Skip to content
2000
Volume 33, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Fat grafting procedures for body contouring and cosmetic reconstruction have received widespread attention.

Methods

In recent years, there has been an increase in post-fat grafting infections caused by (), and there is a lack of representative and standardized murine models of infection; therefore, there has been limited research on the treatment of post-fat grafting infections. To overcome this challenge, we constructed an infection model after fat grafting.

Results

By evaluating skin charge, dermatopathology, and inflammatory markers, we found that the fat graft + 1×109 CFU/mL bacterial suspension infection group had significant inflammatory symptoms and elevated inflammatory factors on postoperative day 10.

Conclusion

The model construction process was simple and reproducible, which paves the way for further studies on the impact of pathogenesis and the efficacy of new treatments.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345671250114235930
2025-02-04
2026-02-20
Loading full text...

Full text loading...

References

  1. BohluliB. BagheriS.C. ConskyE.K. Fat grafting as an adjunct to facial rejuvenation procedures.Atlas Oral Maxillofac. Surg. Clin. North Am.2018261515710.1016/j.cxom.2017.10.00529362071
    [Google Scholar]
  2. DayalA. BhatiaA. HsuJ.T.S. Fat grafting in aesthetics.Clin. Dermatol.2022401354410.1016/j.clindermatol.2021.08.01035190062
    [Google Scholar]
  3. StrongA.L. CedernaP.S. RubinJ.P. ColemanS.R. LeviB. The current state of fat grafting.Plast. Reconstr. Surg.2015136489791210.1097/PRS.000000000000159026086386
    [Google Scholar]
  4. ColemanS.R. LamS. CohenS.R. BohluliB. NahaiF. Fat Grafting.Atlas Oral Maxillofac. Surg. Clin. North Am.2018261818410.1016/j.cxom.2017.10.00629362076
    [Google Scholar]
  5. FangH.A. SotoE. PiggR. SmithM. BoydC.J. AnanthasekarS. FixR.J. KilicA. DenneyB. PatchaP. MyersR.P. de la TorreJ.I. CollawnS. The safety of fat grafting: An institutional retrospective review.Ann. Plast. Surg.2022885Suppl. 5S473S47710.1097/SAP.000000000000323435690941
    [Google Scholar]
  6. LangridgeB.J. JasionowskaS. KhanH. AwadL. TurnerB.R.H. VargheseJ. ButlerP.E.M. Achieving optimal clinical outcomes in autologous fat grafting: A systematic review of processing techniques.J. Plast. Reconstr. Aesthet. Surg.20238192510.1016/j.bjps.2023.01.00337075610
    [Google Scholar]
  7. FrameJ.D. The past, present, and future of facial fat grafting.Atlas Oral Maxillofac. Surg. Clin. North Am.20182611610.1016/j.cxom.2017.11.00429362066
    [Google Scholar]
  8. MartenT.J. ElyassniaD. Fat grafting in facial rejuvenation.Clin. Plast. Surg.201542221925210.1016/j.cps.2014.12.00325827566
    [Google Scholar]
  9. RohrichR.J. AbrahamJ.T. Hand rejuvenation with fat grafting.Plast. Reconstr. Surg.20221514614e617e10.1097/PRS.000000000000999636729928
    [Google Scholar]
  10. NahabedianM.Y. Large-volume autologous fat grafting to the breast.Aesthet. Surg. J.202141Suppl. 1S16S2410.1093/asj/sjaa42634002769
    [Google Scholar]
  11. O’NeillR.C. HansonS.E. ReeceE. WinocourS. Safety considerations of fat grafting in buttock augmentation.Aesthet. Surg. J.202141Suppl. 1S25S3010.1093/asj/sjab09234002766
    [Google Scholar]
  12. WronskaA. KmiecZ. Structural and biochemical characteristics of various white adipose tissue depots.Acta Physiol.2012205219420810.1111/j.1748‑1716.2012.02409.x22226221
    [Google Scholar]
  13. BourinP. BunnellB.A. CasteillaL. DominiciM. KatzA.J. MarchK.L. RedlH. RubinJ.P. YoshimuraK. GimbleJ.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).Cytotherapy201315664164810.1016/j.jcyt.2013.02.00623570660
    [Google Scholar]
  14. MoakT.N. EbersoleT.G. TandonD. TenenbaumM. Assessing clinical outcomes in autologous fat grafting: A current literature review.Aesthet. Surg. J.202141Suppl. 1S50S6010.1093/asj/sjab14834002770
    [Google Scholar]
  15. Lo FurnoD. TamburinoS. ManninoG. GiliaE. LombardoG. TaricoM.S. VancheriC. GiuffridaR. PerrottaR.E. Nanofat 2.0: Experimental evidence for a fat grafting rich in mesenchymal stem cells.Physiol. Res.201766466367110.33549/physiolres.93345128406706
    [Google Scholar]
  16. GuptaR. BraceM. TaylorS.M. BezuhlyM. HongP. In search of the optimal processing technique for fat grafting.J. Craniofac. Surg.2015261949910.1097/SCS.000000000000125925534059
    [Google Scholar]
  17. LinJ.Y. WangC. PuL.L.Q. Can we standardize the techniques for fat grafting?Clin. Plast. Surg.201542219920810.1016/j.cps.2014.12.00525827564
    [Google Scholar]
  18. PuL.L.Q. Towards more rationalized approach to autologous fat grafting.J. Plast. Reconstr. Aesthet. Surg.201265441341910.1016/j.bjps.2011.09.03322024537
    [Google Scholar]
  19. DongY. HuangY. HouT. LiP. Effectiveness and safety of different methods of assisted fat grafting: A network meta-analysis.Aesthetic Plast. Surg.202448132484249910.1007/s00266‑024‑04060‑838772943
    [Google Scholar]
  20. FisherC. GrahovacT.L. SchaferM.E. ShippertR.D. MarraK.G. RubinJ.P. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation.Plast. Reconstr. Surg.2013132235136110.1097/PRS.0b013e318295879623584621
    [Google Scholar]
  21. El HaraneS. DurualS. BraschlerT. André-LévigneD. BrembillaN. KrauseK.H. ModarressiA. Preynat-SeauveO. Adipose-derived stem cell spheroids are superior to single-cell suspensions to improve fat autograft long-term survival.J. Cell. Mol. Med.20222651421143310.1111/jcmm.1708235150064
    [Google Scholar]
  22. SuszynskiT.M. SieberD.A. Van BeekA.L. CunninghamB.L. Characterization of adipose tissue for autologous fat grafting.Aesthet. Surg. J.201535219420310.1093/asj/sju05925717120
    [Google Scholar]
  23. MillerL.S. Adipocytes armed against Staphylococcus aureus.N. Engl. J. Med.2015372141368137010.1056/NEJMcibr150027125830428
    [Google Scholar]
  24. ZhangL. Guerrero-JuarezC.F. HataT. BapatS.P. RamosR. PlikusM.V. GalloR.L. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection.Science20153476217677110.1126/science.126097225554785
    [Google Scholar]
  25. BougléA. RocheteauP. HivelinM. HarocheA. BriandD. TremoladaC. MantzJ. ChrétienF. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model.Br. J. Anaesth.201812161249125910.1016/j.bja.2018.03.03230442252
    [Google Scholar]
  26. BiyaoZ. GangX. HaiJ. ChenwangD. XuanL. Autologous fat grafting combined with negative pressure wound therapy in severe diabetic foot ulcer: A case study.J. Wound Care202130Sup4S38S4010.12968/jowc.2021.30.Sup4.S3833856926
    [Google Scholar]
  27. LonardiR. LeoneN. GennaiS. Trevisi BorsariG. CovicT. SilingardiR. Autologous micro-fragmented adipose tissue for the treatment of diabetic foot minor amputations: A randomized controlled single-center clinical trial (MiFrAADiF).Stem Cell Res. Ther.201910122310.1186/s13287‑019‑1328‑431358046
    [Google Scholar]
  28. DufresneC.R. PolingM.I. Free dermal fat autografting for complex craniofacial wounds.J. Craniofac. Surg.20203161563156710.1097/SCS.000000000000639832310868
    [Google Scholar]
  29. CuzalinaA. GuerreroA.V. Complications in fat grafting.Atlas Oral Maxillofac. Surg. Clin. North Am.2018261778010.1016/j.cxom.2017.11.00329362075
    [Google Scholar]
  30. ChenB. SongH. XuM. GaoQ. WangF. WangJ. WuJ. Treatment for Mycobacterium abscessus infection associated with fat grafting.Surg. Infect.202021763964410.1089/sur.2019.27031916926
    [Google Scholar]
  31. BeechA.J. WeinbergS.E. MortimerA.E. LynchF. BedfordJ. CalistiG. Mycobacterium abscessus skin and soft tissue infection following autologous fat grafting in Kurdistan treated with an antibiotic combination including Imipenem-Relebactam and Rifabutin.J. Clin. Tuberc. Other Mycobact. Dis.20233210038110.1016/j.jctube.2023.10038137323244
    [Google Scholar]
  32. AbreuM.A.M.M. SouzaG.F. TiezziM.G. AngeluciM.B. Mycobacterium abscessus infection after injection of lipolytic enzymes into abdominal fat.Rev. Soc. Bras. Med. Trop.202356e0284-202310.1590/0037‑8682‑0284‑202337792835
    [Google Scholar]
  33. BronzattiJ.A.G. de SouzaR.Q. NieroC.V. RomagnoliC.L. da SilvaN.M. de Moraes BrunaC.Q. GioielliL.A. GrazianoK.U. Evaluation of cleaning and sterilization of liposuction cannulas after intentional contamination with human fat, Mycobacterium abscessus subspecies bolletii, and Geobacillus stearothermophilus.J. Hosp. Infect.202313681310.1016/j.jhin.2023.03.02137011785
    [Google Scholar]
  34. Cristancho-RojasC. VarleyC.D. LaraS.C. KherabiY. HenkleE. WinthropK.L. Epidemiology of Mycobacterium abscessus.Clin. Microbiol. Infect.202430671271710.1016/j.cmi.2023.08.03537778416
    [Google Scholar]
  35. BoudehenY.M. KremerL. Mycobacterium abscessus.Trends Microbiol.2021291095195210.1016/j.tim.2021.06.00634312062
    [Google Scholar]
  36. AyoubiS. AghajaniJ. FarniaP. FarniaP. GhanaviJ. VelayatiA.A. Prevalence of Mycobacterium abscessus among the patients with nontuberculous mycobacteria.Arch. Iran Med.202023316316832126784
    [Google Scholar]
  37. LipworthS. HoughN. WestonN. Muller-PebodyB. PhinN. MyersR. ChapmanS. FlightW. AlexanderE. SmithE.G. RobinsonE. PetoT.E.A. CrookD.W. WalkerA.S. HopkinsS. EyreD.W. WalkerT.M. Epidemiology of Mycobacterium abscessus in England: An observational study.Lancet Microbe2021210e498e50710.1016/S2666‑5247(21)00128‑234632432
    [Google Scholar]
  38. ColomboR. OlivierK. Diagnosis and treatment of infections caused by rapidly growing mycobacteria.Semin. Respir. Crit. Care Med.200829557758810.1055/s‑0028‑108570918810691
    [Google Scholar]
  39. YangH.J. YimH.W. LeeM.Y. KoK.S. YoonH.J. Mycobacterium conceptionense infection complicating face rejuvenation with fat grafting.J. Med. Microbiol.201160337137410.1099/jmm.0.024554‑021051550
    [Google Scholar]
  40. JohansenM.D. HerrmannJ.L. KremerL. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus.Nat. Rev. Microbiol.202018739240710.1038/s41579‑020‑0331‑132086501
    [Google Scholar]
  41. SurS. PatraT. KarmakarM. BanerjeeA. Mycobacterium abscessus : Insights from a bioinformatic perspective.Crit. Rev. Microbiol.202349449951410.1080/1040841X.2022.208226835696783
    [Google Scholar]
  42. VictoriaL. GuptaA. GómezJ.L. RobledoJ. Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen.Front. Cell. Infect. Microbiol.20211165999710.3389/fcimb.2021.65999733981630
    [Google Scholar]
  43. DedrickR.M. AbadL. StoreyN. KaganovskyA.M. SmithB.E. AullH.A. CristinzianoM. MorkowskaA. MurthyS. LoebingerM.R. HatfullG.F. SattaG. The problem of Mycobacterium abscessus complex: Multi- drug resistance, bacteriophage susceptibility and potential healthcare transmission.Clin. Microbiol. Infect.202329101335.e91335.e1610.1016/j.cmi.2023.06.02637364635
    [Google Scholar]
  44. MeterskyM.L. FraulinoD. MondayL. ChopraT. Current challenges in pulmonary nontuberculous mycobacterial infection: A case series with literature review.Postgrad. Med.2024136777078110.1080/00325481.2024.240176639259505
    [Google Scholar]
  45. Torres, J.; Murillo, J.; Bofill, L.; Roos, A.; Irausquin, E.; Isturiz, R.; Guzman, M.; Rubino, L.; Cordido, M. Rapidly growing mycobacterial infection following liposuction and liposculpture-Caracas, Venezuela, 1996-1998.MMWR Morb. Mortal. Wkly. Rep.19984749106510679879630
    [Google Scholar]
  46. ZossoC. LienhardR. SiegristH.H. MalinverniR. ClercO. Post liposuction infections by rapidly growing mycobacteria.Infect. Dis.2015472697210.3109/00365548.2014.96886525415653
    [Google Scholar]
  47. MischE.A. SaddlerC. DavisJ.M. Skin and soft tissue infections due to nontuberculous mycobacteria.Curr. Infect. Dis. Rep.2018204610.1007/s11908‑018‑0611‑329556857
    [Google Scholar]
  48. NessarR. CambauE. ReyratJ.M. MurrayA. GicquelB. Mycobacterium abscessus: A new antibiotic nightmare.J. Antimicrob. Chemother.201267481081810.1093/jac/dkr57822290346
    [Google Scholar]
  49. ParmarS. TochevaE.I. The cell envelope of Mycobacterium abscessus and its role in pathogenesis.PLoS Pathog.2023195e101131810.1371/journal.ppat.101131837200238
    [Google Scholar]
  50. BryantJ.M. BrownK.P. BurbaudS. EverallI. BelardinelliJ.M. Rodriguez-RinconD. GrogonoD.M. PetersonC.M. VermaD. EvansI.E. RuisC. WeimannA. AroraD. MalhotraS. BannermanB. PassemarC. TempletonK. MacGregorG. JiwaK. FisherA.J. BlundellT.L. OrdwayD.J. JacksonM. ParkhillJ. FlotoR.A. Stepwise pathogenic evolution of Mycobacterium abscessus.Science20213726541eabb869910.1126/science.abb869933926925
    [Google Scholar]
  51. LaguneM. KremerL. HerrmannJ.L. Mycobacterium abscessus, a complex of three fast-growing subspecies sharing virulence traits with slow-growing mycobacteria.Clin. Microbiol. Infect.202430672673110.1016/j.cmi.2023.08.03637797823
    [Google Scholar]
  52. CortesM. SinghA.K. ReyratJ.M. GaillardJ.L. NassifX. HerrmannJ.L. Conditional gene expression in Mycobacterium abscessus.PLoS One2011612e2930610.1371/journal.pone.002930622195042
    [Google Scholar]
  53. ComasI. Moreno-MolinaM. Phenogenomics of Mycobacterium abscessus.Nat. Microbiol.2022791325132610.1038/s41564‑022‑01217‑636008618
    [Google Scholar]
  54. BoeckL. BurbaudS. SkwarkM. PearsonW.H. SangenJ. WuestA.W. MarshallE.K.P. WeimannA. EverallI. BryantJ.M. MalhotraS. BannermanB.P. KierdorfK. BlundellT.L. DionneM.S. ParkhillJ. Andres FlotoR. Mycobacterium abscessus pathogenesis identified by phenogenomic analyses.Nat. Microbiol.2022791431144110.1038/s41564‑022‑01204‑x36008617
    [Google Scholar]
  55. WhippsC.M. MatthewsJ.L. KentM.L. Distribution and genetic characterization of Mycobacterium chelonae in laboratory zebrafish Danio rerio.Dis. Aquat. Organ.2008821455410.3354/dao0196719062752
    [Google Scholar]
  56. WatralV. KentM.L. Pathogenesis of Mycobacterium spp. in Zebrafish (Danio rerio) from research facilities.Comp. Biochem. Physiol. C Toxicol. Pharmacol.20071451556010.1016/j.cbpc.2006.06.00416904945
    [Google Scholar]
  57. BernutA. DupontC. SahuquetA. HerrmannJ.L. LutfallaG. KremerL. Deciphering and imaging pathogenesis and cording of Mycobacterium abscessus in Zebrafish embryos.J. Vis. Exp.20151035313010.3791/53130‑v26382225
    [Google Scholar]
  58. PlumetL. CostechareyreD. LavigneJ.P. KissaK. MolleV. Zebrafish as an effective model for evaluating phage therapy in bacterial infections: A promising strategy against human pathogens.Antimicrob. Agents Chemother.20246810e00829-2410.1128/aac.00829‑2439248472
    [Google Scholar]
  59. DionneM.S. GhoriN. SchneiderD.S. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum.Infect. Immun.20037163540355010.1128/IAI.71.6.3540‑3550.200312761139
    [Google Scholar]
  60. DionneM.S. PhamL.N. Shirasu-HizaM. SchneiderD.S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila.Curr. Biol.200616201977198510.1016/j.cub.2006.08.05217055976
    [Google Scholar]
  61. OrdwayD. Henao-TamayoM. SmithE. ShanleyC. HartonM. TroudtJ. BaiX. BasarabaR.J. OrmeI.M. ChanE.D. Animal model of Mycobacterium abscessus lung infection.J. Leukoc. Biol.20088361502151110.1189/jlb.100769618310351
    [Google Scholar]
  62. CaverlyL.J. CaceresS.M. FratelliC. HappoldtC. KidwellK.M. MalcolmK.C. NickJ.A. NicholsD.P. Mycobacterium abscessus morphotype comparison in a murine model.PLoS One2015102e011765710.1371/journal.pone.011765725675351
    [Google Scholar]
  63. JeonB.Y. KwakJ. LeeS.S. ChoS. WonC.J. KimJ.M. ShinS.J. Comparative analysis of immune responses to Mycobacterium abscessus infection and its antigens in two murine models.J. Microbiol.200947563364010.1007/s12275‑009‑0139‑119851737
    [Google Scholar]
  64. RivaC. TortoliE. CugnataF. SanvitoF. EspositoA. RossiM. ColarietiA. CanuT. CiganaC. BragonziA. LoréN.I. MiottoP. CirilloD.M. A new model of chronic Mycobacterium abscessus lung infection in immunocompetent mice.Int. J. Mol. Sci.20202118659010.3390/ijms2118659032916885
    [Google Scholar]
  65. YehJ.P. TsaiY.J. Nontuberculosis mycobacteria infection after liposuction and fat grafting for augmentation mammoplasty.Ann. Plast. Surg.2023901Suppl. 1S55S5910.1097/SAP.000000000000334536729056
    [Google Scholar]
  66. TanL.C. LiX.Y. LuY.G. Nontuberculous Mycobacteria infection after autologous fat grafting for cosmetic breast augmentation.Ann. Plast. Surg.202085435836210.1097/SAP.000000000000223432032112
    [Google Scholar]
  67. ChangC.H. ChangY.Y. LuP.H. Non-tuberculous mycobacteria infection following autologous fat grafting on the face.Aesthet. Surg. J.2018381NP1NP510.1093/asj/sjx16829045552
    [Google Scholar]
  68. YangP. LuY. LiuT. ZhouY. GuoY. ZhuJ. JiaC. ChenL. YangQ. Mycobacterium abscessus infection after facial injection with autologous fat.Ann. Plast. Surg.201778213814010.1097/SAP.000000000000083727220017
    [Google Scholar]
  69. SeoD.H. ShinJ.Y. RohS.G. ChangS.C. LeeN.H. Non-tuberculous mycobacterium infection after transfer of autologous fat to the face: A rare case.Br. J. Oral Maxillofac. Surg.201957218518710.1016/j.bjoms.2018.12.00830612837
    [Google Scholar]
  70. GangadharamP.R. EdwardsC.K.III MurthyP.S. PrattP.F. An acute infection model for Mycobacterium intracellulare disease using beige mice: Preliminary results.Am. Rev. Respir. Dis.1983127564864910.1164/arrd.1983.127.5.6486846942
    [Google Scholar]
  71. CollinsP. MatthewsP.R.J. McDiarmidA. BrownA. The pathogenicity of Mycobacterium avium and related mycobacteria for experimental animals.J. Med. Microbiol.1983161273510.1099/00222615‑16‑1‑276337261
    [Google Scholar]
  72. GangadharamP.R. PrattP.F. DavidsonP.T. Experimental infections with Mycobacterium intracellulare.Clin. Infect. Dis.19813597397810.1093/clinids/3.5.9737339829
    [Google Scholar]
  73. Silva-GomesR. MarcqE. TrigoG. GonçalvesC.M. Longatto-FilhoA. CastroA.G. PedrosaJ. FragaA.G. Spontaneous healing of Mycobacterium ulcerans lesions in the guinea pig model.PLoS Negl. Trop. Dis.2015912e000426510.1371/journal.pntd.000426526625302
    [Google Scholar]
  74. TunesiS. ZelaznyA. AwadZ. MougariF. BuyckJ.M. CambauE. Antimicrobial susceptibility of Mycobacterium abscessus and treatment of pulmonary and extra-pulmonary infections.Clin. Microbiol. Infect.202430671872510.1016/j.cmi.2023.09.01937797824
    [Google Scholar]
  75. ZhangK. LimwongyutJ. MorelandA.S. WeiS.C.J. Jim Jia MinT. SunY. ShinS.J. KimS.Y. JhunB.W. PetheK. BazanG.C. An anti-mycobacterial conjugated oligoelectrolyte effective against Mycobacterium abscessus.Sci. Transl. Med.202416735eadi755810.1126/scitranslmed.adi755838381846
    [Google Scholar]
  76. Buenestado-SerranoS. Martínez-LirolaM. Herranz-MartínM. EstebanJ. Broncano-LavadoA. Molero-SalinasA. Sanz-PérezA. BlázquezJ. Ruedas-LópezA. ToroC. López-RoaP. DomingoD. ZamarrónE. Ruiz SerranoM.J. MuñozP. Pérez-LagoL. García de ViedmaD. Microevolution, reinfection and highly complex genomic diversity in patients with sequential isolates of Mycobacterium abscessus.Nat. Commun.2024151271710.1038/s41467‑024‑46552‑w38548737
    [Google Scholar]
  77. PhelpsG.A. CheramieM.N. FernandoD.M. SelchowP. MeyerC.J. WaidyarachchiS.L. DharumanS. LiuJ. MeuliM. MolinM.D. KillamB.Y. MurphyP.A. ReeveS.M. WiltL.A. AndersonS.M. YangL. LeeR.B. TemrikarZ.H. LukkaP.B. MeibohmB. PolikanovY.S. HobbieS.N. BöttgerE.C. SanderP. LeeR.E. Development of 2nd generation aminomethyl spectinomycins that overcome native efflux in Mycobacterium abscessus.Proc. Natl. Acad. Sci. USA20241212e231410112010.1073/pnas.231410112038165935
    [Google Scholar]
  78. Oschmann-KadenbachA.M. SchaudinnC. BorstL. SchwarzC. KonratK. ArvandM. LewinA. Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance.Int. J. Med. Microbiol.202431415160310.1016/j.ijmm.2024.15160338246090
    [Google Scholar]
  79. HuangY.L. HuangC.H. HuangY.C. YenC.L. HsuC.R. Anti-biofilm activities and antibiotic synergy of naturally occurring compounds against drug-resistant rapidly growing mycobacteria.Microbiol. Spectr.2024128e00199-2410.1128/spectrum.00199‑2438934606
    [Google Scholar]
  80. MeliefsteH.M. MuddeS.E. AmmermanN.C. de SteenwinkelJ.E.M. BaxH.I. A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing.Front. Microbiol.202415139260610.3389/fmicb.2024.139260638690364
    [Google Scholar]
  81. MuddeS.E. MeliefsteH.M. AmmermanN.C. de SteenwinkelJ.E.M. BaxH.I. Mycobacterium abscessus strain variability in preclinical drug development: Does it really matter?J. Antimicrob. Chemother.2024dkae33610.1093/jac/dkae33639310935
    [Google Scholar]
  82. GriffithD.E. DaleyC.L. Treatment of Mycobacterium abscessus pulmonary disease.Chest20221611647510.1016/j.chest.2021.07.03534314673
    [Google Scholar]
  83. PalucciI. DeloguG. Alternative therapies against Mycobacterium abscessus infections.Clin. Microbiol. Infect.202430673273710.1016/j.cmi.2023.10.00137820951
    [Google Scholar]
  84. EgorovaA. JacksonM. GavrilyukV. MakarovV. Pipeline of anti- Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities.Med. Res. Rev.20214142350238710.1002/med.2179833645845
    [Google Scholar]
  85. BuckinghamE. Fat transfer techniques: General concepts.Facial Plast. Surg.201531102202810.1055/s‑0035‑154424925763893
    [Google Scholar]
  86. ClaroF.Jr FigueiredoJ.C.A. ZamparA.G. Pinto-NetoA.M. Applicability and safety of autologous fat for reconstruction of the breast.Br. J. Surg.201299676878010.1002/bjs.872222488516
    [Google Scholar]
  87. ZhaoH. YangQ. ChenL. Application of autologous micro-fragmented fat grafting in chronic infection after prosthetic rhinoplasty.Chin. J. Aesthet. Med.202433107780
    [Google Scholar]
  88. SegretoF. MarangiG.F. NobileC. Alessandri-BonettiM. GregorjC. CerboneV. GratteriM. CaldariaE. TirindelliM.C. PersichettiP. Use of platelet-rich plasma and modified nanofat grafting in infected ulcers: Technical refinements to improve regenerative and antimicrobial potential.Arch. Plast. Surg.202047321722210.5999/aps.2019.0157132453929
    [Google Scholar]
  89. SimonacciF. BertozziN. GriecoM.P. RaposioE. From liposuction to adipose-derived stem cells: Indications and technique.Acta Biomed.201990219720810.23750/abm.v90i2.661931124996
    [Google Scholar]
  90. PadoinA.V. Braga-SilvaJ. MartinsP. RezendeK. RezendeA.R.R. GrechiB. GehlenD. MachadoD.C. Sources of processed lipoaspirate cells: Influence of donor site on cell concentration.Plast. Reconstr. Surg.2008122261461810.1097/PRS.0b013e31817d547618626381
    [Google Scholar]
  91. JurgensW.J.F.M. Oedayrajsingh-VarmaM.J. HelderM.N. ZandiehDoulabiB. SchoutenT.E. KuikD.J. RittM.J.P.F. van MilligenF.J. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: Implications for cell-based therapies.Cell Tissue Res.2008332341542610.1007/s00441‑007‑0555‑718379826
    [Google Scholar]
  92. RottmanM. CatherinotE. HochedezP. EmileJ.F. CasanovaJ.L. GaillardJ.L. SoudaisC. Importance of T cells, gamma interferon, and tumor necrosis factor in immune control of the rapid grower Mycobacterium abscessus in C57BL/6 mice.Infect. Immun.200775125898590710.1128/IAI.00014‑0717875636
    [Google Scholar]
  93. BernutA. Nguyen-ChiM. HalloumI. HerrmannJ.L. LutfallaG. KremerL. Mycobacterium abscessus-induced granuloma formation is strictly dependent on TNF signaling and neutrophil trafficking.PLoS Pathog.20161211e100598610.1371/journal.ppat.100598627806130
    [Google Scholar]
  94. BustamanteJ. Boisson-DupuisS. AbelL. CasanovaJ.L. Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN-γ immunity.Semin. Immunol.201426645447010.1016/j.smim.2014.09.00825453225
    [Google Scholar]
  95. CasanovaJ.L. AbelL. Genetic dissection of immunity to mycobacteria: The human model.Annu. Rev. Immunol.200220158162010.1146/annurev.immunol.20.081501.12585111861613
    [Google Scholar]
  96. BernutA. ViljoenA. DupontC. SaprielG. BlaiseM. BouchierC. BroschR. de ChastellierC. HerrmannJ.L. KremerL. Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members.Mol. Microbiol.201699586688310.1111/mmi.1328326585558
    [Google Scholar]
  97. FrehelC. RyterA. RastogiN. DavidH. The electron transparent zone in phagocytized Mycobacterium avium and other Mycobacteria formation, persistence and role in bacterial survival.Ann. Inst. Pasteur Microbiol.1986137123925710.1016/S0769‑2609(86)80115‑63689590
    [Google Scholar]
  98. RouxA.L. ViljoenA. BahA. SimeoneR. BernutA. LaencinaL. DeramaudtT. RottmanM. GaillardJ.L. MajlessiL. BroschR. Girard-MisguichF. VergneI. de ChastellierC. KremerL. HerrmannJ.L. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages.Open Biol.201661116018510.1098/rsob.16018527906132
    [Google Scholar]
  99. BernutA. HerrmannJ.L. KissaK. DubremetzJ.F. GaillardJ.L. LutfallaG. KremerL. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation.Proc. Natl. Acad. Sci. USA201411110E943E95210.1073/pnas.132139011124567393
    [Google Scholar]
  100. RamakrishnanL. Revisiting the role of the granuloma in tuberculosis.Nat. Rev. Immunol.201212535236610.1038/nri321122517424
    [Google Scholar]
  101. KanekoH. YamadaH. MizunoS. UdagawaT. KazumiY. SekikawaK. SugawaraI. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice.Lab. Invest.199979437938610211990
    [Google Scholar]
  102. ChoiS. BritiganB.E. NarayanasamyP. Treatment of virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine production.MSphere201944e00443-1910.1128/mSphere.00443‑1931341073
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345671250114235930
Loading
/content/journals/cmc/10.2174/0109298673345671250114235930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test