ParikhN.I. PermanS.M. PoudelR. HannaR.M. RothG.A. ShahN.S. OngeS.M.P. ThackerE.L. TsaoC.W. UrbutS.M. SpallV.H.G.C. VoeksJ.H. WangN.Y. WongN.D. WongS.S. YaffeK. PalaniappanL.P. Heart disease and stroke statistics: A report of US and Global data from the american heart association.Circulation20241498e347e91310.1161/CIR.000000000000120938264914
    [Google Scholar]
  3. BaysH.E. TaubP.R. EpsteinE. MichosE.D. FerraroR.A. BaileyA.L. KelliH.M. FerdinandK.C. EcholsM.R. WeintraubH. Ten things to know about ten cardiovascular disease risk factors.Amer. J. Prev. Cardiol.20215100149
    [Google Scholar]
  4. MimilaL.P. WangJ. VazquezH.A. Relevance of multi-omics studies in cardiovascular diseases.Front. Cardiovasc. Med.201969110.3389/fcvm.2019.0009131380393
    [Google Scholar]
  5. VargasJ.D. ManichaikulA. RichS.S. RotterJ.I. PostW.S. PollackJ.F. BluemkeD.A. Detailed analysis of association between common single nucleotide polymorphisms and subclinical atherosclerosis: The multi-ethnic study of atherosclerosis.Data in Brief2016722924210.1016/j.dib.2016.01.048
    [Google Scholar]
  6. MPR. Identification of ADAMT7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: Two genome wide association studies.Lancet2011377382392
    [Google Scholar]
  7. SchunkertH. KönigI.R. KathiresanS. ReillyM.P. AssimesT.L. HolmH. PreussM. StewartA.F.R. BarbalicM. GiegerC. AbsherD. AherrahrouZ. AllayeeH. AltshulerD. AnandS.S. AndersenK. AndersonJ.L. ArdissinoD. BallS.G. BalmforthA.J. BarnesT.A. BeckerD.M. BeckerL.C. BergerK. BisJ.C. BoekholdtS.M. BoerwinkleE. BraundP.S. BrownM.J. BurnettM.S. BuysschaertI. CarlquistJ.F. ChenL. CichonS. CoddV. DaviesR.W. DedoussisG. DehghanA. DemissieS. DevaneyJ.M. DiemertP. DoR. DoeringA. EifertS. MokhtariN.E.E. EllisS.G. ElosuaR. EngertJ.C. EpsteinS.E. FaireD.U. FischerM. FolsomA.R. FreyerJ. GiganteB. GirelliD. GretarsdottirS. GudnasonV. GulcherJ.R. HalperinE. HammondN. HazenS.L. HofmanA. HorneB.D. IlligT. IribarrenC. JonesG.T. JukemaJ.W. KaiserM.A. KaplanL.M. KasteleinJ.J.P. KhawK.T. KnowlesJ.W. KolovouG. KongA. LaaksonenR. LambrechtsD. LeanderK. LettreG. LiM. LiebW. LoleyC. LoteryA.J. MannucciP.M. MaoucheS. MartinelliN. McKeownP.P. MeisingerC. MeitingerT. MelanderO. MerliniP.A. MooserV. MorganT. MühleisenT.W. MuhlesteinJ.B. MünzelT. MusunuruK. NahrstaedtJ. NelsonC.P. NöthenM.M. OlivieriO. PatelR.S. PattersonC.C. PetersA. PeyvandiF. QuL. QuyyumiA.A. RaderD.J. RallidisL.S. RiceC. RosendaalF.R. RubinD. SalomaaV. SampietroM.L. SandhuM.S. SchadtE. SchäferA. SchillertA. SchreiberS. SchrezenmeirJ. SchwartzS.M. SiscovickD.S. SivananthanM. SivapalaratnamS. SmithA. SmithT.B. SnoepJ.D. SoranzoN. SpertusJ.A. StarkK. StirrupsK. StollM. TangW.H.W. TennstedtS. ThorgeirssonG. ThorleifssonG. TomaszewskiM. UitterlindenA.G. RijV.A.M. VoightB.F. WarehamN.J. WellsG.A. WichmannH.E. WildP.S. WillenborgC. WittemanJ.C.M. WrightB.J. YeS. ZellerT. ZieglerA. CambienF. GoodallA.H. CupplesL.A. QuertermousT. MärzW. HengstenbergC. BlankenbergS. OuwehandW.H. HallA.S. DeloukasP. ThompsonJ.R. StefanssonK. RobertsR. ThorsteinsdottirU. O’DonnellC.J. McPhersonR. ErdmannJ. SamaniN.J. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease.Nat. Genet.201143433333810.1038/ng.78421378990
    [Google Scholar]
  8. EllinorP.T. LunettaK.L. AlbertC.M. GlazerN.L. RitchieM.D. SmithA.V. ArkingD.E. NurasyidM.M. KrijtheB.P. LubitzS.A. BisJ.C. ChungM.K. DörrM. OzakiK. RobertsJ.D. SmithJ.G. PfeuferA. SinnerM.F. LohmanK. DingJ. SmithN.L. SmithJ.D. RienstraM. RiceK.M. WagonerV.D.R. MagnaniJ.W. WakiliR. ClaussS. RotterJ.I. SteinbeckG. LaunerL.J. DaviesR.W. BorkovichM. HarrisT.B. LinH. VölkerU. VölzkeH. MilanD.J. HofmanA. BoerwinkleE. ChenL.Y. SolimanE.Z. VoightB.F. LiG. ChakravartiA. KuboM. TedrowU.B. RoseL.M. RidkerP.M. ConenD. TsunodaT. FurukawaT. SotoodehniaN. XuS. KamataniN. LevyD. NakamuraY. ParvezB. MahidaS. FurieK.L. RosandJ. MuhammadR. PsatyB.M. MeitingerT. PerzS. WichmannH.E. WittemanJ.C.M. KaoW.H.L. KathiresanS. RodenD.M. UitterlindenA.G. RivadeneiraF. McKnightB. SjögrenM. NewmanA.B. LiuY. GollobM.H. MelanderO. TanakaT. StrickerB.H.C. FelixS.B. AlonsoA. DarbarD. BarnardJ. ChasmanD.I. HeckbertS.R. BenjaminE.J. GudnasonV. KääbS. Meta-analysis identifies six new susceptibility loci for atrial fibrillation.Nat. Genet.201244667067510.1038/ng.226122544366
    [Google Scholar]
  9. TaegtmeyerH. YoungM.E. LopaschukG.D. AbelE.D. BrunengraberH. UsmarD.V. Des RosiersC. GersztenR. GlatzJ.F. GriffinJ.L. GroplerR.J. HolzhuetterH.G. KizerJ.R. LewandowskiE.D. MalloyC.R. NeubauerS. PetersonL.R. PortmanM.A. RecchiaF.A. Van EykJ.E. WangT.J. Assessing cardiac metabolism: A scientific statement from the american heart association.Circ. Res.2016118101659170110.1161/RES.000000000000009727012580
    [Google Scholar]
  10. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ2016051028512250
    [Google Scholar]
  11. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑932887946
    [Google Scholar]
  12. LynchS.V. PedersenO. The human intestinal microbiome in health and disease.N. Engl. J. Med.2016375242369237910.1056/NEJMra160026627974040
    [Google Scholar]
  13. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.99900136225386
    [Google Scholar]
  14. LiuH. ChenX. HuX. NiuH. TianR. WangH. PangH. JiangL. QiuB. ChenX. ZhangY. MaY. TangS. LiH. FengS. ZhangS. ZhangC. Alterations in the gut microbiome and metabolism with coronary artery disease severity.Microbiome2019716810.1186/s40168‑019‑0683‑931027508
    [Google Scholar]
  15. SkyeS.M. ZhuW. RomanoK.A. GuoC.J. WangZ. JiaX. KirsopJ. HaagB. LangJ.M. DiDonatoJ.A. TangW.H.W. LusisA.J. ReyF.E. FischbachM.A. HazenS.L. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential.Circ. Res.2018123101164117610.1161/CIRCRESAHA.118.31314230359185
    [Google Scholar]
  16. FuJ. KuipersF. Systems genetics approach reveals cross-talk between bile acids and intestinal microbes.PLoS Genet.2019158e100830710.1371/journal.pgen.100830731465439
    [Google Scholar]
  17. OhiraH. TsutsuiW. FujiokaY. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?J. Atheroscler. Thromb.201724766067210.5551/jat.RV1700628552897
    [Google Scholar]
  18. PaeslackN. MimmlerM. BeckerS. GaoZ. KhuuM.P. MannA. MalinarichF. RegenT. ReinhardtC. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease.Amino Acids202254101339135610.1007/s00726‑022‑03161‑535451695
    [Google Scholar]
  19. LeopoldJ.A. LoscalzoJ. Emerging role of precision medicine in cardiovascular disease.Circ. Res.201812291302131510.1161/CIRCRESAHA.117.31078229700074
    [Google Scholar]
  20. HassannejadR. MoosavianS.P. MohammadifardN. MansourianM. RoohafzaH. SadeghiM. SarrafzadeganN. Long-term association of red meat consumption and lipid profile: A 13-year prospective population-based cohort study.Nutrition20218611114410.1016/j.nut.2021.11114433592495
    [Google Scholar]
  21. UshulaT.W. MamunA. DarssanD. WangW.Y.S. WilliamsG.M. WhitingS.J. NajmanJ.M. Dietary patterns and the risks of metabolic syndrome and insulin resistance among young adults: Evidence from a longitudinal study.Clin. Nutr.20224171523153110.1016/j.clnu.2022.05.00635667268
    [Google Scholar]
  22. DefagóM.D. MozaffarianD. IrazolaV.E. GutierrezL. PoggioR. SerónP. MoresN. CalandrelliM. PonzoJ. RubinsteinA.L. ElorriagaN. Dietary patterns and blood pressure in Southern Cone of Latin America.Nutr. Metab. Cardiovasc. Dis.202131123326333410.1016/j.numecd.2021.08.04834629255
    [Google Scholar]
  23. LabontéM.È. DewaillyÉ. LucasM. DegatC.M.L. CoutureP. LamarcheB. Traditional dietary pattern is associated with elevated cholesterol among the Inuit of Nunavik.J. Acad. Nutr. Diet.2014114812081215. e120310.1016/j.jand.2013.12.017
    [Google Scholar]
  24. BarnardN.D. AlwarithJ. RembertE. BrandonL. NguyenM. GoergenA. HorneT. NascimentoD.G.F. LakkadiK. TuraA. HolubkovR. KahleovaH. A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: A randomized, cross-over trial.J. Amer. Nutri. Assoc.202241212713910.1080/07315724.2020.186962533544066
    [Google Scholar]
  25. TzimaN. PitsavosC. PanagiotakosD.B. SkoumasJ. ZampelasA. ChrysohoouC. StefanadisC. Mediterranean diet and insulin sensitivity, lipid profile and blood pressure levels, in overweight and obese people; The Attica study.Lipids Health Dis.2007612210.1186/1476‑511X‑6‑2217880675
    [Google Scholar]
  26. MozaffarianD. HaoT. RimmE.B. WillettW.C. HuF.B. Changes in diet and lifestyle and long-term weight gain in women and men.N. Engl. J. Med.2011364252392240410.1056/NEJMoa101429621696306
    [Google Scholar]
  27. BoeingH. BechtholdA. BubA. EllingerS. HallerD. KrokeA. BonnetL.E. MüllerM.J. OberritterH. SchulzeM. StehleP. WatzlB. Critical review: Vegetables and fruit in the prevention of chronic diseases.Eur. J. Nutr.201251663766310.1007/s00394‑012‑0380‑y22684631
    [Google Scholar]
  28. AnandS.S. HawkesC. SouzaD.R.J. MenteA. DehghanM. NugentR. ZulyniakM.A. WeisT. BernsteinA.M. KraussR.M. KromhoutD. JenkinsD.J.A. MalikV. GonzalezM.M.A. MozaffarianD. YusufS. WillettW.C. PopkinB.M. Food consumption and its impact on cardiovascular disease: Importance of solutions focused on the globalized food system: A report from the workshop convened by the world heart federation.J. Am. Coll. Cardiol.201566141590161410.1016/j.jacc.2015.07.05026429085
    [Google Scholar]
  29. WangD.D. HuF.B. Precision nutrition for prevention and management of type 2 diabetes.Lancet Diab. Endocrinol.20186541642610.1016/S2213‑8587(18)30037‑829433995
    [Google Scholar]
  30. ZeeviD. KoremT. ZmoraN. IsraeliD. RothschildD. WeinbergerA. YacovB.O. LadorD. SagiA.T. PompanL.M. SuezJ. MahdiJ.A. MatotE. MalkaG. KosowerN. ReinM. SchapiraZ.G. DohnalováL. FischerP.M. BikovskyR. HalpernZ. ElinavE. SegalE. Personalized nutrition by prediction of glycemic responses.Cell201516351079109410.1016/j.cell.2015.11.00126590418
    [Google Scholar]
  31. LeeD.S. PencinaM.J. BenjaminE.J. WangT.J. LevyD. O’DonnellC.J. NamB.H. LarsonM.G. D’AgostinoR.B. VasanR.S. Association of parental heart failure with risk of heart failure in offspring.N. Engl. J. Med.2006355213814710.1056/NEJMoa05294816837677
    [Google Scholar]
  32. WalshR. JurgensS.J. ErdmannJ. BezzinaC.R. Genome-wide association studies of cardiovascular disease.Physiol. Rev.202310332039205510.1152/physrev.00024.202236634218
    [Google Scholar]
  33. KavousiM. BosM.M. BarnesH.J. CardenasL.C.L. WongD. LuH. HodonskyC.J. LandsmeerL.P.L. TurnerA.W. KhoM. HasbaniN.R. VriesD.P.S. BowdenD.W. ChopadeS. DeelenJ. BenaventeE.D. GuoX. HoferE. HwangS.J. LutzS.M. LyytikäinenL.P. SlendersL. SmithA.V. StanislawskiM.A. SettenV.J. WongQ. YanekL.R. BeckerD.M. BeekmanM. BudoffM.J. FeitosaM.F. FinanC. HilliardA.T. KardiaS.L.R. KovacicJ.C. KralB.G. LangefeldC.D. LaunerL.J. MalikS. HoeseinF.A.A.M. MokryM. SchmidtR. SmithJ.A. TaylorK.D. TerryJ.G. GrondV.D.J. MeursV.J. VliegenthartR. XuJ. YoungK.A. ZilhãoN.R. ZweikerR. AssimesT.L. BeckerL.C. BosD. CarrJ.J. CupplesL.A. KleijnD.D.P. WintherD.M. RuijterD.H.M. FornageM. FreedmanB.I. GudnasonV. HingoraniA.D. HokansonJ.E. IkramM.A. IšgumI. JacobsD.R.Jr KähönenM. LangeL.A. LehtimäkiT. PasterkampG. RaitakariO.T. SchmidtH. SlagboomP.E. UitterlindenA.G. VernooijM.W. BisJ.C. FranceschiniN. PsatyB.M. PostW.S. RotterJ.I. BjörkegrenJ.L.M. O’DonnellC.J. BielakL.F. PeyserP.A. MalhotraR. LaanV.D.S.W. MillerC.L. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification.Nat. Genet.202355101651166410.1038/s41588‑023‑01518‑437770635
    [Google Scholar]
  34. PengH. GudielP.H. TarragaS.C. CondeJ.J. ZhangM. ZhangY. ZhaoJ. Epigenome-wide association study identifies novel genes associated with ischemic stroke.Clin. Epigenetics202315110610.1186/s13148‑023‑01520‑x37370144
    [Google Scholar]
  35. GregoriD. FoltranF. VerduciE. BallaliS. FranchinL. GhidinaM. HalpernG.M. GiovanniniM. A genetic perspective on nutritional profiles: Do we still need them?J. Nutrigenet. Nutrig.201141253521430388
    [Google Scholar]
  36. ElsamanoudyA. AllahM.N.M. MohammadH.F. HassanienM. NadaH. The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer.J. Microsc. Ultrastruct.20164311512210.1016/j.jmau.2016.02.00230023217
    [Google Scholar]
  37. DebuskR.M. FogartyC.P. OrdovasJ.M. KornmanK.S. Nutritional genomics in practice: Where do we begin?J. Am. Diet. Assoc.2005105458959810.1016/j.jada.2005.01.00215800562
    [Google Scholar]
  38. KesslerT. SchunkertH. Coronary artery disease genetics enlightened by genome-wide association studies.JACC Basic Transl. Sci.20216761062310.1016/j.jacbts.2021.04.00134368511
    [Google Scholar]
  39. ChoS.M.J. KoyamaS. HonigbergM.C. SurakkaI. HaidermotaS. GaneshS. PatelA.P. BhattacharyaR. LeeH. KimH.C. NatarajanP. Genetic, sociodemographic, lifestyle, and clinical risk factors of recurrent coronary artery disease events: A population-based cohort study.Eur. Heart J.202344363456346510.1093/eurheartj/ehad38037350734
    [Google Scholar]
  40. MarstonN.A. KamanuF.K. NordioF. GurmuY. RoselliC. SeverP.S. PedersenT.R. KeechA.C. WangH. PinedaL.A. GiuglianoR.P. LubitzS.A. EllinorP.T. SabatineM.S. RuffC.T. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: Results from the FOURIER trial.Circulation2020141861662310.1161/CIRCULATIONAHA.119.04380531707849
    [Google Scholar]
  41. MosleyJ.D. GuptaD.K. TanJ. YaoJ. WellsQ.S. ShafferC.M. KunduS. CohenR.C. PsatyB.M. RichS.S. PostW.S. GuoX. RotterJ.I. RodenD.M. GersztenR.E. WangT.J. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease.JAMA2020323762763510.1001/jama.2019.2178232068817
    [Google Scholar]
  42. WangJ. LiJ. LiuF. HuangK. YangX. LiuX. CaoJ. ChenS. ShenC. YuL. LuF. ZhaoL. LiY. HuD. HuangJ. GuD. LuX. Genetic predisposition, fruit intake and incident stroke: A prospective chinese cohort study.Nutrients20221423505610.3390/nu1423505636501087
    [Google Scholar]
  43. ZhangS. StubbendorffA. EricsonU. WändellP. NiuK. QiL. BornéY. SonestedtE. The EAT-Lancet diet, genetic susceptibility and risk of atrial fibrillation in a population-based cohort.BMC Med.202321128010.1186/s12916‑023‑02985‑637507726
    [Google Scholar]
  44. ParkS. Association of polygenic risk scores for insulin resistance risk and their interaction with a plant-based diet, especially fruits, vitamin C, and flavonoid intake, in Asian adults.Nutrition202311111200710.1016/j.nut.2023.11200737116407
    [Google Scholar]
  45. HabudeleZ. ChenG. QianS.E. VaughnM.G. ZhangJ. LinH. High dietary intake of iron might be harmful to atrial fibrillation and modified by genetic diversity: A prospective cohort study.Nutrients202416559310.3390/nu1605059338474722
    [Google Scholar]
  46. ZhengJ. HukportieD.N. ZhangY. HuangJ. NiC. LipG.Y.H. TangS. Association between glucosamine use and the risk of incident heart failure.Mayo Clin. Proc.20239881177119110.1016/j.mayocp.2023.04.01937422736
    [Google Scholar]
  47. EmdinC.A. KheraA.V. KathiresanS. Mendelian randomization.JAMA2017318191925192610.1001/jama.2017.1721929164242
    [Google Scholar]
  48. XieY. ChenH. XuJ. QuP. ZhuL. TanY. ZhangM. LiuL. Cheese consumption on atherosclerosis, atherosclerotic cardiovascular diseases and its complications: A two-sample Mendelian randomization study.Nutr. Metab. Cardiovasc. Dis.202434369169810.1016/j.numecd.2023.11.00838161113
    [Google Scholar]
  49. ZengY. CaoS. YangH. Causal associations between dried fruit intake and cardiovascular disease: A Mendelian randomization study.Front. Cardiovasc. Med.202310108025210.3389/fcvm.2023.108025236815021
    [Google Scholar]
  50. YangM. GaoX. XieL. LinZ. YeX. OuJ. PengJ. Causal associations between dietary habits and CVD: A Mendelian randomisation study.Br. J. Nutr.2023130122104211310.1017/S000711452300140X37381916
    [Google Scholar]
  51. BarragánD.J. SanlésF.A. HernáezÁ. PontL.J. MarrugatJ. RobinsonO. TzoulakiI. ElosuaR. LassaleC. Blood DNA methylation signature of diet quality and association with cardiometabolic traits.Eur. J. Prev. Cardiol.202431219120210.1093/eurjpc/zwad31737793095
    [Google Scholar]
  52. VissersL.E.T. SluijsI. BurgessS. ForouhiN.G. FreislingH. ImamuraF. NilssonT.K. RenströmF. WeiderpassE. AleksandrovaK. DahmC.C. CornagoP.A. SchulzeM.B. TongT.Y.N. AuneD. BonetC. BoerJ.M.A. BoeingH. ChirlaqueM.D. ConchiM.I. ImazL. JägerS. KroghV. KyrøC. MasalaG. MelanderO. OvervadK. PanicoS. SánchesM.J. SonestedtE. TjønnelandA. TzoulakiI. VerschurenW.M.M. RiboliE. WarehamN.J. DaneshJ. ButterworthA.S. SchouwV.D.Y.T. Milk intake and incident stroke and CHD in populations of European descent: A Mendelian randomisation study.Br. J. Nutr.202212891789179710.1017/S000711452100424434670632
    [Google Scholar]
  53. XiaX. LiuF. HuangK. ChenS. LiJ. CaoJ. YangX. LiuX. ShenC. YuL. ZhaoY. ZhaoL. LiY. HuD. HuangJ. LuX. GuD. Egg consumption and risk of coronary artery disease, potential amplification by high genetic susceptibility: A prospective cohort study.Am. J. Clin. Nutr.2023118477378110.1016/j.ajcnut.2023.06.00937793743
    [Google Scholar]
  54. ParkS. Interplay between polygenic variants related immune response and lifestyle factors mitigate the chances of stroke in a genome-wide association study.Br. J. Nutr.20241311011410.1017/S000711452400039438374659
    [Google Scholar]
  55. MerinoJ. DashtiH.S. SarnowskiC. LaneJ.M. TodorovP.V. UdlerM.S. SongY. WangH. KimJ. TuckerC. CampbellJ. TanakaT. ChuA.Y. TsaiL. PersT.H. ChasmanD.I. RutterM.K. DupuisJ. FlorezJ.C. SaxenaR. Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits.Nat. Hum. Behav.20216115516310.1038/s41562‑021‑01182‑w34426670
    [Google Scholar]
  56. QianS. FuM. HanL. SunW. SunH. Dietary protein sources, genetics, and cardiovascular disease incidence.J. Affect. Disord.202435411612510.1016/j.jad.2024.01.23338325604
    [Google Scholar]
  57. MartínD.T.J. ArsenaultB. DesprésJ.P. VohlM.C. Precision nutrition: A review of personalized nutritional approaches for the prevention and management of metabolic syndrome.Nutrients20179891310.3390/nu908091328829397
    [Google Scholar]
  58. CanelaR.M. HrubyA. ClishC.B. LiangL. GonzálezM.M.A. HuF.B. Comprehensive metabolomic profiling and incident cardiovascular disease: A systematic review.J. Am. Heart Assoc.2017610e00570510.1161/JAHA.117.00570528963102
    [Google Scholar]
  59. SabatineM.S. LiuE. MorrowD.A. HellerE. McCarrollR. WiegandR. BerrizG.F. RothF.P. GersztenR.E. Metabolomic identification of novel biomarkers of myocardial ischemia.Circulation2005112253868387510.1161/CIRCULATIONAHA.105.56913716344383
    [Google Scholar]
  60. BalasubramanianR. HuJ. FerreG.M. LiJ. SorondF. ZhaoY. ShuttaK.H. SalvadoS.J. HuF. ClishC.B. RexrodeK.M. Metabolomic profiles associated with incident ischemic stroke.Neurology2022985e483e49210.1212/WNL.000000000001312934853177
    [Google Scholar]
  61. SantosJ.L. CanelaR.M. RazquinC. ClishC.B. FerréG.M. BabioN. CorellaD. GraciaG.E. FiolM. EstruchR. LapetraJ. FitóM. ArosF. MajemS.L. LiangL. MartínezM.Á. ToledoE. SalvadóS.J. HuF.B. GonzálezM.M.A. Circulating citric acid cycle metabolites and risk of cardiovascular disease in the PREDIMED study.Nutr. Metab. Cardiovasc. Dis.202333483584310.1016/j.numecd.2023.01.00236739229
    [Google Scholar]
  62. IslamS.J. LiuC. MohandasA.N. RooneyK. NayakA. MehtaA. KoY.A. KimJ.H. SunY.V. DunbarS.B. LewisT.T. TaylorH.A. UppalK. JonesD.P. QuyyumiA.A. SearlesC.D. Metabolomic signatures of ideal cardiovascular health in black adults.Sci. Rep.2024141179410.1038/s41598‑024‑51920‑z38245568
    [Google Scholar]
  63. BhaveV.M. AmentZ. PatkiA. GaoY. KijpaisalratanaN. GuoB. ChaudharyN.S. GuarnizA.L.G. GersztenR. CorreaA. CushmanM. JuddS. IrvinM.R. KimberlyW.T. Plasma metabolites link dietary patterns to stroke risk.Ann. Neurol.202393350051010.1002/ana.2655236373825
    [Google Scholar]
  64. SmithE. EricsonU. HellstrandS. MelanderO.M. NilssonP.M. FernandezC. MelanderO. OttossonF. A healthy dietary metabolic signature is associated with a lower risk for type 2 diabetes and coronary artery disease.BMC Med.202220112210.1186/s12916‑022‑02326‑z35443726
    [Google Scholar]
  65. ShahR.V. SteffenL.M. NayorM. ReisJ.P. JacobsD.R.Jr AllenN.B. JonesL.D. MeyerK. ColeJ. PiaggiP. VasanR.S. ClishC.B. MurthyV.L. Dietary metabolic signatures and cardiometabolic risk.Eur. Heart J.202344755756910.1093/eurheartj/ehac44636424694
    [Google Scholar]
  66. LiC. ImamuraF. WedekindR. StewartI.D. PietznerM. WheelerE. ForouhiN.G. LangenbergC. ScalbertA. WarehamN.J. Development and validation of a metabolite score for red meat intake: An observational cohort study and randomized controlled dietary intervention.Am. J. Clin. Nutr.2022116251152210.1093/ajcn/nqac09435754192
    [Google Scholar]
  67. PanL. ChenL. LvJ. PangY. GuoY. PeiP. DuH. YangL. MillwoodI.Y. WaltersR.G. ChenY. GongW. ChenJ. YuC. ChenZ. LiL. Association of egg consumption, metabolic markers, and risk of cardiovascular diseases: A nested case-control study.eLife202211e7290910.7554/eLife.7290935607895
    [Google Scholar]
  68. GavilánG.J.F. BabioN. ToledoE. AzadS.Z. RazquinC. DennisC. DeikA. CorellaD. EstruchR. RosE. FitóM. ArósF. FiolM. LapetraJ. RaventosL.R. ClishC. CanelaR.M. GonzálezM.M.Á. HuF. SalvadóS.J. FerréG.M. Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease.Cardiovasc. Diabetol.202322134010.1186/s12933‑023‑02066‑138093289
    [Google Scholar]
  69. MostafaH. MeroñoT. MiñarroA. PlaS.A. LanuzaF. RosZ.R. HansenR.A.L. TorresE.N. CulleréC.M. TjønnelandA. LandbergR. HalkjærJ. LacuevaA.C. Dietary sources of anthocyanins and their association with metabolome biomarkers and cardiometabolic risk factors in an observational study.Nutrients2023155120810.3390/nu1505120836904207
    [Google Scholar]
  70. QinL. RenY. ChenL. FengY. LuoS. ZhangP. ZhangW. LiangX. Nuts consumption and hypertension risks in children: A mediating role of circulating lipid metabolites.Clin. Exp. Hypertens.2023451224305610.1080/10641963.2023.224305637551155
    [Google Scholar]
  71. LiK.J. PimentelB.K.J. BrolsmaB.E.M. BlaserC. BadertscherR. PimentelG. PortmannR. FeskensE.J.M. VergèresG. Identifying plasma and urinary biomarkers of fermented food intake and their associations with cardiometabolic health in a dutch observational cohort.J. Agric. Food Chem.202371104426443910.1021/acs.jafc.2c0566936853956
    [Google Scholar]
  72. EscuderoM.H.J. GranielP.I. GavilánG.J. CanelaR.M. SunQ. ClishC.B. ToledoE. CorellaD. EstruchR. RosE. CastañerO. ArósF. FiolM. FerréG.M. LapetraJ. RazquinC. DennisC. DeikA. LiJ. GraciaG.E. BabioN. GonzálezM.M.A. HuF.B. SalvadóS.J. Plasma metabolite profile of legume consumption and future risk of type 2 diabetes and cardiovascular disease.Cardiovasc. Diabetol.20242313810.1186/s12933‑023‑02111‑z38245716
    [Google Scholar]
  73. WenX. FrettsA.M. MiaoG. MalloyK.M. ZhangY. UmansJ.G. ColeS.A. BestL.G. FiehnO. ZhaoJ. Plasma lipidomic markers of diet quality are associated with incident coronary heart disease in American Indian adults: The Strong Heart Family Study.Am. J. Clin. Nutr.2024119374875510.1016/j.ajcnut.2023.12.02438160800
    [Google Scholar]
  74. LeVatteM. KeshteliA.H. ZareiP. WishartD.S. Applications of metabolomics to precision nutrition.Life. Gen.20221511910.1159/00051848934518463
    [Google Scholar]
  75. AscherS. ReinhardtC. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease.Eur. J. Immunol.201848456457510.1002/eji.20164687929230812
    [Google Scholar]
  76. KoethR.A. WangZ. LevisonB.S. BuffaJ.A. OrgE. SheehyB.T. BrittE.B. FuX. WuY. LiL. SmithJ.D. DiDonatoJ.A. ChenJ. LiH. WuG.D. LewisJ.D. WarrierM. BrownJ.M. KraussR.M. TangW.H.W. BushmanF.D. LusisA.J. HazenS.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.Nat. Med.201319557658510.1038/nm.314523563705
    [Google Scholar]
  77. ZhangX. GérardP. Diet-gut microbiota interactions on cardiovascular disease.Comput. Struct. Biotechnol. J.2022201528154010.1016/j.csbj.2022.03.02835422966
    [Google Scholar]
  78. MiaoZ. DuW. XiaoC. SuC. GouW. ShenL. ZhangJ. FuY. JiangZ. WangZ. JiaX. ZhengJ.S. WangH. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: A prospective cohort study.BMC Med.202220120410.1186/s12916‑022‑02402‑435701845
    [Google Scholar]
  79. RooksM.G. GarrettW.S. Gut microbiota, metabolites and host immunity.Nat. Rev. Immunol.201616634135210.1038/nri.2016.4227231050
    [Google Scholar]
  80. SonnenburgJ.L. BäckhedF. Diet–microbiota interactions as moderators of human metabolism.Nature20165357610566410.1038/nature1884627383980
    [Google Scholar]
  81. LuqmanA. HassanA. UllahM. NaseemS. UllahM. ZhangL. DinA.U. UllahK. AhmadW. WangG. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder.Front. Immunol.202415132139510.3389/fimmu.2024.132139538343539
    [Google Scholar]
  82. MurphyK. O’DonovanA.N. CapliceN.M. RossR.P. StantonC. Exploring the gut microbiota and cardiovascular disease.Metabolites202111849310.3390/metabo1108049334436434
    [Google Scholar]
  83. GimenezS.R. KhodjaA.W. MolinaY. PeiróO.M. BonetG. CarrasquerA. FragkiadakisG.A. BullóM. BardajiA. PapandreouC. Gut microbiota-derived metabolites and cardiovascular disease risk: A systematic review of prospective cohort studies.Nutrients20221413265410.3390/nu1413265435807835
    [Google Scholar]
  84. FuB.C. HullarM.A.J. RandolphT.W. FrankeA.A. MonroeK.R. ChengI. WilkensL.R. ShepherdJ.A. MadeleineM.M. MarchandL.L. LimU. LampeJ.W. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the multiethnic cohort adiposity phenotype study.Am. J. Clin. Nutr.202011161226123410.1093/ajcn/nqaa01532055828
    [Google Scholar]
  85. ZhangL.S. DaviesS.S. Microbial metabolism of dietary components to bioactive metabolites: Opportunities for new therapeutic interventions.Genome Med.2016814610.1186/s13073‑016‑0296‑x27102537
    [Google Scholar]
  86. FengW. LiuJ. ChengH. ZhangD. TanY. PengC. Dietary compounds in modulation of gut microbiota-derived metabolites.Front. Nutr.2022993957110.3389/fnut.2022.93957135928846
    [Google Scholar]
  87. WangZ. KlipfellE. BennettB.J. KoethR. LevisonB.S. DuGarB. FeldsteinA.E. BrittE.B. FuX. ChungY.M. WuY. SchauerP. SmithJ.D. AllayeeH. TangW.H.W. DiDonatoJ.A. LusisA.J. HazenS.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature20114727341576310.1038/nature0992221475195
    [Google Scholar]
  88. TangW.H.W. WangZ. LevisonB.S. KoethR.A. BrittE.B. FuX. WuY. HazenS.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa110940023614584
    [Google Scholar]
  89. KoethR.A. LevisonB.S. CulleyM.K. BuffaJ.A. WangZ. GregoryJ.C. OrgE. WuY. LiL. SmithJ.D. TangW.H.W. DiDonatoJ.A. LusisA.J. HazenS.L. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO.Cell Metab.201420579981210.1016/j.cmet.2014.10.00625440057
    [Google Scholar]
  90. LiX.S. WangZ. CajkaT. BuffaJ.A. NemetI. HurdA.G. GuX. SkyeS.M. RobertsA.B. WuY. LiL. ShahenC.J. WagnerM.A. HartialaJ.A. KerbyR.L. RomanoK.A. HanY. ObeidS. LüscherT.F. AllayeeH. ReyF.E. DiDonatoJ.A. FiehnO. TangW.H.W. HazenS.L. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk.JCI Insight201836e9909610.1172/jci.insight.9909629563342
    [Google Scholar]
  91. WangZ. BergeronN. LevisonB.S. LiX.S. ChiuS. JiaX. KoethR.A. LiL. WuY. TangW.H.W. KraussR.M. HazenS.L. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women.Eur. Heart J.201940758359410.1093/eurheartj/ehy79930535398
    [Google Scholar]
  92. CraciunS. BalskusE.P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.Proc. Natl. Acad. Sci.201210952213072131210.1073/pnas.121568910923151509
    [Google Scholar]
  93. LiuH. ZhuangJ. TangP. LiJ. XiongX. DengH. The role of the gut microbiota in coronary heart disease.Curr. Atheroscler. Rep.202022127710.1007/s11883‑020‑00892‑233063240
    [Google Scholar]
  94. ZhuW. GregoryJ.C. OrgE. BuffaJ.A. GuptaN. WangZ. LiL. FuX. WuY. MehrabianM. SartorR.B. McIntyreT.M. SilversteinR.L. TangW.H.W. DiDonatoJ.A. BrownJ.M. LusisA.J. HazenS.L. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.Cell2016165111112410.1016/j.cell.2016.02.01126972052
    [Google Scholar]
  95. ChenM. ZhuX. RanL. LangH. YiL. MiM. Trimethylamine-N-Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway.J. Am. Heart Assoc.201769e00634710.1161/JAHA.117.00634728871042
    [Google Scholar]
  96. TangW.H.W. LiX.S. WuY. WangZ. KhawK.T. WarehamN.J. NieuwdorpM. BoekholdtS.M. HazenS.L. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study.Am. Heart J.2021236808610.1016/j.ahj.2021.01.02033626384
    [Google Scholar]
  97. LemaitreR.N. JensenP.N. WangZ. FrettsA.M. SitlaniC.M. NemetI. SotoodehniaN. OttoD.O.M.C. ZhuW. BudoffM. LongstrethW.T. PsatyB.M. SiscovickD.S. HazenS.L. MozaffarianD. Plasma trimethylamine-N-oxide and incident ischemic stroke: The cardiovascular health study and the multi-ethnic study of atherosclerosis.J. Am. Heart Assoc.20231216e871110.1161/JAHA.122.02923037581385
    [Google Scholar]
  98. LiuD. GuS. ZhouZ. MaZ. ZuoH. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study.J. Intern. Med.2023293111012010.1111/joim.1357236200542
    [Google Scholar]
  99. SheaJ.W. JacobsD.R.Jr HowardA.G. LullaA. JonesL.D.M. MurthyV.L. ShahR.V. GonzalezT.I. LarsenG.P. MeyerK.A. Choline metabolites and incident cardiovascular disease in a prospective cohort of adults: Coronary artery risk development in young adults (CARDIA) study.Am. J. Clin. Nutr.20241191293810.1016/j.ajcnut.2023.10.01237865185
    [Google Scholar]
  100. WangM. WangZ. LeeY. LaiH.T.M. OttoD.O.M.C. LemaitreR.N. FrettsA. SotoodehniaN. BudoffM. DiDonatoJ.A. McKnightB. TangW.H.W. PsatyB.M. SiscovickD.S. HazenS.L. MozaffarianD. Dietary meat, trimethylamine N-oxide-related metabolites, and incident cardiovascular disease among older adults: The cardiovascular health study.Arterioscler. Thromb. Vasc. Biol.2022429e273e28810.1161/ATVBAHA.121.31653335912635
    [Google Scholar]
  101. LiJ. LiY. IveyK.L. WangD.D. WilkinsonJ.E. FrankeA. LeeK.H. ChanA. HuttenhowerC. HuF.B. RimmE.B. SunQ. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: Findings from a longitudinal cohort of US men.Gut202271472473310.1136/gutjnl‑2020‑32247333926968
    [Google Scholar]
  102. RidlonJ.M. HarrisS.C. BhowmikS. KangD.J. HylemonP.B. Consequences of bile salt biotransformations by intestinal bacteria.Gut Microbes201671223910.1080/19490976.2015.112748326939849
    [Google Scholar]
  103. RidlonJ.M. KangD.J. HylemonP.B. Bile salt biotransformations by human intestinal bacteria.J. Lipid Res.200647224125910.1194/jlr.R500013‑JLR20016299351
    [Google Scholar]
  104. VallimD.A.T.Q. TarlingE.J. EdwardsP.A. Pleiotropic roles of bile acids in metabolism.Cell Metab.201317565766910.1016/j.cmet.2013.03.01323602448
    [Google Scholar]
  105. YntemaT. KoonenD.P.Y. KuipersF. Emerging roles of gut microbial modulation of bile acid composition in the etiology of cardiovascular diseases.Nutrients2023158185010.3390/nu1508185037111068
    [Google Scholar]
  106. FrazierR. CaiX. LeeJ. BundyJ.D. JovanovichA. ChenJ. DeoR. LashJ.P. AndersonA.H. GoA.S. FeldmanH.I. ShafiT. RheeE.P. MiyazakiM. ChoncholM. IsakovaT. Deoxycholic acid and risks of cardiovascular events, ESKD, and mortality in CKD: The CRIC study.Kidney Med.20224110038710.1016/j.xkme.2021.09.00435072049
    [Google Scholar]
  107. LuQ. ChenJ. JiangL. GengT. TianS. LiaoY. YangK. ZhengY. HeM. TangH. PanA. LiuG. Gut microbiota-derived secondary bile acids, bile acids receptor polymorphisms, and risk of cardiovascular disease in individuals with newly diagnosed type 2 diabetes: A cohort study.Am. J. Clin. Nutr.2023119232433210.1016/j.ajcnut.2023.08.02338309826
    [Google Scholar]
  108. ZhaoS. TianY. WangS. YangF. XuJ. QinZ. LiuX. CaoM. ZhaoP. ZhangG. WangZ. ZhangY. WangY. LinK. FangS. WangZ. HanT. TianM. YinH. TianJ. YuB. Prognostic value of gut microbiota-derived metabolites in patients with ST-segment elevation myocardial infarction.Am. J. Clin. Nutr.2023117349950810.1016/j.ajcnut.2022.12.01336811471
    [Google Scholar]
  109. CzaplińskaK.J. GątarekP. ChirumboloS. ChartrandM.S. BjørklundG. How important is tryptophan in human health?Crit. Rev. Food Sci. Nutr.2019591728810.1080/10408398.2017.135753428799778
    [Google Scholar]
  110. TalebS. Tryptophan dietary impacts gut barrier and metabolic diseases.Front. Immunol.201910211310.3389/fimmu.2019.0211331552046
    [Google Scholar]
  111. HoK.J. RamirezJ.L. KulkarniR. HarrisK.G. HelenowskiI. XiongL. OzakiC.K. GrenonS.M. Plasma gut microbe-derived metabolites associated with peripheral artery disease and major adverse cardiac events.Microorg.20221010206510.3390/microorganisms1010206536296342
    [Google Scholar]
  112. TeunisC.J. StroesE.S.G. BoekholdtS.M. WarehamN.J. MurphyA.J. NieuwdorpM. HazenS.L. HanssenN.M.J. Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study.Atherosclerosis202338711734410.1016/j.atherosclerosis.2023.11734437945449
    [Google Scholar]
  113. HuY. LiJ. WangB. ZhuL. LiY. IveyK.L. LeeK.H. EliassenA.H. ChanA. HuttenhowerC. HuF.B. QiQ. RimmE.B. SunQ. Interplay between diet, circulating indolepropionate concentrations and cardiometabolic health in US populations.Gut202372122260227110.1136/gutjnl‑2023‑33041037739776
    [Google Scholar]
  114. EnglystH.N. KingmanS.M. CummingsJ.H. Classification and measurement of nutritionally important starch fractions.Eur. J. Clin. Nutr.199246S33S501330528
    [Google Scholar]
  115. MortensenP.B. ClausenM.R. Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease.Scand. J. Gastroenterol.19963121613214810.3109/00365529609094568
    [Google Scholar]
  116. LuY. ZhangY. ZhaoX. ShangC. XiangM. LiL. CuiX. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease.Front. Cardiovasc. Med.2022990038110.3389/fcvm.2022.90038136035928
    [Google Scholar]
  117. BuiT.P.N. Mannerås-HolmL. PuschmannR. WuH. TroiseA.D. NijsseB. BoerenS. BäckhedF. FiedlerD. deVosW.M. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health.Nat. Commun.2021121479810.1038/s41467‑021‑25081‑w34376656
    [Google Scholar]
  118. LiZ. GongR. ChuH. ZengJ. ChenC. XuS. HuL. GaoW. ZhangL. YuanH. ChengZ. WangC. DuM. ZhuQ. ZhangL. RongL. HuX. YangL. A universal plasma metabolites-derived signature predicts cardiovascular disease risk in MAFLD.Atheroscl.202439211752610.1016/j.atherosclerosis.2024.11752638581738
    [Google Scholar]
  119. AtzeniA. NishiS.K. BabioN. BelzerC. KonstantiP. VioqueJ. CorellaD. CastañerO. VidalJ. IndiasM.I. ColladoT.L. AsensioE.M. FitóM. PerezG.A.M. AriasA. CanelaR.M. HuF.B. TinahonesF.J. SalvadóS.J. Carbohydrate quality, fecal microbiota and cardiometabolic health in older adults: A cohort study.Gut Microbes2023152224618510.1080/19490976.2023.224618537610130
    [Google Scholar]
  120. HughesR.L. KableM.E. MarcoM. KeimN.L. The role of the gut microbiome in predicting response to diet and the development of precision nutrition models. Part II: Results.Adv. Nutr.201910697999810.1093/advances/nmz04931225587
    [Google Scholar]
  121. KarahalilB. Overview of systems biology and omics technologies.Curr. Med. Chem.201623374221423010.2174/092986732366616092615061727686657
    [Google Scholar]
  122. CaoZ.J. GaoG. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding.Nat. Biotechnol.202240101458146610.1038/s41587‑022‑01284‑435501393
    [Google Scholar]
  123. CaiZ. PoulosR.C. LiuJ. ZhongQ. Machine learning for multi-omics data integration in cancer.iSci.202225210379810.1016/j.isci.2022.10379835169688
    [Google Scholar]
  124. ArnesonD. ShuL. TsaiB. CainB.R. SunC. YangX. Multidimensional integrative genomics approaches to dissecting cardiovascular disease.Front. Cardiovasc. Med.20174810.3389/fcvm.2017.0000828289683
    [Google Scholar]
  125. MøllerA.L. VasanR.S. LevyD. AnderssonC. LinH. Integrated omics analysis of coronary artery calcifications and myocardial infarction: The framingham heart study.Sci. Rep.20231312158110.1038/s41598‑023‑48848‑138062110
    [Google Scholar]
  126. AssumI. KrauseJ. ScheinhardtM.O. MüllerC. HammerE. BörschelC.S. VölkerU. ConradiL. GeelhoedB. ZellerT. SchnabelR.B. HeinigM. Tissue-specific multi-omics analysis of atrial fibrillation.Nat. Commun.202213144110.1038/s41467‑022‑27953‑135064145
    [Google Scholar]
  127. OuwerkerkW. PereiraB.J.P. MaaslandT. EmmensJ.E. FigarskaS.M. TrompJ. KoekemoerA.L. NelsonC.P. NathM. RomaineS.P.R. ClelandJ.G.F. ZannadF. VeldhuisenV.D.J. LangC.C. PonikowskiP. FilippatosG. AnkerS. MetraM. DicksteinK. NgL.L. BoerD.R.A. RielV.N. NieuwdorpM. GroenA.K. StroesE. ZwindermanA.H. SamaniN.J. LamC.S.P. LevinE. VoorsA.A. Multiomics analysis provides novel pathways related to progression of heart failure.J. Am. Coll. Cardiol.202382201921193110.1016/j.jacc.2023.08.05337940229
    [Google Scholar]
  128. KatzD.H. TahirU.A. BickA.G. PampanaA. NgoD. BensonM.D. YuZ. RobbinsJ.M. ChenZ.Z. CruzD.E. DengS. FarrellL. SinhaS. SchmaierA.A. ShenD. GaoY. HallM.E. CorreaA. TracyR.P. DurdaP. TaylorK.D. LiuY. JohnsonW.C. GuoX. YaoJ. ChenI.Y.D. ManichaikulA.W. JainD. BouchardC. SarzynskiM.A. RichS.S. RotterJ.I. WangT.J. WilsonJ.G. NatarajanP. GersztenR.E. AbeN. AbecasisG. AguetF. AlbertC. AlmasyL. AlonsoA. AmentS. AndersonP. AnuguP. BowdenA.D. ArdlieK. ArkingD. ArnettD.K. KochA.A. AslibekyanS. AssimesT. AuerP. AvramopoulosD. AyasN. BalasubramanianA. BarnardJ. BarnesK. BarrR.G. CasellaB.E. BarwickL. BeatyT. BeckG. BeckerD. BeckerL. BeerR. BeitelsheesA. BenjaminE. BenosT. BezerraM. BielakL. BisJ. BlackwellT. BlangeroJ. BoerwinkleE. BowdenD.W. BowlerR. BrodyJ. BroeckelU. BroomeJ. BrownD. BuntingK. BurchardE. BustamanteC. ButhE. CadeB. CardwellJ. CareyV. CarrierJ. CarsonA. CartyC. CasaburiR. RomeroC.J.P. CasellaJ. CastaldiP. ChaffinM. ChangC. ChangY.C. ChasmanD. ChavanS. ChenB.J. ChenW.M. ChenY.D.I. ChoM. ChoiS.H. ChuangL.M. ChungM. ChungR.H. ClishC. ComhairS. ConomosM. CornellE. CorreaA. CrandallC. CrapoJ. CupplesL.A. CurranJ. CurtisJ. CusterB. DamcottC. DarbarD. DavidS. DavisC. DayaM. AndradeD.M. FuentesD.L.L. VriesD.P. DeBaunM. DekaR. DeMeoD. DevineS. DinhH. DoddapaneniH. DuanQ. PerezD.S. DuggiralaR. DurdaJ.P. DutcherS.K. EatonC. EkunweL. BoueizE.A. EllinorP. EmeryL. ErzurumS. FarberC. FarekJ. FingerlinT. FlickingerM. FornageM. FranceschiniN. FrazarC. FuM. FullertonS.M. FultonL. GabrielS. GanW. GaoS. GaoY. GassM. GeigerH. GelbB. GeraciM. GermerS. GersztenR. GhoshA. GibbsR. GignouxC. GladwinM. GlahnD. GogartenS. GongD-W. GoringH. GrawS. GrayK.J. GrineD. GrossC. GuC.C. GuanY. GuoX. GuptaN. HaasD.M. HaesslerJ. HallM. HanY. HanlyP. HarrisD. HawleyN.L. HeJ. HeavnerB. HeckbertS. HernandezR. HerringtonD. HershC. HidalgoB. HixsonJ. HobbsB. HokansonJ. HongE. HothK. HsiungC.A. HuJ. HungY-J. HustonH. HwuC.M. IrvinM.R. JacksonR. JainD. JaquishC. JohnsenJ. JohnsonA. JohnsonC. JohnstonR. JonesK. KangH.M. KaplanR. KardiaS. KellyS. KennyE. KesslerM. KhanA. KhanZ. KimW. KimoffJ. KinneyG. KonkleB. KooperbergC. KramerH. LangeC. LangeE. LangeL. LaurieC. LaurieC. LeBoffM. LeeJ. LeeS. LeeW-J. LeFaiveJ. LevineD. LevyD. LewisJ. LiX. LiY. LinH. LinH. LinX. LiuS. LiuY. LiuY. LoosR.J.F. LubitzS. LunettaK. LuoJ. MagalangU. MahaneyM. MakeB. ManichaikulA. ManningA. MansonJ.A. MartinL. MartonM. MathaiS. MathiasR. MayS. McArdleP. McDonaldM-L. McFarlandS. McGarveyS. McGoldrickD. McHughC. McNeilB. MeiH. MeigsJ. MenonV. MestroniL. MetcalfG. MeyersD.A. MignotE. MikullaJ. MinN. MinearM. MinsterR.L. MitchellB.D. MollM. MominZ. MontasserM.E. MontgomeryC. MuznyD. MychaleckyjJ.C. NadkarniG. NaikR. NaseriT. NatarajanP. NekhaiS. NelsonS.C. NeltnerB. NessnerC. NickersonD. NkechinyereO. NorthK. O’ConnellJ. O’ConnorT. BalcomO.H. OkwuonuG. PackA. PaikD.T. PalmerN. PankowJ. PapanicolaouG. ParkerC. PelosoG. PeraltaJ.M. PerezM. PerryJ. PetersU. PeyserP. PhillipsL.S. PleinessJ. PollinT. PostW. BeckerP.J. BoorgulaP.M. PreussM. PsatyB. QasbaP. QiaoD. QinZ. RafaelsN. RaffieldL. RajendranM. RamachandranV.S. RaoD.C. TorvikR.L. RatanA. RedlineS. ReedR. ReevesC. ReganE. ReinerA. ReupenaM.S. RiceK. RichS. RobillardR. RobineN. RodenD. RoselliC. RotterJ. RuczinskiI. RunnelsA. RussellP. RuuskaS. RyanK. SabinoE.C. SaleheenD. SalimiS. SalviS. SalzbergS. SandowK. SankaranV.G. SantibanezJ. SchwanderK. SchwartzD. SciurbaF. SeidmanC. SeidmanJ. SérièsF. SheehanV. ShermanS.L. ShettyA. ShettyA. SheuW.H-H. ShoemakerM.B. SilverB. SilvermanE. SkomroR. SmithA.V. SmithJ. SmithJ. SmithN. SmithT. SmollerS. SnivelyB. SnyderM. SoferT. SotoodehniaN. StilpA.M. StormG. StreetenE. SuJ.L. SungY.J. SylviaJ. SzpiroA. TaliunD. TangH. TaubM. TaylorK.D. TaylorM. TaylorS. TelenM. ThorntonT.A. ThrelkeldM. TinkerL. TirschwellD. TishkoffS. TiwariH. TongC. TracyR. TsaiM. VaidyaD. BergV.D.D. VandeHaarP. VriezeS. WalkerT. WallaceR. WaltsA. WangF.F. WangH. WangJ. WatsonK. WattJ. WeeksD.E. WeinstockJ. WeirB. WeissS.T. WengL-C. WesselJ. WillerC. WilliamsK. WilliamsL.K. WilsonC. WilsonJ. WinterkornL. WongQ. WuJ. XuH. YanekL. YangI. YuK. ZekavatS.M. ZhangY. ZhaoS.X. ZhaoW. ZhuX. ZodyM. ZoellnerS. Whole genome sequence analysis of the plasma proteome in black adults provides novel insights into cardiovascular disease.Circulation2022145535737010.1161/CIRCULATIONAHA.121.05511734814699
    [Google Scholar]
  129. LiH. BornéY. WangY. SonestedtE. Starch intake, amylase gene copy number variation, plasma proteins, and risk of cardiovascular disease and mortality.BMC Med.20232112710.1186/s12916‑022‑02706‑536691017
    [Google Scholar]
  130. DongX. ZhuangZ. ZhaoY. SongZ. XiaoW. WangW. LiY. HuangN. JiaJ. LiuZ. QiL. HuangT. Unprocessed red meat and processed meat consumption, plasma metabolome, and risk of ischemic heart disease: A prospective cohort study of UK biobank.J. Am. Heart Assoc.2023127e02793410.1161/JAHA.122.02793436974753
    [Google Scholar]
  131. FerrellM. WangZ. AndersonJ.T. LiX.S. WitkowskiM. DiDonatoJ.A. HilserJ.R. HartialaJ.A. HaghikiaA. CajkaT. FiehnO. SangwanN. DemuthI. KönigM. ThiessenS.E. LandmesserU. TangW.H.W. AllayeeH. HazenS.L. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk.Nat. Med.202430242443410.1038/s41591‑023‑02793‑838374343
    [Google Scholar]
  132. ZhangS. LiH. EngströmG. NiuK. QiL. BornéY. SonestedtE. Milk intake, lactase persistence genotype, plasma proteins and risks of cardiovascular events in the Swedish general population.Eur. J. Epidemiol.202338221122410.1007/s10654‑022‑00937‑736604367
    [Google Scholar]
  133. YunH. SunL. WuQ. LuoY. QiQ. LiH. GuW. WangJ. NingG. ZengR. ZongG. LinX. Lipidomic signatures of dairy consumption and associated changes in blood pressure and other cardiovascular risk factors among chinese adults.Hypertension20227981617162810.1161/HYPERTENSIONAHA.122.1898135469422
    [Google Scholar]
  134. DíazR.Z.M. TeuscherJ. GambaM. BundoM. GrisottoG. WehrliF. GamboaE. RojasL.Z. OchoaG.S.A. VerhoogS. VargasM.F. MinderB. FrancoO.H. DehghanA. PazokiR. VidalM.P. MukaT. Gene-diet interactions and cardiovascular diseases: A systematic review of observational and clinical trials.BMC Cardiovasc. Disord.202222137710.1186/s12872‑022‑02808‑135987633
    [Google Scholar]
  135. KimH. RebholzC.M. Metabolomic biomarkers of healthy dietary patterns and cardiovascular outcomes.Curr. Atheroscler. Rep.20212362610.1007/s11883‑021‑00921‑833782776
    [Google Scholar]
  136. CorellaD. OrdovásJ.M. How does the Mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms.BioEssays201436552653710.1002/bies.20130018024706458
    [Google Scholar]
  137. AntoL. BlessoC.N. Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism.J. Nutr. Biochem.202210510899110.1016/j.jnutbio.2022.10899135331903
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673342364241119114722
Loading
/content/journals/cmc/10.2174/0109298673342364241119114722
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: genome ; gut microbiome ; multi-omics ; cardiovascular disease ; metabolome ; Diet
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test