Skip to content
2000
image of Pressure Ulcers and Nutrients: From Established Evidence to Gaps in Knowledge

Abstract

Pressure ulcers (PUs) are caused by continuous pressure or friction on the skin that damages tissue, especially over bony prominences. A critical factor in the development and progression of PUs is poor nutritional status, which often involves deficiencies in essential nutrients such as proteins, vitamins (A, C, D, E, K, and the B complex), and trace elements (including zinc, selenium, copper, iron, and manganese). These micronutrients are vital for effective wound healing, as they play significant roles in cellular repair, immune function, and tissue regeneration. Laboratory tests for serum albumin, prealbumin, transferrin, retinol-binding protein, and anthropometric measures like height, weight, and body mass index (BMI) are used to evaluate a patient's nutritional status. Screening tools such as the Mini Nutritional Assessment (MNA), Malnutrition Universal Screening Tool (MUST), LPZ questionnaire, and Subjective Global Assessment (SGA) are commonly employed. Emerging evidence from various studies, including , , and clinical trials, underscores the importance of personalized nutritional interventions in managing PUs. Unlike generic dietary plans, tailored nutrition that addresses the specific needs of individuals shows greater potential in promoting wound healing and improving clinical outcomes. This synthesis of existing research highlights the critical influence of micronutrients on the healing process of PUs. It suggests that a personalized approach to nutrition, which takes into account individual patient requirements and deficiencies, is likely to be more effective than a one-size-fits-all strategy in the management of these complex wounds.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322825241018174928
2024-11-04
2025-01-18
Loading full text...

Full text loading...

References

  1. Mervis J.S. Phillips T.J. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. J. Am. Acad. Dermatol. 2019 81 4 881 890 10.1016/j.jaad.2018.12.069 30664905
    [Google Scholar]
  2. Kottner J. Cuddigan J. Carville K. Balzer K. Berlowitz D. Law S. Litchford M. Mitchell P. Moore Z. Pittman J. Sigaudo-Roussel D. Yee C.Y. Haesler E. Prevention and treatment of pressure ulcers/injuries: The protocol for the second update of the international Clinical Practice Guideline 2019. J. Tissue Viability 2019 28 2 51 58 10.1016/j.jtv.2019.01.001 30658878
    [Google Scholar]
  3. Gould L.J. Alderden J. Aslam R. Barbul A. Bogie K.M. El Masry M. Graves L.Y. White-Chu E.F. Ahmed A. Boanca K. Brash J. Brooks K.R. Cockron W. Kennerly S.M. Livingston A.K. Page J. Stephens C. West V. Yap T.L. WHS guidelines for the treatment of pressure ulcers—2023 update. Wound Repair Regen. 2024 32 1 6 33 10.1111/wrr.13130 37970711
    [Google Scholar]
  4. Kottner J. Cuddigan J. Carville K. Balzer K. Berlowitz D. Law S. Litchford M. Mitchell P. Moore Z. Pittman J. Sigaudo-Roussel D. Yee C.Y. Haesler E. Pressure ulcer/injury classification today: An international perspective. J. Tissue Viability 2020 29 3 197 203 10.1016/j.jtv.2020.04.003 32414554
    [Google Scholar]
  5. Chung M.L. Widdel M. Kirchhoff J. Sellin J. Jelali M. Geiser F. Mücke M. Conrad R. Risk Factors for Pressure Injuries in Adult Patients: A Narrative Synthesis. Int. J. Environ. Res. Public Health 2022 19 2 761 10.3390/ijerph19020761 35055583
    [Google Scholar]
  6. Lima Serrano M. González Méndez M.I. Carrasco Cebollero F.M. Lima Rodríguez J.S. Risk factors for pressure ulcer development in Intensive Care Units: A systematic review. Med. Intensiva (Engl Ed) 2017 41 6 339 346 10.1016/j.medine.2017.04.006
    [Google Scholar]
  7. Manley S. Mitchell A. The impact of nutrition on pressure ulcer healing. Br. J. Nurs. 2022 31 12 S26 S30 10.12968/bjon.2022.31.12.S26 35736848
    [Google Scholar]
  8. Horn S.D. Bender S.A. Ferguson M.L. Smout R.J. Bergstrom N. Taler G. Cook A.S. Sharkey S.S. Voss A.C. The National Pressure Ulcer Long-Term Care Study: pressure ulcer development in long-term care residents. J. Am. Geriatr. Soc. 2004 52 3 359 367 10.1111/j.1532‑5415.2004.52106.x 14962149
    [Google Scholar]
  9. Iizaka S. Okuwa M. Sugama J. Sanada H. The impact of malnutrition and nutrition-related factors on the development and severity of pressure ulcers in older patients receiving home care. Clin. Nutr. 2010 29 1 47 53 10.1016/j.clnu.2009.05.018 19564062
    [Google Scholar]
  10. Mahmoodpoor A. Shadvar K. Saghaleini S. Dehghan K. Ostadi Z. Ostadi Z. Pressure ulcer and nutrition. Indian J. Crit. Care Med. 2018 22 4 283 289 10.4103/ijccm.IJCCM_277_17 29743767
    [Google Scholar]
  11. Serpa L.F. Santos V.L.C.G. Validity of the Braden Nutrition Subscale in predicting pressure ulcer development. J. Wound Ostomy Continence Nurs. 2014 41 5 436 443 10.1097/WON.0000000000000059 25188800
    [Google Scholar]
  12. Zhetmekova Z. Kassym L. Kussainova A. Akhmetova A. Everink I. Orazalina A. Zhanaspayeva G. Botabayeva A. Kozhakhmetova D. Olzhayeva R. Semenova Y. The prevalence and risk factors of pressure ulcers among residents of long-term care institutions: a case study of Kazakhstan. Sci. Rep. 2024 14 1 7105 10.1038/s41598‑024‑57721‑8 38531944
    [Google Scholar]
  13. Kesarwani A. Nagpal P.S. Chhabra H.S. Experimental animal modelling for pressure injury: A systematic review. J. Clin. Orthop. Trauma 2021 17 273 279 10.1016/j.jcot.2021.04.001 33987077
    [Google Scholar]
  14. Li Q. Kato S. Matsuoka D. Tanaka H. Miwa N. Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med. Gas Res. 2013 3 1 20 10.1186/2045‑9912‑3‑20 24020833
    [Google Scholar]
  15. Arkiliç C.F. Taguchi A. Sharma N. Ratnaraj J. Sessler D.I. Read T.E. Fleshman J.W. Kurz A. Supplemental perioperative fluid administration increases tissue oxygen pressure. Surgery 2003 133 1 49 55 10.1067/msy.2003.80 12563237
    [Google Scholar]
  16. Stotts N.A. Hopf H.W. The link between tissue oxygen and hydration in nursing home residents with pressure ulcers: preliminary data. J. Wound Ostomy Continence Nurs. 2003 30 4 184 190 10.1097/00152192‑200307000‑00005 12851593
    [Google Scholar]
  17. Stotts N.A. Hopf H.W. Kayser-Jones J. Chertow G.M. Cooper B.A. Wu H.S. Increased fluid intake does not augment capacity to lay down new collagen in nursing home residents at risk for pressure ulcers: A randomized, controlled clinical trial. Wound Repair Regen. 2009 17 6 780 788 10.1111/j.1524‑475X.2009.00539.x 19821962
    [Google Scholar]
  18. Hofmann E. Fink J. Pignet A.L. Schwarz A. Schellnegger M. Nischwitz S.P. Holzer-Geissler J.C.J. Kamolz L.P. Kotzbeck P. Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines 2023 11 4 1056 10.3390/biomedicines11041056 37189674
    [Google Scholar]
  19. Freedman B.R. Hwang C. Talbot S. Hibler B. Matoori S. Mooney D.J. Breakthrough treatments for accelerated wound healing. Sci. Adv. 2023 9 20 eade7007 10.1126/sciadv.ade7007 37196080
    [Google Scholar]
  20. Sharma A. Sharma D. Zhao F. Updates on Recent Clinical Assessment of Commercial Chronic Wound Care Products. Adv. Healthc. Mater. 2023 12 25 2300556 10.1002/adhm.202300556 37306401
    [Google Scholar]
  21. Grigatti A. Gefen A. The biomechanical efficacy of a hydrogel‐based dressing in preventing facial medical device‐related pressure ulcers. Int. Wound J. 2022 19 5 1051 1063 10.1111/iwj.13701 34623741
    [Google Scholar]
  22. Grigatti A. Gefen A. What makes a hydrogel‐based dressing advantageous for the prevention of medical device‐related pressure ulcers. Int. Wound J. 2022 19 3 515 530 10.1111/iwj.13650 34245120
    [Google Scholar]
  23. Romanelli M. Unique combination of hyaluronic acid and amino acids in the management of patients with a range of moderate-to-severe chronic wounds: Evidence from international clinical trials. Int Wound J 2024 21 Suppl 1 4 8 10.1111/iwj.14617
    [Google Scholar]
  24. Li P. Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018 50 1 29 38 10.1007/s00726‑017‑2490‑6 28929384
    [Google Scholar]
  25. Arribas-López E. Zand N. Ojo O. Snowden M.J. Kochhar T. The Effect of Amino Acids on Wound Healing: A Systematic Review and Meta-Analysis on Arginine and Glutamine. Nutrients 2021 13 8 2498 10.3390/nu13082498 34444657
    [Google Scholar]
  26. Fujiwara T. Kanazawa S. Ichibori R. Tanigawa T. Magome T. Shingaki K. Miyata S. Tohyama M. Hosokawa K. L-arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway. PLoS One 2014 9 3 e92168 10.1371/journal.pone.0092168 24651445
    [Google Scholar]
  27. Shi H.P. Efron D.T. Most D. Tantry U.S. Barbul A. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery 2000 128 2 374 378 10.1067/msy.2000.107372 10923019
    [Google Scholar]
  28. Skorjanec S. Kokot A. Drmic D. Radic B. Sever M. Klicek R. Kolenc D. Zenko A. Lovric Bencic M. Belosic Halle Z. Situm A. Zivanovic Posilovic G. Masnec S. Suran J. Aralica G. Seiwerth S. Sikiric P. Duodenocutaneous fistula in rats as a model for “wound healing-therapy” in ulcer healing: the effect of pentadecapeptide BPC 157, L-nitro-arginine methyl ester and L-arginine. J. Physiol. Pharmacol. 2015 66 4 581 590 26348082
    [Google Scholar]
  29. Goswami S. Kandhare A. Zanwar A.A. Hegde M.V. Bodhankar S.L. Shinde S. Deshmukh S. Kharat R. Oral l ‐glutamine administration attenuated cutaneous wound healing in Wistar rats. Int. Wound J. 2016 13 1 116 124 10.1111/iwj.12246 24690128
    [Google Scholar]
  30. Wang Z. Zhao F. Xu C. Zhang Q. Ren H. Huang X. He C. Ma J. Wang Z. Metabolic reprogramming in skin wound healing. Burns Trauma 2024 12 tkad047 10.1093/burnst/tkad047 38179472
    [Google Scholar]
  31. Brewer S. Desneves K. Pearce L. Mills K. Dunn L. Brown D. Crowe T. Effect of an arginine-containing nutritional supplement on pressure ulcer healing in community spinal patients. J. Wound Care 2010 19 7 311 316 10.12968/jowc.2010.19.7.48905 20616774
    [Google Scholar]
  32. Leigh B. Desneves K. Rafferty J. Pearce L. King S. Woodward M.C. Brown D. Martin R. Crowe T.C. The effect of different doses of an arginine-containing supplement on the healing of pressure ulcers. J. Wound Care 2012 21 3 150 156 10.12968/jowc.2012.21.3.150 22399084
    [Google Scholar]
  33. Ogura Y. Yuki N. Sukegane A. Nishi T. Miyake Y. Sato H. Miyamoto C. Mihara C. Treatment of pressure ulcers in patients with declining renal function using arginine, glutamine and ß-hydroxy-ß-methylbutyrate. J. Wound Care 2015 24 10 478 482 10.12968/jowc.2015.24.10.478 26488739
    [Google Scholar]
  34. Clark R.K. Stampas A. Kerr K.W. Nelson J.L. Sulo S. Leon-Novelo L. Ngan E. Pandya D. Evaluating the impact of using a wound‐specific oral nutritional supplement to support wound healing in a rehabilitation setting. Int. Wound J. 2023 20 1 145 154 10.1111/iwj.13849 35684975
    [Google Scholar]
  35. Wong A. Chew A. Wang C.M. Ong L. Zhang S.H. Young S. The use of a specialised amino acid mixture for pressure ulcers: A placebo-controlled trial. J. Wound Care 2014 23 5 259 269, 262-264, 266-269 10.12968/jowc.2014.23.5.259 24810310
    [Google Scholar]
  36. Miu D.K.Y. Lo K.M. Lam E.K.Y. Lam P.S. The use of an oral mixture of arginine, glutamine and β-hydroxy-β-methylbutyrate (Hmb) for the treatment of high grade pressure ulcers: A randomized study. Aging Medicine and Healthcare 2021 12 3 82 89 10.33879/AMH.123.2020.04012
    [Google Scholar]
  37. Kisil I. Gimelfarb Y. Long-term supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine for pressure ulcer in sedentary older adults: A retrospective matched case-control study. J Yeungnam Med Sci 2023 40 4 364 372 10.12701/jyms.2022.00899.
    [Google Scholar]
  38. Csapo R. Gumpenberger M. Wessner B. Skeletal Muscle Extracellular Matrix – What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front. Physiol. 2020 11 253 10.3389/fphys.2020.00253 32265741
    [Google Scholar]
  39. Anthony D. Rafter L. Reynolds T. Aljezawi M. An evaluation of serum albumin and the sub-scores of the Waterlow score in pressure ulcer risk assessment. J. Tissue Viability 2011 20 3 89 99 10.1016/j.jtv.2011.04.001 21665474
    [Google Scholar]
  40. Boyko T.V. Longaker M.T. Yang G.P. Review of the Current Management of Pressure Ulcers. Adv. Wound Care (New Rochelle) 2018 7 2 57 67 10.1089/wound.2016.0697 29392094
    [Google Scholar]
  41. Liao J. Protein and cellular engineering with unnatural amino acids. Biotechnol. Prog. 2007 23 1 28 31 10.1021/bp060369d 17269666
    [Google Scholar]
  42. Wang T. Zhang W. Understanding Protein Functions in the Biological Context. Protein Pept. Lett. 2023 30 6 449 458 10.2174/0929866530666230507212638 37151077
    [Google Scholar]
  43. Otten J.J. Hellwig J.P. Meyers L.D. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes: The essential guide to nutrient requirements. Washington, DC The National Academies Press 2006 350 355
    [Google Scholar]
  44. Qin Z. Wang Y. Zhao W. Zhang Y. Tian Y. Sun S. Li X. Pressure ulcer healing promoted by adequate protein intake in rats. Exper Ther Med 2018 15 5 4173 4178
    [Google Scholar]
  45. Mathus-Vliegen E.M. Old age, malnutrition, and pressure sores: an ill-fated alliance. J. Gerontol. A Biol. Sci. Med. Sci. 2004 59 4 355 360 15071079
    [Google Scholar]
  46. Iizaka S. Matsuo J. Konya C. Sekine R. Sugama J. Sanada H. Estimation of protein requirements according to nitrogen balance for older hospitalized adults with pressure ulcers according to wound severity in Japan. J. Am. Geriatr. Soc. 2012 60 11 2027 2034 10.1111/j.1532‑5415.2012.04202.x 23110319
    [Google Scholar]
  47. Iizaka S. Kaitani T. Nakagami G. Sugama J. Sanada H. Clinical validity of the estimated energy requirement and the average protein requirement for nutritional status change and wound healing in older patients with pressure ulcers: A multicenter prospective cohort study. Geriatr. Gerontol. Int. 2015 15 11 1201 1209 10.1111/ggi.12420 25496092
    [Google Scholar]
  48. Breslow R.A. Hallfrisch J. Guy D.G. Crawley B. Goldberg A.P. The importance of dietary protein in healing pressure ulcers. J. Am. Geriatr. Soc. 1993 41 4 357 362 10.1111/j.1532‑5415.1993.tb06940.x 8463519
    [Google Scholar]
  49. Ferretti R.L. Lambert J.A. Fernandes A.M. Oliveira R.A.C. Mendes R.S. Camargo J. Evaluation of protein intake and risk of pressure injury development in hospitalized patients. Clin. Nutr. ESPEN 2021 46 S612 10.1016/j.clnesp.2021.09.199
    [Google Scholar]
  50. Posthauer M.E. Banks M. Dorner B. Schols J.M.G.A. The role of nutrition for pressure ulcer management: national pressure ulcer advisory panel, European pressure ulcer advisory panel, and pan pacific pressure injury alliance white paper. Adv. Skin Wound Care 2015 28 4 175 188 10.1097/01.ASW.0000461911.31139.62 25775201
    [Google Scholar]
  51. Frías Soriano L. Lage Vzquez M.A. Prez-Portabella Maristany C. Xandri Graupera J.M. Wouters-Wesseling W. Wagenaar L. The effectiveness of oral nutritional supplementation in the healing of pressure ulcers. J. Wound Care 2004 13 8 319 322 10.12968/jowc.2004.13.8.26654 15469215
    [Google Scholar]
  52. Cereda E. Gini A. Pedrolli C. Vanotti A. Disease-specific, versus standard, nutritional support for the treatment of pressure ulcers in institutionalized older adults: a randomized controlled trial. J. Am. Geriatr. Soc. 2009 57 8 1395 1402 10.1111/j.1532‑5415.2009.02351.x 19563522
    [Google Scholar]
  53. Cereda E. Klersy C. Serioli M. Crespi A. D'Andrea F. A nutritional formula enriched with arginine, zinc, and antioxidants for the healing of pressure ulcers: A randomized trial. Ann Intern Med 2015 162 3 167 74 10.7326/M14‑0696
    [Google Scholar]
  54. Chawla J. Kvarnberg D. Hydrosoluble vitamins. Handb. Clin. Neurol. 2014 120 891 914 10.1016/B978‑0‑7020‑4087‑0.00059‑0 24365359
    [Google Scholar]
  55. Tanumihardjo S.A. Russell R.M. Stephensen C.B. Gannon B.M. Craft N.E. Haskell M.J. Lietz G. Schulze K. Raiten D.J. Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. J. Nutr. 2016 146 9 1816S 1848S 10.3945/jn.115.229708 27511929
    [Google Scholar]
  56. Cox J. Rasmussen L. Enteral nutrition in the prevention and treatment of pressure ulcers in adult critical care patients. Crit. Care Nurse 2014 34 6 15 27 10.4037/ccn2014950 25452406
    [Google Scholar]
  57. Moise A.R. Noy N. Palczewski K. Blaner W.S. Delivery of retinoid-based therapies to target tissues. Biochemistry 2007 46 15 4449 4458 10.1021/bi7003069 17378589
    [Google Scholar]
  58. Wolbach S.B. Howe P.R. Nutrition Classics. The Journal of Experimental Medicine.1978, 42, 753-777. S. Burt Wolbach; Percy R. Howe. Tissue changes following deprivation of fat-soluble A vitamin. Nutr. Rev. 1925 36 1 16 19 10.1111/j.1753‑4887.1978.tb03675.x 342996
    [Google Scholar]
  59. Dawson M. The importance of vitamin A in nutrition. Curr. Pharm. Des. 2000 6 3 311 325 10.2174/1381612003401190 10637381
    [Google Scholar]
  60. McEldrew E.P. Lopez M.J. Milstein H. Vitamin A. StatPearls StatPearls Publishing 2023
    [Google Scholar]
  61. Stadelmann W.K. Digenis A.G. Tobin G.R. Impediments to wound healing. Am J Surg 1998 176 39S 47S 10.1016/S0002‑9610(98)00184‑6
    [Google Scholar]
  62. Popadic S. Ramic Z. Medenica L. Mostarica Stojkovic M. Trajković V. Popadic D. Antiproliferative effect of vitamin A and D analogues on adult human keratinocytes in vitro. Skin Pharmacol. Physiol. 2008 21 4 227 234 10.1159/000135639 18509257
    [Google Scholar]
  63. Jean J. Soucy J. Pouliot R. Effects of retinoic acid on keratinocyte proliferation and differentiation in a psoriatic skin model. Tissue Eng. Part A 2011 17 13-14 1859 1868 10.1089/ten.tea.2010.0463 21417679
    [Google Scholar]
  64. Schroeder M. Zouboulis C. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes. Horm. Metab. Res. 2007 39 2 136 140 10.1055/s‑2007‑961813 17326009
    [Google Scholar]
  65. Masgrau-Peya E. Salomon D. Saurat J.H. Meda P. In vivo modulation of connexins 43 and 26 of human epidermis by topical retinoic acid treatment. J. Histochem. Cytochem. 1997 45 9 1207 1215 10.1177/002215549704500904 9283608
    [Google Scholar]
  66. Rittié L. Varani J. Kang S. Voorhees J.J. Fisher G.J. Retinoid-induced epidermal hyperplasia is mediated by epidermal growth factor receptor activation via specific induction of its ligands heparin-binding EGF and amphiregulin in human skin in vivo. J. Invest. Dermatol. 2006 126 4 732 739 10.1038/sj.jid.5700202 16470170
    [Google Scholar]
  67. Stoll S.W. Elder J.T. Retinoid regulation of heparin‐binding EGF‐like growth factor gene expression in human keratinocytes and skin. Exp. Dermatol. 1998 7 6 391 397 10.1111/j.1600‑0625.1998.tb00339.x 9858142
    [Google Scholar]
  68. Hunt T.K. Ehrlich H.P. Garcia J.A. Dunphy J.E. Effect of vitamin A on reversing the inhibitory effect of cortisone on healing of open wounds in animals and man. Ann. Surg. 1969 170 4 633 641 10.1097/00000658‑196910000‑00014 5387992
    [Google Scholar]
  69. Wicke C. Halliday B. Allen D. Roche N.S. Scheuenstuhl H. Spencer M.M. Roberts A.B. Hunt T.K. Effects of steroids and retinoids on wound healing. Arch. Surg. 2000 135 11 1265 1270 10.1001/archsurg.135.11.1265 11074878
    [Google Scholar]
  70. Reichrath J. Lehmann B. Carlberg C. Varani J. Zouboulis C. Vitamins as Hormones. Horm. Metab. Res. 2007 39 2 71 84 10.1055/s‑2007‑958715 17326003
    [Google Scholar]
  71. Chauhan K. Shahrokhi M. Huecker M.R. Vitamin D. Vitamin D. StatPearls Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  72. Nutrition and bone health: With particular reference to calcium and vitamin D. Report of the Subgroup on Bone Health, Working Group on the Nutritional Status of the Population of the Committee on Medical Aspects of the Food Nutrition Policy. Rep Health Soc Subj (Lond) 1998 49 1 24 9932291
    [Google Scholar]
  73. Institute of Medicine (US) Committee. Dietary Reference Intakes for Calcium and Vitamin D. Ross A.C. Taylor C.L. Yaktine A.L. Washington (DC) National Academies Press (US) 2011
    [Google Scholar]
  74. National Institutes of Health Office of Dietary Supplements Vitamin D. 2016 Available from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/
  75. Weaver C.M. Alexander D.D. Boushey C.J. Dawson-Hughes B. Lappe J.M. LeBoff M.S. Liu S. Looker A.C. Wallace T.C. Wang D.D. Calcium plus vitamin D supplementation and risk of fractures: An updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int 2016 27 1 367 376
    [Google Scholar]
  76. Bartley J. Vitamin D: emerging roles in infection and immunity. Expert Rev. Anti Infect. Ther. 2010 8 12 1359 1369 10.1586/eri.10.102 21133662
    [Google Scholar]
  77. Siregar F.D. Hidayat W. The Role of Vitamin D on the Wound Healing Process: A Case Series. Int. Med. Case Rep. J. 2023 16 227 232 10.2147/IMCRJ.S402005 37035834
    [Google Scholar]
  78. Migliori M. Giovannini L. Panichi V. Filippi C. Taccola D. Origlia N. Mannari C. Camussi G. Treatment with 1,25-dihydroxyvitamin D3 preserves glomerular slit diaphragm-associated protein expression in experimental glomerulonephritis. Int. J. Immunopathol. Pharmacol. 2005 18 4 779 790 10.1177/039463200501800422 16388728
    [Google Scholar]
  79. Yin Z. Pintea V. Lin Y. Hammock B.D. Watsky M.A. Vitamin D enhances corneal epithelial barrier function. Invest. Ophthalmol. Vis. Sci. 2011 52 10 7359 7364 10.1167/iovs.11‑7605 21715350
    [Google Scholar]
  80. Ordóñez-Morán P. Álvarez-Díaz S. Valle N. Larriba M.J. Bonilla F. Muñoz A. The effects of 1,25-dihydroxyvitamin D3 on colon cancer cells depend on RhoA-ROCK-p38MAPK-MSK signaling. J. Steroid Biochem. Mol. Biol. 2010 121 1-2 355 361 10.1016/j.jsbmb.2010.02.031 20223287
    [Google Scholar]
  81. Christakos S. Dhawan P. Ajibade D. Benn B.S. Feng J. Joshi S.S. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J. Steroid Biochem. Mol. Biol. 2010 121 1-2 183 187 10.1016/j.jsbmb.2010.03.005 20214989
    [Google Scholar]
  82. Hanna M. Jaqua E. Nguyen V. Clay J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022 26 2 89 97 10.7812/TPP/21.204 35933667
    [Google Scholar]
  83. Mikkelsen K. Apostolopoulos V. B Vitamins and Ageing. Subcell. Biochem. 2018 90 451 470 10.1007/978‑981‑13‑2835‑0_15 30779018
    [Google Scholar]
  84. Russell L. The importance of patients' nutritional status in wound healing. Br J Nurs 2001 10 6 Suppl S44 9 10.12968/bjon.2001.10.Sup1.5336.
    [Google Scholar]
  85. Williams J.Z. Barbul A. Nutrition and wound healing. Surg. Clin. North Am. 2003 83 3 571 596 10.1016/S0039‑6109(02)00193‑7 12822727
    [Google Scholar]
  86. Mochizuki S. Takano M. Sugano N. Ohtsu M. Tsunoda K. Koshi R. Yoshinuma N. The effect of B vitamin supplementation on wound healing in type 2 diabetic mice. J. Clin. Biochem. Nutr. 2016 58 1 64 68 10.3164/jcbn.14‑122 26798199
    [Google Scholar]
  87. Rembe J.D. Fromm-Dornieden C. Stuermer E.K. Effects of Vitamin B Complex and Vitamin C on Human Skin Cells: Is the Perceived Effect Measurable? Adv. Skin Wound Care 2018 31 5 225 233 10.1097/01.ASW.0000531351.85866.d9 29672394
    [Google Scholar]
  88. Nishikimi M. Fukuyama R. Minoshima S. Shimizu N. Yagi K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 1994 269 18 13685 13688 10.1016/S0021‑9258(17)36884‑9 8175804
    [Google Scholar]
  89. Abdullah M. Jamil R.T. Attia F.N. Vitamin C (Ascorbic Acid). StatPearls Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  90. National Institutes of Health Office of Dietary Supplements Vitamin C. 2021 Available from: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
  91. Lima C. Pereira A. Silva J. Oliveira L. Resck M. Grechi C. Bernardes M. Olímpio F. Santos A. Incerpi E. Garcia J. Ascorbic acid for the healing of skin wounds in rats. Braz. J. Biol. 2009 69 4 1195 1201 10.1590/S1519‑69842009000500026 19967193
    [Google Scholar]
  92. Boyce S.T. Supp A.P. Swope V.B. Warden G.D. Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane in vitro, and reduces wound contraction after grafting of cultured skin substitutes. J. Invest. Dermatol. 2002 118 4 565 572 10.1046/j.1523‑1747.2002.01717.x 11918700
    [Google Scholar]
  93. Miyazawa T. Burdeos G.C. Itaya M. Nakagawa K. Miyazawa T. Vitamin E. Vitamin E: Regulatory Redox Interactions. IUBMB Life 2019 71 4 430 441 10.1002/iub.2008 30681767
    [Google Scholar]
  94. Rizvi S. Raza S.T. Ahmed F. Ahmad A. Abbas S. Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J 2014 14 2 e157 65 24790736
    [Google Scholar]
  95. Frei B. Reactive oxygen species and antioxidant vitamins: Mechanisms of action. Am. J. Med. 1994 97 3 S5 S13 10.1016/0002‑9343(94)90292‑5 8085584
    [Google Scholar]
  96. Pierpaoli E. Cirioni O. Barucca A. Orlando F. Silvestri C. Giacometti A. Provinciali M. Vitamin E supplementation in old mice induces antimicrobial activity and improves the efficacy of daptomycin in an animal model of wounds infected with methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2011 66 9 2184 2185 10.1093/jac/dkr254 21676901
    [Google Scholar]
  97. Rojas A.I. Phillips T.J. Patients with chronic leg ulcers show diminished levels of vitamins A and E, carotenes, and zinc. Dermatol. Surg. 1999 25 8 601 604 10.1046/j.1524‑4725.1999.99074.x 10491041
    [Google Scholar]
  98. Theilla M. Singer P. Cohen J. DeKeyser F. A diet enriched in eicosapentanoic acid, gamma-linolenic acid and antioxidants in the prevention of new pressure ulcer formation in critically ill patients with acute lung injury: A randomized, prospective, controlled study. Clin. Nutr. 2007 26 6 752 757 10.1016/j.clnu.2007.06.015 17933438
    [Google Scholar]
  99. Shukla A. Rasik A.M. Patnaik G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 1997 26 2 93 101 10.3109/10715769709097788 9257121
    [Google Scholar]
  100. Rasik A.M. Shukla A. Antioxidant status in delayed healing type of wounds. Int. J. Exp. Pathol. 2000 81 4 257 263 10.1046/j.1365‑2613.2000.00158.x 10971747
    [Google Scholar]
  101. Galeano M. Torre V. Deodato B. Campo G.M. Colonna M. Sturiale A. Squadrito F. Cavallari V. Cucinotta D. Buemi M. Altavilla D. Raxofelast, a hydrophilic vitamin E-like antioxidant, stimulates wound healing in genetically diabetic mice. Surgery 2001 129 4 467 477 11283539
    [Google Scholar]
  102. Sakai S. Moriguchi S. Long-term feeding of high vitamin E diet improves the decreased mitogen response of rat splenic lymphocytes with aging. J. Nutr. Sci. Vitaminol. (Tokyo) 1997 43 1 113 122 10.3177/jnsv.43.113 9151245
    [Google Scholar]
  103. Saeg F. Orazi R. Bowers G.M. Janis J.E. Evidence-Based Nutritional Interventions in Wound Care. Plast. Reconstr. Surg. 2021 148 1 226 238 10.1097/PRS.0000000000008061 34181622
    [Google Scholar]
  104. Jackson M.J. Physiology of zinc: General aspects. Zinc in Human Biology Mills C.F. Berlin/Heidelberg, Germany Springer 1989
    [Google Scholar]
  105. Kambe T. Tsuji T. Hashimoto A. Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015 95 3 749 784 10.1152/physrev.00035.2014 26084690
    [Google Scholar]
  106. Glutsch V. Hamm H. Goebeler M. Zinc and skin: an update. J. Dtsch. Dermatol. Ges. 2019 17 6 589 596 30873720
    [Google Scholar]
  107. Osis D. Kramer L. Wiatrowski E. Spencer H. Dietary zinc intake in man. Am. J. Clin. Nutr. 1972 25 6 582 588 10.1093/ajcn/25.6.582 5033739
    [Google Scholar]
  108. Ogawa Y. Kawamura T. Shimada S. Zinc and skin biology. Arch. Biochem. Biophys. 2016 611 113 119 10.1016/j.abb.2016.06.003 27288087
    [Google Scholar]
  109. Michaëlsson G. Ljunghall K. Danielson B.G. Zinc in epidermis and dermis in healthy subjects. Acta Derm. Venereol. 1980 60 4 295 299 10.2340/0001555560295299 6163273
    [Google Scholar]
  110. Lansdown A.B.G. Mirastschijski U. Stubbs N. Scanlon E. Ågren M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007 15 1 2 16 10.1111/j.1524‑475X.2006.00179.x 17244314
    [Google Scholar]
  111. Popovics P. Stewart A.J. GPR39: a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci. 2011 68 1 85 95 10.1007/s00018‑010‑0517‑1 20812023
    [Google Scholar]
  112. Zhao H. Qiao J. Zhang S. Zhang H. Lei X. Wang X. Deng Z. Ning L. Cao Y. Guo Y. Liu S. Duan E. GPR39 marks specific cells within the sebaceous gland and contributes to skin wound healing. Sci. Rep. 2015 5 1 7913 10.1038/srep07913 25604641
    [Google Scholar]
  113. Nutritional recommendations for Belgium. 2012 Available from: https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/18014679/Brochure%20Recommandations%20nutrionnelles%20%28r%C3%A9vision%202009%29%20%28CSS%208309%29.pdf
  114. Steinbrenner H. Speckmann B. Klotz L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 2016 595 113 119 10.1016/j.abb.2015.06.024 27095226
    [Google Scholar]
  115. Saito Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J. Clin. Biochem. Nutr. 2020 66 1 1 7 10.3164/jcbn.19‑31 32001950
    [Google Scholar]
  116. Gül M. Temoçin S. Hänninen O. Selenium supplementation sensitizes renca cells to tert-butylhydroperoxide induced loss of viability. Indian J. Exp. Biol. 2000 38 10 1020 1025 11324154
    [Google Scholar]
  117. Bedard K. Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007 87 1 245 313 10.1152/physrev.00044.2005 17237347
    [Google Scholar]
  118. Gupta A. Singh R.L. Raghubir R. Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol. Cell. Biochem. 2002 241 1/2 1 7 10.1023/A:1020804916733 12482019
    [Google Scholar]
  119. Iuchi Y. Roy D. Okada F. Kibe N. Tsunoda S. Suzuki S. Takahashi M. Yokoyama H. Yoshitake J. Kondo S. Fujii J. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 2010 341 1-2 181 194 10.1007/s11010‑010‑0449‑y 20352474
    [Google Scholar]
  120. Mao L. Wang L. Zhang M. Ullah M.W. Liu L. Zhao W. Li Y. Ahmed A.A.Q. Cheng H. Shi Z. Yang G. In Situ Synthesized Selenium Nanoparticles‐Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti‐Inflammatory Capabilities for Facilitating Skin Wound Healing. Adv. Healthc. Mater. 2021 10 14 2100402 10.1002/adhm.202100402 34050616
    [Google Scholar]
  121. Scheiber I. Dringen R. Mercer J.F.B. Copper: effects of deficiency and overload. Met. Ions Life Sci. 2013 13 359 387 10.1007/978‑94‑007‑7500‑8_11 24470097
    [Google Scholar]
  122. Kornblatt A.P. Nicoletti V.G. Travaglia A. The neglected role of copper ions in wound healing. J. Inorg. Biochem. 2016 161 1 8 10.1016/j.jinorgbio.2016.02.012 26920228
    [Google Scholar]
  123. Wachnik A. The physiological role of copper and the problems of copper nutritional deficiency. Nahrung 1988 32 8 755 765 10.1002/food.19880320811 3068548
    [Google Scholar]
  124. Sen C.K. Khanna S. Venojarvi M. Trikha P. Ellison E.C. Hunt T.K. Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 2002 282 5 H1821 H1827 10.1152/ajpheart.01015.2001 11959648
    [Google Scholar]
  125. Cucci L.M. Satriano C. Marzo T. La Mendola D. Angiogenin and Copper Crossing in Wound Healing. Int. J. Mol. Sci. 2021 22 19 10704 10.3390/ijms221910704 34639045
    [Google Scholar]
  126. Philips N. Hwang H. Chauhan S. Leonardi D. Gonzalez S. Stimulation of cell proliferation and expression of matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper. Connect. Tissue Res. 2010 51 3 224 229 10.3109/03008200903288431 20053132
    [Google Scholar]
  127. Tiwari M. Narayanan K. Thakar M.B. Jagani H.V. Venkata Rao J. Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol. 2014 8 4 230 237 10.1049/iet‑nbt.2013.0052 25429502
    [Google Scholar]
  128. Abbaspour N. Hurrell R. Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014 19 2 164 174 24778671
    [Google Scholar]
  129. Trumbo P. Yates A.A. Schlicker S. Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001 101 3 294 301 10.1016/S0002‑8223(01)00078‑5 11269606
    [Google Scholar]
  130. Pelle E. Jian J. Declercq L. Dong K. Yang Q. Pourzand C. Maes D. Pernodet N. Yarosh D.B. Huang X. Protection against ultraviolet A‐induced oxidative damage in normal human epidermal keratinocytes under post‐menopausal conditions by an ultraviolet A‐activated caged‐iron chelator: a pilot study. Photodermatol. Photoimmunol. Photomed. 2011 27 5 231 235 10.1111/j.1600‑0781.2011.00604.x 21950626
    [Google Scholar]
  131. Hong W.X. Hu M.S. Esquivel M. Liang G.Y. Rennert R.C. McArdle A. Paik K.J. Duscher D. Gurtner G.C. Lorenz H.P. Longaker M.T. The Role of Hypoxia-Inducible Factor in Wound Healing. Adv. Wound Care (New Rochelle) 2014 3 5 390 399 10.1089/wound.2013.0520 24804159
    [Google Scholar]
  132. Takayama Y. Aoki R. Roles of lactoferrin on skin wound healing 1 This article is part of Special Issue entitled Lactoferrin and has undergone the Journal’s usual peer review process. Biochem. Cell Biol. 2012 90 3 497 503 10.1139/o11‑054 22332789
    [Google Scholar]
  133. Sathiyaseelan A. Saravanakumar K. Mariadoss A.V.A. Wang M.H. Antimicrobial and Wound Healing Properties of FeO Fabricated Chitosan/PVA Nanocomposite Sponge. Antibiotics (Basel) 2021 10 5 524 10.3390/antibiotics10050524 34063621
    [Google Scholar]
  134. Wlaschek M. Singh K. Sindrilaru A. Crisan D. Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic. Biol. Med. 2019 133 262 275 10.1016/j.freeradbiomed.2018.09.036 30261274
    [Google Scholar]
  135. Wenk J. Sabiwalsky A. Dissemond J. Meewes C. Brenneisen P. Wlaschek M. Scharffetter-Kochanek K. Foitzik A. Achterberg V. Reitz A. Meyer-Ingold W. Selective pick-up of increased iron by deferoxamine-coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 and lipid peroxidation in human dermal fibroblasts in vitro: a new dressing concept. J. Invest. Dermatol. 2001 116 6 833 839 10.1046/j.1523‑1747.2001.01345.x 11407968
    [Google Scholar]
  136. Eileen C. O'Brien. Encyclopedia of Food Security and Sustainability 2019
    [Google Scholar]
  137. Erikson K.M. Aschner M. Manganese: Its role in disease and health. Met Ions Life Sci 2019 10.1515/9783110527872‑016.
    [Google Scholar]
  138. Aschner M. Erikson K. Manganese. Adv Nutr 2017 8 3 520 521 10.3945/an.117.015305.
    [Google Scholar]
  139. Tenaud I. Sainte-Marie I. Jumbou O. Litoux P. Dréno B. In vitro modulation of keratinocyte wound healing integrins by zinc, copper and manganese. Br. J. Dermatol. 1999 140 1 26 34 10.1046/j.1365‑2133.1999.02603.x 10215764
    [Google Scholar]
  140. Luo J.D. Wang Y.Y. Fu W.L. Wu J. Chen A.F. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 2004 110 16 2484 2493 10.1161/01.CIR.0000137969.87365.05 15262829
    [Google Scholar]
  141. Wu Z. Zhuang H. Ma B. Xiao Y. Koc B. Zhu Y. Wu C. Manganese-Doped Calcium Silicate Nanowire Composite Hydrogels for Melanoma Treatment and Wound Healing. Research 2021 2021 2021/9780943 10.34133/2021/9780943 34041493
    [Google Scholar]
  142. Mathew-Steiner S.S. Roy S. Sen C.K. Collagen in Wound Healing. Bioengineering (Basel) 2021 8 5 63 10.3390/bioengineering8050063 34064689
    [Google Scholar]
  143. Griffiths C. Russman A.N. Majmudar G. Singer R.S. Hamilton T.A. Voorhees J.J. Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N. Engl. J. Med. 1993 329 8 530 535 10.1056/NEJM199308193290803 8336752
    [Google Scholar]
  144. Molnar J.A. Underdown M.J. Clark W.A. Nutrition and Chronic Wounds. Adv. Wound Care (New Rochelle) 2014 3 11 663 681 10.1089/wound.2014.0530 25371850
    [Google Scholar]
  145. Maurya V.K. Aggarwal M. Factors influencing the absorption of vitamin D in GIT: an overview. J. Food Sci. Technol. 2017 54 12 3753 3765 10.1007/s13197‑017‑2840‑0 29085118
    [Google Scholar]
  146. Razzaghi R. Pourbagheri H. Momen-Heravi M. Bahmani F. Shadi J. Soleimani Z. Asemi Z. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. J. Diabetes Complications 2017 31 4 766 772 10.1016/j.jdiacomp.2016.06.017 27363929
    [Google Scholar]
  147. Zhang Y. Wu S. Sun J. Vitamin D. Vitamin D. Vitamin D, vitamin D receptor and tissue barriers. Tissue Barriers 2013 1 1 e23118 10.4161/tisb.23118 24358453
    [Google Scholar]
  148. Kalava U.R. Cha S.S. Takahashi P.Y. Association between vitamin D and pressure ulcers in older ambulatory adults: results of a matched case-control study. Clin. Interv. Aging 2011 6 213 219 21966215
    [Google Scholar]
  149. Taylor T.V. Rimmer S. Day B. Butcher J. Dymock I.W. Ascorbic acid supplementation in the treatment of pressure-sores. Lancet 1974 304 7880 544 546 10.1016/S0140‑6736(74)91874‑1 4140267
    [Google Scholar]
  150. ter Riet G. Kessels A.G.H. Knipschild P.G. Randomized clinical trial of ascorbic acid in the treatment of pressure ulcers. J. Clin. Epidemiol. 1995 48 12 1453 1460 10.1016/0895‑4356(95)00053‑4 8543959
    [Google Scholar]
  151. Tanaka H. Molnar J.A. Vitamin C and wound healing. Nutrition and Wound Healing. Molnar J.A. Boca Raton, FL CRC Press 2007 121 148
    [Google Scholar]
  152. Collins N. The facts about vitamin C and wound healing. Ostomy Wound Manage. 2009 55 3 8 9 19673058
    [Google Scholar]
  153. van Anholt R.D. Sobotka L. Meijer E.P. Heyman H. Groen H.W. Topinková E. van Leen M. Schols J.M.G.A. Specific nutritional support accelerates pressure ulcer healing and reduces wound care intensity in non-malnourished patients. Nutrition 2010 26 9 867 872 10.1016/j.nut.2010.05.009 20598855
    [Google Scholar]
  154. Ellinger S. Stehle P. Efficacy of vitamin supplementation in situations with wound healing disorders: results from clinical intervention studies. Curr. Opin. Clin. Nutr. Metab. Care 2009 12 6 588 595 10.1097/MCO.0b013e328331a5b5 19770648
    [Google Scholar]
  155. Bechara N. Flood V.M. Gunton J.E. A Systematic Review on the Role of Vitamin C in Tissue Healing. Antioxidants 2022 11 8 1605 10.3390/antiox11081605 36009324
    [Google Scholar]
  156. De Waart F.G. Portengen L. Doekes G. Verwaal C.J. Kok F.J. Effect of 3 months vitamin E supplementation on indices of the cellular and humoral immune response in elderly subjects. Br. J. Nutr. 1997 78 5 761 774 10.1079/BJN19970193 9389899
    [Google Scholar]
  157. Meydani S.N. Meydani M. Blumberg J.B. Leka L.S. Siber G. Loszewski R. Thompson C. Pedrosa M.C. Diamond R.D. Stollar B.D. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial. JAMA 1997 277 17 1380 1386 10.1001/jama.1997.03540410058031 9134944
    [Google Scholar]
  158. De la Fuente M. Hernanz A. Guayerbas N. Manuel Victor V. Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008 42 3 272 280 10.1080/10715760801898838 18344122
    [Google Scholar]
  159. De La Fuente M. Victor V. Anti‐oxidants as modulators of immune function. Immunol. Cell Biol. 2000 78 1 49 54 10.1046/j.1440‑1711.2000.00884.x 10651929
    [Google Scholar]
  160. Yarahmadi A. Saeed Modaghegh M.H. Mostafavi-Pour Z. Azarpira N. Mousavian A. Bonakdaran S. Jarahi L. Samadi A. Peimani M. Hamidi Alamdari D. The effect of platelet-rich plasma-fibrin glue dressing in combination with oral vitamin E and C for treatment of non-healing diabetic foot ulcers: a randomized, double-blind, parallel-group, clinical trial. Expert Opin. Biol. Ther. 2021 21 5 687 696 10.1080/14712598.2021.1897100 33646060
    [Google Scholar]
  161. Hobson R. Vitamin E and wound healing: an evidence‐based review. Int. Wound J. 2016 13 3 331 335 10.1111/iwj.12295 25124164
    [Google Scholar]
  162. Bafna K. Chen T. Simman R. Is Treating Patients With Stage 4 Pressure Ulcers With Vitamins A and C, Zinc, and Arginine Justified? Wounds 2021 33 3 77 80 33793413
    [Google Scholar]
  163. Woo H.Y. Oh S.Y. Lim L. Im H. Lee H. Ryu H.G. Efficacy of nutritional support protocol for patients with pressure ulcer: comparison of before and after the protocol. Nutrition 2022 99-100 111638 10.1016/j.nut.2022.111638 35576874
    [Google Scholar]
  164. Desneves K. Todorovic B. Cassar A. Crowe T. Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: A randomised controlled trial. Clin. Nutr. 2005 24 6 979 987 10.1016/j.clnu.2005.06.011 16297506
    [Google Scholar]
  165. Heyman H. Van De Looverbosch D.E.J. Meijer E.P. Schols J.M.G.A. Benefits of an oral nutritional supplement on pressure ulcer healing in long-term care. J. Wound Care 2008 17 11 476 480, 480 10.12968/jowc.2008.17.11.31475 18978686
    [Google Scholar]
  166. Konecka M. Schneider-Matyka D. Kamińska M. Bikowska M. Ustianowski P. Grochans E. Analysis of the laboratory results of the patients enrolled in the Nutritional Therapy Program. Eur. Rev. Med. Pharmacol. Sci. 2022 26 14 5144 5153 10.26355/eurrev_202207_29303 35916812
    [Google Scholar]
  167. Keller U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019 8 6 775 10.3390/jcm8060775 31159248
    [Google Scholar]
  168. Bharadwaj S. Ginoya S. Tandon P. Gohel T.D. Guirguis J. Vallabh H. Jevenn A. Hanouneh I. Malnutrition: laboratory markers vs nutritional assessment. Gastroenterol. Rep. (Oxf.) 2016 4 4 gow013 10.1093/gastro/gow013 27174435
    [Google Scholar]
  169. Bluestein D. Javaheri A. Pressure ulcers: prevention, evaluation, and management. Am. Fam. Physician 2008 78 10 1186 1194 19035067
    [Google Scholar]
  170. Neelemaat F. Kruizenga H.M. de Vet H.C.W. Seidell J.C. Butterman M. van Bokhorst-de van der Schueren M.A.E. Screening malnutrition in hospital outpatients. Can the SNAQ malnutrition screening tool also be applied to this population? Clin. Nutr. 2008 27 3 439 446 10.1016/j.clnu.2008.02.002 18395946
    [Google Scholar]
  171. Poulia K.A. Yannakoulia M. Karageorgou D. Gamaletsou M. Panagiotakos D.B. Sipsas N.V. Zampelas A. Evaluation of the efficacy of six nutritional screening tools to predict malnutrition in the elderly. Clin. Nutr. 2012 31 3 378 385 10.1016/j.clnu.2011.11.017 22182948
    [Google Scholar]
  172. Langkamp-Henken B. Hudgens J. Stechmiller J.K. Herrlinger-Garcia K.A. Mini nutritional assessment and screening scores are associated with nutritional indicators in elderly people with pressure ulcers. J. Am. Diet. Assoc. 2005 105 10 1590 1596 10.1016/j.jada.2005.07.005 16183360
    [Google Scholar]
  173. Grada A. Phillips T.J. Nutrition and cutaneous wound healing. Clin. Dermatol. 2022 40 2 103 113 10.1016/j.clindermatol.2021.10.002 34844794
    [Google Scholar]
  174. Williams J.Z. Barbul A. Nutrition and wound healing. Crit. Care Nurs. Clin. North Am. 2012 24 2 179 200 10.1016/j.ccell.2012.03.001 22548858
    [Google Scholar]
  175. Fry D.E. Pine M. Jones B.L. Meimban R.J. Patient characteristics and the occurrence of never events. Arch. Surg. 2010 145 2 148 151 10.1001/archsurg.2009.277 20157082
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322825241018174928
Loading
/content/journals/cmc/10.2174/0109298673322825241018174928
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Pressure ulcers ; nutrition ; trace elements ; water ; proteins ; amino acids ; vitamins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test