Skip to content
2000
image of Construction of a Subcutaneous Fat Transplantation Model Infected with Mycobacterium

Abstract

Introduction

Fat grafting procedures for body contouring and cosmetic reconstruction have received widespread attention.

Method

In recent years, there has been an increase in post-fat grafting infections caused by (), and there is a lack of representative and standardized murine models of infection; therefore, there has been limited research on the treatment of post-fat grafting infections. To overcome this challenge, we constructed an infection model after fat grafting.

Result

By evaluating skin charge, dermatopathology, and inflammatory markers, we found that the fat graft + 1 × 109 CFU/mL bacterial suspension infection group had significant inflammatory symptoms and elevated inflammatory factors on postoperative day 10.

Conclusion

The model construction process was simple and reproducible, which paves the way for further studies on the impact of pathogenesis and the efficacy of new treatments.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345671250114235930
2025-02-04
2025-03-31
Loading full text...

Full text loading...

References

  1. Bohluli B. Bagheri S.C. Consky E.K. Fat grafting as an adjunct to facial rejuvenation procedures. Atlas Oral Maxillofac. Surg. Clin. North Am. 2018 26 1 51 57 10.1016/j.cxom.2017.10.005 29362071
    [Google Scholar]
  2. Dayal A. Bhatia A. Hsu J.T.S. Fat grafting in aesthetics. Clin. Dermatol. 2022 40 1 35 44 10.1016/j.clindermatol.2021.08.010 35190062
    [Google Scholar]
  3. Strong A.L. Cederna P.S. Rubin J.P. Coleman S.R. Levi B. The current state of fat grafting. Plast. Reconstr. Surg. 2015 136 4 897 912 10.1097/PRS.0000000000001590 26086386
    [Google Scholar]
  4. Coleman S.R. Lam S. Cohen S.R. Bohluli B. Nahai F. Fat Grafting. Atlas Oral Maxillofac. Surg. Clin. North Am. 2018 26 1 81 84 10.1016/j.cxom.2017.10.006 29362076
    [Google Scholar]
  5. Fang H.A. Soto E. Pigg R. Smith M. Boyd C.J. Ananthasekar S. Fix R.J. Kilic A. Denney B. Patcha P. Myers R.P. de la Torre J.I. Collawn S. The safety of fat grafting: An institutional retrospective review. Ann. Plast. Surg. 2022 88 5 Suppl. 5 S473 S477 10.1097/SAP.0000000000003234 35690941
    [Google Scholar]
  6. Langridge B.J. Jasionowska S. Khan H. Awad L. Turner B.R.H. Varghese J. Butler P.E.M. Achieving optimal clinical outcomes in autologous fat grafting: A systematic review of processing techniques. J. Plast. Reconstr. Aesthet. Surg. 2023 81 9 25 10.1016/j.bjps.2023.01.003 37075610
    [Google Scholar]
  7. Frame J.D. The past, present, and future of facial fat grafting. Atlas Oral Maxillofac. Surg. Clin. North Am. 2018 26 1 1 6 10.1016/j.cxom.2017.11.004 29362066
    [Google Scholar]
  8. Marten T.J. Elyassnia D. Fat grafting in facial rejuvenation. Clin. Plast. Surg. 2015 42 2 219 252 10.1016/j.cps.2014.12.003 25827566
    [Google Scholar]
  9. Rohrich R.J. Abraham J.T. Hand rejuvenation with fat grafting. Plast. Reconstr. Surg. 2022 151 4 614e 617e 10.1097/PRS.0000000000009996 36729928
    [Google Scholar]
  10. Nahabedian M.Y. Large-volume autologous fat grafting to the breast. Aesthet. Surg. J. 2021 41 Suppl. 1 S16 S24 10.1093/asj/sjaa426 34002769
    [Google Scholar]
  11. O’Neill R.C. Hanson S.E. Reece E. Winocour S. Safety considerations of fat grafting in buttock augmentation. Aesthet. Surg. J. 2021 41 Suppl. 1 S25 S30 10.1093/asj/sjab092 34002766
    [Google Scholar]
  12. Wronska A. Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol. 2012 205 2 194 208 10.1111/j.1748‑1716.2012.02409.x 22226221
    [Google Scholar]
  13. Bourin P. Bunnell B.A. Casteilla L. Dominici M. Katz A.J. March K.L. Redl H. Rubin J.P. Yoshimura K. Gimble J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013 15 6 641 648 10.1016/j.jcyt.2013.02.006 23570660
    [Google Scholar]
  14. Moak T.N. Ebersole T.G. Tandon D. Tenenbaum M. Assessing clinical outcomes in autologous fat grafting: A current literature review. Aesthet. Surg. J. 2021 41 Suppl. 1 S50 S60 10.1093/asj/sjab148 34002770
    [Google Scholar]
  15. Lo Furno D. Tamburino S. Mannino G. Gilia E. Lombardo G. Tarico M.S. Vancheri C. Giuffrida R. Perrotta R.E. Nanofat 2.0: Experimental evidence for a fat grafting rich in mesenchymal stem cells. Physiol. Res. 2017 66 4 663 671 10.33549/physiolres.933451 28406706
    [Google Scholar]
  16. Gupta R. Brace M. Taylor S.M. Bezuhly M. Hong P. In search of the optimal processing technique for fat grafting. J. Craniofac. Surg. 2015 26 1 94 99 10.1097/SCS.0000000000001259 25534059
    [Google Scholar]
  17. Lin J.Y. Wang C. Pu L.L.Q. Can we standardize the techniques for fat grafting? Clin. Plast. Surg. 2015 42 2 199 208 10.1016/j.cps.2014.12.005 25827564
    [Google Scholar]
  18. Pu L.L.Q. Towards more rationalized approach to autologous fat grafting. J. Plast. Reconstr. Aesthet. Surg. 2012 65 4 413 419 10.1016/j.bjps.2011.09.033 22024537
    [Google Scholar]
  19. Dong Y. Huang Y. Hou T. Li P. Effectiveness and safety of different methods of assisted fat grafting: A network meta-analysis. Aesthetic Plast. Surg. 2024 48 13 2484 2499 10.1007/s00266‑024‑04060‑8 38772943
    [Google Scholar]
  20. Fisher C. Grahovac T.L. Schafer M.E. Shippert R.D. Marra K.G. Rubin J.P. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast. Reconstr. Surg. 2013 132 2 351 361 10.1097/PRS.0b013e3182958796 23584621
    [Google Scholar]
  21. El Harane S. Durual S. Braschler T. André-Lévigne D. Brembilla N. Krause K.H. Modarressi A. Preynat-Seauve O. Adipose-derived stem cell spheroids are superior to single-cell suspensions to improve fat autograft long-term survival. J. Cell. Mol. Med. 2022 26 5 1421 1433 10.1111/jcmm.17082 35150064
    [Google Scholar]
  22. Suszynski T.M. Sieber D.A. Van Beek A.L. Cunningham B.L. Characterization of adipose tissue for autologous fat grafting. Aesthet. Surg. J. 2015 35 2 194 203 10.1093/asj/sju059 25717120
    [Google Scholar]
  23. Miller L.S. Adipocytes armed against Staphylococcus aureus. N. Engl. J. Med. 2015 372 14 1368 1370 10.1056/NEJMcibr1500271 25830428
    [Google Scholar]
  24. Zhang L. Guerrero-Juarez C.F. Hata T. Bapat S.P. Ramos R. Plikus M.V. Gallo R.L. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015 347 6217 67 71 10.1126/science.1260972 25554785
    [Google Scholar]
  25. Bouglé A. Rocheteau P. Hivelin M. Haroche A. Briand D. Tremolada C. Mantz J. Chrétien F. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model. Br. J. Anaesth. 2018 121 6 1249 1259 10.1016/j.bja.2018.03.032 30442252
    [Google Scholar]
  26. Biyao Z. Gang X. Hai J. Chenwang D. Xuan L. Autologous fat grafting combined with negative pressure wound therapy in severe diabetic foot ulcer: A case study. J. Wound Care 2021 30 Sup4 S38 S40 10.12968/jowc.2021.30.Sup4.S38 33856926
    [Google Scholar]
  27. Lonardi R. Leone N. Gennai S. Trevisi Borsari G. Covic T. Silingardi R. Autologous micro-fragmented adipose tissue for the treatment of diabetic foot minor amputations: A randomized controlled single-center clinical trial (MiFrAADiF). Stem Cell Res. Ther. 2019 10 1 223 10.1186/s13287‑019‑1328‑4 31358046
    [Google Scholar]
  28. Dufresne C.R. Poling M.I. Free dermal fat autografting for complex craniofacial wounds. J. Craniofac. Surg. 2020 31 6 1563 1567 10.1097/SCS.0000000000006398 32310868
    [Google Scholar]
  29. Cuzalina A. Guerrero A.V. Complications in fat grafting. Atlas Oral Maxillofac. Surg. Clin. North Am. 2018 26 1 77 80 10.1016/j.cxom.2017.11.003 29362075
    [Google Scholar]
  30. Chen B. Song H. Xu M. Gao Q. Wang F. Wang J. Wu J. Treatment for Mycobacterium abscessus infection associated with fat grafting. Surg. Infect. 2020 21 7 639 644 10.1089/sur.2019.270 31916926
    [Google Scholar]
  31. Beech A.J. Weinberg S.E. Mortimer A.E. Lynch F. Bedford J. Calisti G. Mycobacterium abscessus skin and soft tissue infection following autologous fat grafting in Kurdistan treated with an antibiotic combination including Imipenem-Relebactam and Rifabutin. J. Clin. Tuberc. Other Mycobact. Dis. 2023 32 100381 10.1016/j.jctube.2023.100381 37323244
    [Google Scholar]
  32. Abreu M.A.M.M. Souza G.F. Tiezzi M.G. Angeluci M.B. Mycobacterium abscessus infection after injection of lipolytic enzymes into abdominal fat. Rev. Soc. Bras. Med. Trop. 2023 56 e0284-2023 10.1590/0037‑8682‑0284‑2023 37792835
    [Google Scholar]
  33. Bronzatti J.A.G. de Souza R.Q. Niero C.V. Romagnoli C.L. da Silva N.M. de Moraes Bruna C.Q. Gioielli L.A. Graziano K.U. Evaluation of cleaning and sterilization of liposuction cannulas after intentional contamination with human fat, Mycobacterium abscessus subspecies bolletii, and Geobacillus stearothermophilus. J. Hosp. Infect. 2023 136 8 13 10.1016/j.jhin.2023.03.021 37011785
    [Google Scholar]
  34. Cristancho-Rojas C. Varley C.D. Lara S.C. Kherabi Y. Henkle E. Winthrop K.L. Epidemiology of Mycobacterium abscessus. Clin. Microbiol. Infect. 2024 30 6 712 717 10.1016/j.cmi.2023.08.035 37778416
    [Google Scholar]
  35. Boudehen Y.M. Kremer L. Mycobacterium abscessus. Trends Microbiol. 2021 29 10 951 952 10.1016/j.tim.2021.06.006 34312062
    [Google Scholar]
  36. Ayoubi S. Aghajani J. Farnia P. Farnia P. Ghanavi J. Velayati A.A. Prevalence of Mycobacterium abscessus among the patients with nontuberculous mycobacteria. Arch. Iran Med. 2020 23 3 163 168 32126784
    [Google Scholar]
  37. Lipworth S. Hough N. Weston N. Muller-Pebody B. Phin N. Myers R. Chapman S. Flight W. Alexander E. Smith E.G. Robinson E. Peto T.E.A. Crook D.W. Walker A.S. Hopkins S. Eyre D.W. Walker T.M. Epidemiology of Mycobacterium abscessus in England: An observational study. Lancet Microbe 2021 2 10 e498 e507 10.1016/S2666‑5247(21)00128‑2 34632432
    [Google Scholar]
  38. Colombo R. Olivier K. Diagnosis and treatment of infections caused by rapidly growing mycobacteria. Semin. Respir. Crit. Care Med. 2008 29 5 577 588 10.1055/s‑0028‑1085709 18810691
    [Google Scholar]
  39. Yang H.J. Yim H.W. Lee M.Y. Ko K.S. Yoon H.J. Mycobacterium conceptionense infection complicating face rejuvenation with fat grafting. J. Med. Microbiol. 2011 60 3 371 374 10.1099/jmm.0.024554‑0 21051550
    [Google Scholar]
  40. Johansen M.D. Herrmann J.L. Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020 18 7 392 407 10.1038/s41579‑020‑0331‑1 32086501
    [Google Scholar]
  41. Sur S. Patra T. Karmakar M. Banerjee A. Mycobacterium abscessus : Insights from a bioinformatic perspective. Crit. Rev. Microbiol. 2023 49 4 499 514 10.1080/1040841X.2022.2082268 35696783
    [Google Scholar]
  42. Victoria L. Gupta A. Gómez J.L. Robledo J. Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen. Front. Cell. Infect. Microbiol. 2021 11 659997 10.3389/fcimb.2021.659997 33981630
    [Google Scholar]
  43. Dedrick R.M. Abad L. Storey N. Kaganovsky A.M. Smith B.E. Aull H.A. Cristinziano M. Morkowska A. Murthy S. Loebinger M.R. Hatfull G.F. Satta G. The problem of Mycobacterium abscessus complex: Multi-drug resistance, bacteriophage susceptibility and potential healthcare transmission. Clin. Microbiol. Infect. 2023 29 10 1335.e9 1335.e16 10.1016/j.cmi.2023.06.026 37364635
    [Google Scholar]
  44. Metersky M.L. Fraulino D. Monday L. Chopra T. Current challenges in pulmonary nontuberculous mycobacterial infection: A case series with literature review. Postgrad. Med. 2024 136 7 770 781 10.1080/00325481.2024.2401766 39259505
    [Google Scholar]
  45. Centers for Disease Control and Prevention (CDC) Rapidly growing mycobacterial infection following liposuction and liposculpture--Caracas, Venezuela, 1996-1998. MMWR Morb. Mortal. Wkly. Rep. 1998 47 49 1065 1067 9879630
    [Google Scholar]
  46. Zosso C. Lienhard R. Siegrist H.H. Malinverni R. Clerc O. Post liposuction infections by rapidly growing mycobacteria. Infect. Dis. 2015 47 2 69 72 10.3109/00365548.2014.968865 25415653
    [Google Scholar]
  47. Misch E.A. Saddler C. Davis J.M. Skin and soft tissue infections due to nontuberculous mycobacteria. Curr. Infect. Dis. Rep. 2018 20 4 6 10.1007/s11908‑018‑0611‑3 29556857
    [Google Scholar]
  48. Nessar R. Cambau E. Reyrat J.M. Murray A. Gicquel B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012 67 4 810 818 10.1093/jac/dkr578 22290346
    [Google Scholar]
  49. Parmar S. Tocheva E.I. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog. 2023 19 5 e1011318 10.1371/journal.ppat.1011318 37200238
    [Google Scholar]
  50. Bryant J.M. Brown K.P. Burbaud S. Everall I. Belardinelli J.M. Rodriguez-Rincon D. Grogono D.M. Peterson C.M. Verma D. Evans I.E. Ruis C. Weimann A. Arora D. Malhotra S. Bannerman B. Passemar C. Templeton K. MacGregor G. Jiwa K. Fisher A.J. Blundell T.L. Ordway D.J. Jackson M. Parkhill J. Floto R.A. Stepwise pathogenic evolution of Mycobacterium abscessus. Science 2021 372 6541 eabb8699 10.1126/science.abb8699 33926925
    [Google Scholar]
  51. Lagune M. Kremer L. Herrmann J.L. Mycobacterium abscessus, a complex of three fast-growing subspecies sharing virulence traits with slow-growing mycobacteria. Clin. Microbiol. Infect. 2024 30 6 726 731 10.1016/j.cmi.2023.08.036 37797823
    [Google Scholar]
  52. Cortes M. Singh A.K. Reyrat J.M. Gaillard J.L. Nassif X. Herrmann J.L. Conditional gene expression in Mycobacterium abscessus. PLoS One 2011 6 12 e29306 10.1371/journal.pone.0029306 22195042
    [Google Scholar]
  53. Comas I. Moreno-Molina M. Phenogenomics of Mycobacterium abscessus. Nat. Microbiol. 2022 7 9 1325 1326 10.1038/s41564‑022‑01217‑6 36008618
    [Google Scholar]
  54. Boeck L. Burbaud S. Skwark M. Pearson W.H. Sangen J. Wuest A.W. Marshall E.K.P. Weimann A. Everall I. Bryant J.M. Malhotra S. Bannerman B.P. Kierdorf K. Blundell T.L. Dionne M.S. Parkhill J. Andres Floto R. Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat. Microbiol. 2022 7 9 1431 1441 10.1038/s41564‑022‑01204‑x 36008617
    [Google Scholar]
  55. Whipps C.M. Matthews J.L. Kent M.L. Distribution and genetic characterization of Mycobacterium chelonae in laboratory zebrafish Danio rerio. Dis. Aquat. Organ. 2008 82 1 45 54 10.3354/dao01967 19062752
    [Google Scholar]
  56. Watral V. Kent M.L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007 145 1 55 60 10.1016/j.cbpc.2006.06.004 16904945
    [Google Scholar]
  57. Bernut A. Dupont C. Sahuquet A. Herrmann J.L. Lutfalla G. Kremer L. Deciphering and imaging pathogenesis and cording of mycobacterium abscessus in zebrafish embryos. J. Vis. Exp. 2015 103 53130 10.3791/53130‑v 26382225
    [Google Scholar]
  58. Plumet L. Costechareyre D. Lavigne J.P. Kissa K. Molle V. Zebrafish as an effective model for evaluating phage therapy in bacterial infections: A promising strategy against human pathogens. Antimicrob. Agents Chemother. 2024 68 10 e00829-24 10.1128/aac.00829‑24 39248472
    [Google Scholar]
  59. Dionne M.S. Ghori N. Schneider D.S. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun. 2003 71 6 3540 3550 10.1128/IAI.71.6.3540‑3550.2003 12761139
    [Google Scholar]
  60. Dionne M.S. Pham L.N. Shirasu-Hiza M. Schneider D.S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 2006 16 20 1977 1985 10.1016/j.cub.2006.08.052 17055976
    [Google Scholar]
  61. Ordway D. Henao-Tamayo M. Smith E. Shanley C. Harton M. Troudt J. Bai X. Basaraba R.J. Orme I.M. Chan E.D. Animal model of Mycobacterium abscessus lung infection. J. Leukoc. Biol. 2008 83 6 1502 1511 10.1189/jlb.1007696 18310351
    [Google Scholar]
  62. Caverly L.J. Caceres S.M. Fratelli C. Happoldt C. Kidwell K.M. Malcolm K.C. Nick J.A. Nichols D.P. Mycobacterium abscessus morphotype comparison in a murine model. PLoS One 2015 10 2 e0117657 10.1371/journal.pone.0117657 25675351
    [Google Scholar]
  63. Jeon B.Y. Kwak J. Lee S.S. Cho S. Won C.J. Kim J.M. Shin S.J. Comparative analysis of immune responses to Mycobacterium abscessus infection and its antigens in two murine models. J. Microbiol. 2009 47 5 633 640 10.1007/s12275‑009‑0139‑1 19851737
    [Google Scholar]
  64. Riva C. Tortoli E. Cugnata F. Sanvito F. Esposito A. Rossi M. Colarieti A. Canu T. Cigana C. Bragonzi A. Loré N.I. Miotto P. Cirillo D.M. A new model of chronic Mycobacterium abscessus lung infection in immunocompetent mice. Int. J. Mol. Sci. 2020 21 18 6590 10.3390/ijms21186590 32916885
    [Google Scholar]
  65. Yeh J.P. Tsai Y.J. Nontuberculosis mycobacteria infection after liposuction and fat grafting for augmentation mammoplasty. Ann. Plast. Surg. 2023 90 1 Suppl. 1 S55 S59 10.1097/SAP.0000000000003345 36729056
    [Google Scholar]
  66. Tan L.C. Li X.Y. Lu Y.G. Nontuberculous Mycobacteria infection after autologous fat grafting for cosmetic breast augmentation. Ann. Plast. Surg. 2020 85 4 358 362 10.1097/SAP.0000000000002234 32032112
    [Google Scholar]
  67. Chang C.H. Chang Y.Y. Lu P.H. Non-tuberculous mycobacteria infection following autologous fat grafting on the face. Aesthet. Surg. J. 2018 38 1 NP1 NP5 10.1093/asj/sjx168 29045552
    [Google Scholar]
  68. Yang P. Lu Y. Liu T. Zhou Y. Guo Y. Zhu J. Jia C. Chen L. Yang Q. Mycobacterium abscessus infection after facial injection with autologous fat. Ann. Plast. Surg. 2017 78 2 138 140 10.1097/SAP.0000000000000837 27220017
    [Google Scholar]
  69. Seo D.H. Shin J.Y. Roh S.G. Chang S.C. Lee N.H. Non-tuberculous mycobacterium infection after transfer of autologous fat to the face: A rare case. Br. J. Oral Maxillofac. Surg. 2019 57 2 185 187 10.1016/j.bjoms.2018.12.008 30612837
    [Google Scholar]
  70. Gangadharam P.R. Edwards C.K. III Murthy P.S. Pratt P.F. An acute infection model for Mycobacterium intracellulare disease using beige mice: Preliminary results. Am. Rev. Respir. Dis. 1983 127 5 648 649 10.1164/arrd.1983.127.5.648 6846942
    [Google Scholar]
  71. Collins P. Matthews P.R.J. McDiarmid A. Brown A. The pathogenicity of Mycobacterium avium and related mycobacteria for experimental animals. J. Med. Microbiol. 1983 16 1 27 35 10.1099/00222615‑16‑1‑27 6337261
    [Google Scholar]
  72. Gangadharam P.R. Pratt P.F. Davidson P.T. Experimental infections with Mycobacterium intracellulare. Clin. Infect. Dis. 1981 3 5 973 978 10.1093/clinids/3.5.973 7339829
    [Google Scholar]
  73. Silva-Gomes R. Marcq E. Trigo G. Gonçalves C.M. Longatto-Filho A. Castro A.G. Pedrosa J. Fraga A.G. Spontaneous healing of Mycobacterium ulcerans lesions in the guinea pig model. PLoS Negl. Trop. Dis. 2015 9 12 e0004265 10.1371/journal.pntd.0004265 26625302
    [Google Scholar]
  74. Tunesi S. Zelazny A. Awad Z. Mougari F. Buyck J.M. Cambau E. Antimicrobial susceptibility of Mycobacterium abscessus and treatment of pulmonary and extra-pulmonary infections. Clin. Microbiol. Infect. 2024 30 6 718 725 10.1016/j.cmi.2023.09.019 37797824
    [Google Scholar]
  75. Zhang K. Limwongyut J. Moreland A.S. Wei S.C.J. Jim Jia Min T. Sun Y. Shin S.J. Kim S.Y. Jhun B.W. Pethe K. Bazan G.C. An anti-mycobacterial conjugated oligoelectrolyte effective against Mycobacterium abscessus. Sci. Transl. Med. 2024 16 735 eadi7558 10.1126/scitranslmed.adi7558 38381846
    [Google Scholar]
  76. Buenestado-Serrano S. Martínez-Lirola M. Herranz-Martín M. Esteban J. Broncano-Lavado A. Molero-Salinas A. Sanz-Pérez A. Blázquez J. Ruedas-López A. Toro C. López-Roa P. Domingo D. Zamarrón E. Ruiz Serrano M.J. Muñoz P. Pérez-Lago L. García de Viedma D. Microevolution, reinfection and highly complex genomic diversity in patients with sequential isolates of Mycobacterium abscessus. Nat. Commun. 2024 15 1 2717 10.1038/s41467‑024‑46552‑w 38548737
    [Google Scholar]
  77. Phelps G.A. Cheramie M.N. Fernando D.M. Selchow P. Meyer C.J. Waidyarachchi S.L. Dharuman S. Liu J. Meuli M. Molin M.D. Killam B.Y. Murphy P.A. Reeve S.M. Wilt L.A. Anderson S.M. Yang L. Lee R.B. Temrikar Z.H. Lukka P.B. Meibohm B. Polikanov Y.S. Hobbie S.N. Böttger E.C. Sander P. Lee R.E. Development of 2nd generation aminomethyl spectinomycins that overcome native efflux in Mycobacterium abscessus. Proc. Natl. Acad. Sci. USA 2024 121 2 e2314101120 10.1073/pnas.2314101120 38165935
    [Google Scholar]
  78. Oschmann-Kadenbach A.M. Schaudinn C. Borst L. Schwarz C. Konrat K. Arvand M. Lewin A. Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance. Int. J. Med. Microbiol. 2024 314 151603 10.1016/j.ijmm.2024.151603 38246090
    [Google Scholar]
  79. Huang Y.L. Huang C.H. Huang Y.C. Yen C.L. Hsu C.R. Anti-biofilm activities and antibiotic synergy of naturally occurring compounds against drug-resistant rapidly growing mycobacteria. Microbiol. Spectr. 2024 12 8 e00199-24 10.1128/spectrum.00199‑24 38934606
    [Google Scholar]
  80. Meliefste H.M. Mudde S.E. Ammerman N.C. de Steenwinkel J.E.M. Bax H.I. A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front. Microbiol. 2024 15 1392606 10.3389/fmicb.2024.1392606 38690364
    [Google Scholar]
  81. Mudde S.E. Meliefste H.M. Ammerman N.C. de Steenwinkel J.E.M. Bax H.I. Mycobacterium abscessus strain variability in preclinical drug development: Does it really matter? J. Antimicrob. Chemother. 2024 dkae336 10.1093/jac/dkae336 39310935
    [Google Scholar]
  82. Griffith D.E. Daley C.L. Treatment of Mycobacterium abscessus pulmonary disease. Chest 2022 161 1 64 75 10.1016/j.chest.2021.07.035 34314673
    [Google Scholar]
  83. Palucci I. Delogu G. Alternative therapies against Mycobacterium abscessus infections. Clin. Microbiol. Infect. 2024 30 6 732 737 10.1016/j.cmi.2023.10.001 37820951
    [Google Scholar]
  84. Egorova A. Jackson M. Gavrilyuk V. Makarov V. Pipeline of anti- Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med. Res. Rev. 2021 41 4 2350 2387 10.1002/med.21798 33645845
    [Google Scholar]
  85. Buckingham E. Fat transfer techniques: General concepts. Facial Plast. Surg. 2015 31 1 022 028 10.1055/s‑0035‑1544249 25763893
    [Google Scholar]
  86. Claro F. Jr Figueiredo J.C.A. Zampar A.G. Pinto-Neto A.M. Applicability and safety of autologous fat for reconstruction of the breast. Br. J. Surg. 2012 99 6 768 780 10.1002/bjs.8722 22488516
    [Google Scholar]
  87. Zhao H. Yang Q. Chen L. Application of autologous micro-fragmented fat grafting in chronic infection after prosthetic rhinoplasty. Chin. J. Aesthet. Med. 2024 33 10 77 80
    [Google Scholar]
  88. Segreto F. Marangi G.F. Nobile C. Alessandri-Bonetti M. Gregorj C. Cerbone V. Gratteri M. Caldaria E. Tirindelli M.C. Persichetti P. Use of platelet-rich plasma and modified nanofat grafting in infected ulcers: Technical refinements to improve regenerative and antimicrobial potential. Arch. Plast. Surg. 2020 47 3 217 222 10.5999/aps.2019.01571 32453929
    [Google Scholar]
  89. Simonacci F. Bertozzi N. Grieco M.P. Raposio E. From liposuction to adipose-derived stem cells: Indications and technique. Acta Biomed. 2019 90 2 197 208 10.23750/abm.v90i2.6619 31124996
    [Google Scholar]
  90. Padoin A.V. Braga-Silva J. Martins P. Rezende K. Rezende A.R.R. Grechi B. Gehlen D. Machado D.C. Sources of processed lipoaspirate cells: Influence of donor site on cell concentration. Plast. Reconstr. Surg. 2008 122 2 614 618 10.1097/PRS.0b013e31817d5476 18626381
    [Google Scholar]
  91. Jurgens W.J.F.M. Oedayrajsingh-Varma M.J. Helder M.N. ZandiehDoulabi B. Schouten T.E. Kuik D.J. Ritt M.J.P.F. van Milligen F.J. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: Implications for cell-based therapies. Cell Tissue Res. 2008 332 3 415 426 10.1007/s00441‑007‑0555‑7 18379826
    [Google Scholar]
  92. Rottman M. Catherinot E. Hochedez P. Emile J.F. Casanova J.L. Gaillard J.L. Soudais C. Importance of T cells, gamma interferon, and tumor necrosis factor in immune control of the rapid grower Mycobacterium abscessus in C57BL/6 mice. Infect. Immun. 2007 75 12 5898 5907 10.1128/IAI.00014‑07 17875636
    [Google Scholar]
  93. Bernut A. Nguyen-Chi M. Halloum I. Herrmann J.L. Lutfalla G. Kremer L. Mycobacterium abscessus-induced granuloma formation is strictly dependent on tnf signaling and neutrophil trafficking. PLoS Pathog. 2016 12 11 e1005986 10.1371/journal.ppat.1005986 27806130
    [Google Scholar]
  94. Bustamante J. Boisson-Dupuis S. Abel L. Casanova J.L. Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 2014 26 6 454 470 10.1016/j.smim.2014.09.008 25453225
    [Google Scholar]
  95. Casanova J.L. Abel L. Genetic dissection of immunity to mycobacteria: The human model. Annu. Rev. Immunol. 2002 20 1 581 620 10.1146/annurev.immunol.20.081501.125851 11861613
    [Google Scholar]
  96. Bernut A. Viljoen A. Dupont C. Sapriel G. Blaise M. Bouchier C. Brosch R. de Chastellier C. Herrmann J.L. Kremer L. Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Mol. Microbiol. 2016 99 5 866 883 10.1111/mmi.13283 26585558
    [Google Scholar]
  97. Frehel C. Ryter A. Rastogi N. David H. The electron transparent zone in phagocytized Mycobacterium avium and other Mycobacteria Formation, persistence and role in bacterial survival. Ann. Inst. Pasteur Microbiol. 1986 137 1 239 257 10.1016/S0769‑2609(86)80115‑6 3689590
    [Google Scholar]
  98. Roux A.L. Viljoen A. Bah A. Simeone R. Bernut A. Laencina L. Deramaudt T. Rottman M. Gaillard J.L. Majlessi L. Brosch R. Girard-Misguich F. Vergne I. de Chastellier C. Kremer L. Herrmann J.L. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016 6 11 160185 10.1098/rsob.160185 27906132
    [Google Scholar]
  99. Bernut A. Herrmann J.L. Kissa K. Dubremetz J.F. Gaillard J.L. Lutfalla G. Kremer L. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc. Natl. Acad. Sci. USA 2014 111 10 E943 E952 10.1073/pnas.1321390111 24567393
    [Google Scholar]
  100. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 2012 12 5 352 366 10.1038/nri3211 22517424
    [Google Scholar]
  101. Kaneko H. Yamada H. Mizuno S. Udagawa T. Kazumi Y. Sekikawa K. Sugawara I. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab. Invest. 1999 79 4 379 386 10211990
    [Google Scholar]
  102. Choi S. Britigan B.E. Narayanasamy P. Treatment of virulent mycobacterium tuberculosis and hiv coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine production. MSphere 2019 4 4 e00443-19 10.1128/mSphere.00443‑19 31341073
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345671250114235930
Loading
/content/journals/cmc/10.2174/0109298673345671250114235930
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: mycobacterium abscessus ; model ; Fat grafting ; inflammation ; infection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test