Skip to content
2000
image of Advanced Targeted Therapy for Colorectal Cancer with Lipid Nanoparticles

Abstract

Targeted therapy for colorectal cancer (CRC) appears to have great potential with lipid nanoparticles (LNPs). The advances in LNP-based techniques, such as liposomes, exosomes, micelles, solid lipid nanoparticles (SLNs), nano-cubosomes, and plant-derived LNPs (PDLNPs), are explored in detail in this thorough review. Every platform provides distinct advantages: liposomes enable precise drug release and improved delivery; exosomes function as organic nanocarriers for focused treatment; SLNs offer greater stability; micelles enhance drug solubility and resistance; nano-cubosomes tackle low bioavailability; and PDLNPs offer biocompatible substitutes. The mechanisms, benefits, drawbacks, and therapeutic potential of these LNP platforms in the treatment of colorectal cancer are highlighted in the review. The review highlights how crucial it is to use these technologies for efficient CRC management and looks at potential future developments for them. The controlled release properties of liposomes and solid liposome nanoparticles (SLNs) improve the stability and bioavailability of medicinal compounds. On the other hand, exosomes and micelles provide answers for medication resistance and solubility issues, respectively. Novel strategies for resolving bioavailability problems and enhancing biocompatibility include nano-cubosomes and PDLNPs. These LNP-based systems are promising in clinical applications for boosting therapeutic efficacy, decreasing systemic toxicity, and facilitating tailored drug delivery. By incorporating these nanotechnologies into CRC treatment plans, present therapeutic approaches may be completely changed, and more individualized and efficient treatment choices may be provided. To completely comprehend the advantages and drawbacks of these LNP systems in therapeutic settings, as well as to and optimize them, more study is recommended by the review. Treatment for colorectal cancer may be much improved in the future thanks to developments in LNP-based drug delivery systems. These technologies hold great promise for improving patient outcomes and advancing the field of oncology by tackling important issues related to medication delivery and bioavailability.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327576241201145252
2025-01-16
2025-04-25
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  2. Sarkar A. Saha S. Paul A. Maji A. Roy P. Maity T.K. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci. 2021 273 119270 10.1016/j.lfs.2021.119270 33640402
    [Google Scholar]
  3. Budreviciute A. Damiati S. Sabir D.K. Onder K. Schuller-Goetzburg P. Plakys G. Katileviciute A. Khoja S. Kodzius R. Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Front. Public Health 2020 8 574111 10.3389/fpubh.2020.574111 33324597
    [Google Scholar]
  4. Weng S. Pan L. Jiang D. Xie W. Zhang Z. Shi C. Liang B. Wu S. Idarubicin and IR780 co-loaded PEG-b-PTMC nanoparticle for non-Hodgkin's lymphoma therapy by photothermal/photodynamic strategy. Mater. Des. 2023 230 112008 10.1016/j.matdes.2023.112008
    [Google Scholar]
  5. van den Berg A.I.S. Yun C.O. Schiffelers R.M. Hennink W.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J. Control. Release 2021 331 121 141 10.1016/j.jconrel.2021.01.014 33453339
    [Google Scholar]
  6. Deng T. Luo D. Zhang R. Zhao R. Hu Y. Zhao Q. Wang S. Iqbal M.Z. Kong X. DOX-loaded hydroxyapatite nanoclusters for colorectal cancer (CRC) chemotherapy: Evaluation based on the cancer cells and organoids. SLAS Technol. 2023 28 1 22 31 10.1016/j.slast.2022.10.002 36328181
    [Google Scholar]
  7. Bateman A.C. Pathology of colorectal polyps and cancer. Surgery 2023 41 1 15 21 10.1016/j.mpsur.2022.10.011
    [Google Scholar]
  8. Xin J. Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges. Dig. Liver Dis. 2023 55 2 169 177 10.1016/j.dld.2022.08.012 36002360
    [Google Scholar]
  9. Barberan Parraga C. Singh R. Lin R. Tamariz L. Palacio A. Colorectal cancer screening disparities among race: A zip code level analysis. Clin. Colorectal Cancer 2023 22 2 183 189 10.1016/j.clcc.2023.01.001 36842869
    [Google Scholar]
  10. Dave R. Patel R. Patel M. Hybrid lipid-polymer nanoplatform: A systematic review for targeted colorectal cancer therapy. Eur. Polym. J. 2023 186 111877 10.1016/j.eurpolymj.2023.111877
    [Google Scholar]
  11. Macharia J.M. Kaposztas Z. Varjas T. Budán F. Zand A. Bodnar I. Bence R.L. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment? Biomed. Pharmacother. 2023 160 114371 10.1016/j.biopha.2023.114371 36758316
    [Google Scholar]
  12. Catania L.J. Foundations of Artificial Intelligence in Healthcare and Bioscience Elsevier 2021
    [Google Scholar]
  13. Mao J.J. Pillai G.G. Andrade C.J. Ligibel J.A. Basu P. Cohen L. Khan I.A. Mustian K.M. Puthiyedath R. Dhiman K.S. Lao L. Ghelman R. Cáceres Guido P. Lopez G. Gallego-Perez D.F. Salicrup L.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin. 2022 72 2 144 164 10.3322/caac.21706 34751943
    [Google Scholar]
  14. Collins D. Bossenmaier B. Kollmorgen G. Niederfellner G. Acquired resistance to antibody-drug conjugates. Cancers 2019 11 3 394 10.3390/cancers11030394 30897808
    [Google Scholar]
  15. Herdiana Y. Wathoni N. Gozali D. Shamsuddin S. Muchtaridi M. Chitosan-based nano-smart drug delivery system in breast cancer therapy. Pharmaceutics 2023 15 3 879 10.3390/pharmaceutics15030879 36986740
    [Google Scholar]
  16. Chen D. Liu X. Lu X. Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front. Pharmacol. 2023 14 1111991 10.3389/fphar.2023.1111991 36874010
    [Google Scholar]
  17. Melville A.R. Kearsley-Fleet L. Buch M.H. Hyrich K.L. Understanding refractory rheumatoid arthritis: Implications for a therapeutic approach. Drugs 2020 80 9 849 857 10.1007/s40265‑020‑01309‑9 32361822
    [Google Scholar]
  18. Yip H.Y.K. Papa A. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells 2021 10 3 659 10.3390/cells10030659 33809714
    [Google Scholar]
  19. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  20. Hernandez Dominguez O. Yilmaz S. Steele S.R. Stage I.V. Stage IV colorectal cancer management and treatment. J. Clin. Med. 2023 12 5 2072 10.3390/jcm12052072 36902858
    [Google Scholar]
  21. Foppa C. Maroli A. Lauricella S. Luberto A. La Raja C. Bunino F. Carvello M. Sacchi M. De Lucia F. Clerico G. Montorsi M. Spinelli A. Different oncologic outcomes in early-onset and late-onset sporadic colorectal cancer: A regression analysis on 2073 patients. Cancers 2022 14 24 6239 10.3390/cancers14246239 36551724
    [Google Scholar]
  22. Sharifi-Rad J. Quispe C. Patra J.K. Singh Y.D. Panda M.K. Das G. Adetunji C.O. Michael O.S. Sytar O. Polito L. Živković J. Cruz-Martins N. Klimek-Szczykutowicz M. Ekiert H. Choudhary M.I. Ayatollahi S.A. Tynybekov B. Kobarfard F. Muntean A.C. Grozea I. Daştan S.D. Butnariu M. Szopa A. Calina D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev. 2021 2021 1 3687700 10.1155/2021/3687700 34707776
    [Google Scholar]
  23. Dickens E. Ahmed S. Principles of cancer treatment by chemotherapy. J. Surg. 2021 39 4 215 220
    [Google Scholar]
  24. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  25. Hossen S. Hossain M.K. Basher M.K. Mia M.N.H. Rahman M.T. Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019 15 1 18 10.1016/j.jare.2018.06.005 30581608
    [Google Scholar]
  26. Ebrahimi N. Manavi M.S. Nazari A. Momayezi A. Faghihkhorasani F. Abdulwahid A.-H.R.R. Rezaei- Tazangi F. Kavei M. Rezaei R. Mobarak H. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. Environ. Res. 2023 239 Part 2 117263 10.1016/j.envres.2023.117263
    [Google Scholar]
  27. Munaweera I. Yapa P. Principles and Applications of Nanotherapeutics CRC Press Boca Raton 2024 10.1201/9781003442202
    [Google Scholar]
  28. Shukla A. Prajapati M. Shrivastava V. A systematic review on nanoparticles: A ubiquitous approach for anti-tumour drug delivery and cancer management. Curr. Med. Chem. 2023
    [Google Scholar]
  29. Lôbo G.C.N.B. Paiva K.L.R. Silva A.L.G. Simões M.M. Radicchi M.A. Báo S.N. Nanocarriers used in drug delivery to enhance immune system in cancer therapy. Pharmaceutics 2021 13 8 1167 10.3390/pharmaceutics13081167 34452128
    [Google Scholar]
  30. Cai S.S. Li T. Akinade T. Zhu Y. Leong K.W. Drug delivery carriers with therapeutic functions. Adv. Drug Deliv. Rev. 2021 176 113884 10.1016/j.addr.2021.113884 34302897
    [Google Scholar]
  31. Rosic G. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv. Bio. Earth Sci. 2024 9 Special Issue 11 34 10.62476/abes9s11
    [Google Scholar]
  32. Rahman M.M. Islam M.R. Akash S. Harun-Or-Rashid M. Ray T.K. Rahaman M.S. Islam M. Anika F. Hosain M.K. Aovi F.I. Hemeg H.A. Rauf A. Wilairatana P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed. Pharmacother. 2022 153 113305 10.1016/j.biopha.2022.113305 35717779
    [Google Scholar]
  33. Biswas A. Choudhury A.D. Bisen A.C. Agrawal S. Sanap S.N. Verma S.K. Mishra A. Kumar S. Bhatta R.S. Trends in formulation approaches for sustained drug delivery to the posterior segment of the eye. AAPS PharmSciTech 2023 24 8 217 10.1208/s12249‑023‑02673‑x 37891392
    [Google Scholar]
  34. Khan S. 2 - Classification and properties of nanoparticles. Nanoparticle-Based Polymer Composites Woodhead Publishing 2022 15 54 10.1016/B978‑0‑12‑824272‑8.00009‑9
    [Google Scholar]
  35. Huang R. Shen Y.W. Guan Y.Y. Jiang Y.X. Wu Y. Rahman K. Zhang L.J. Liu H.J. Luan X. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020 116 1 15 10.1016/j.actbio.2020.09.009 32911102
    [Google Scholar]
  36. Yang C. Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials 2020 10 7 1424 10.3390/nano10071424 32708193
    [Google Scholar]
  37. Lang C. Mission E.G. Ahmad Fuaad A.A-H. Shaalan M. Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability - A review. J. Clean. Prod. 2021 293 126063 10.1016/j.jclepro.2021.126063
    [Google Scholar]
  38. Yang M. Zhang Y. Ma Y. Yan X. Gong L. Zhang M. Zhang B. Nanoparticle-based therapeutics of inflammatory bowel diseases: A narrative review of the current state and prospects. J. BioX. Res. 2020 3 4 157 173 10.1097/JBR.0000000000000078
    [Google Scholar]
  39. Ma Y. Li S. Lin X. Chen Y. Bioinspired spatiotemporal management toward rna therapies. ACS Nano 2023 17 24 24539 24563 10.1021/acsnano.3c08219 38091941
    [Google Scholar]
  40. Aliyandi A. Reker-Smit C. Zuhorn I.S. Salvati A. Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells. Acta Biomater. 2023 155 507 520 10.1016/j.actbio.2022.11.010 36371002
    [Google Scholar]
  41. Fernández M. Javaid F. Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.) 2018 9 4 790 810 10.1039/C7SC04004K 29675145
    [Google Scholar]
  42. Hani U. Honnavalli Y.K. Begum M.Y. Yasmin S. Osmani R.A.M. Ansari M.Y. Colorectal cancer: A comprehensive review based on the novel drug delivery systems approach and its management. J. Drug Deliv. Sci. Technol. 2021 63 102532 10.1016/j.jddst.2021.102532
    [Google Scholar]
  43. Younis N.K. Roumieh R. Bassil E.P. Ghoubaira J.A. Kobeissy F. Eid A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol. 2022 86 Part 2 1 13 10.1016/j.semcancer.2022.08.006
    [Google Scholar]
  44. Jain A. Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: A critical review. Front. Oncol. 2023 13 1211603 10.3389/fonc.2023.1211603 37427139
    [Google Scholar]
  45. Ajmeera D. Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis. 2024 11 1 148 175 10.1016/j.gendis.2022.12.013 37588226
    [Google Scholar]
  46. Anjum T. Hussain N. Hafsa Iqbal H.M.N. Jedrzak A. Jesionowski T. Bilal M. Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer. J. Drug Deliv. Sci. Technol. 2023 80 104103 10.1016/j.jddst.2022.104103
    [Google Scholar]
  47. Banerjee M. Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit. Rev. Oncol. Hematol. 2023 182 103901 10.1016/j.critrevonc.2022.103901 36584723
    [Google Scholar]
  48. Ulusam Seçkiner S. Koç A. Agent-based simulation and simulation optimization approaches to energy planning under different scenarios: A hospital application case. Comput. Ind. Eng. 2022 169 108163 10.1016/j.cie.2022.108163
    [Google Scholar]
  49. Sheoran S. Arora S. Samsonraj R. Govindaiah P. vuree S. Lipid-based nanoparticles for treatment of cancer. Heliyon 2022 8 5 e09403 10.1016/j.heliyon.2022.e09403 35663739
    [Google Scholar]
  50. Anselmo A.C. Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021 6 3 e10246 10.1002/btm2.10246 34514159
    [Google Scholar]
  51. Sousa de Almeida M. Susnik E. Drasler B. Taladriz-Blanco P. Petri-Fink A. Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021 50 9 5397 5434 10.1039/D0CS01127D 33666625
    [Google Scholar]
  52. Marichal L. Giraudon--Colas G. Cousin F. Thill A. Labarre J. Boulard Y. Aude J.C. Pin S. Renault J.P. Protein- nanoparticle interactions: What are the protein-corona thickness and organization? Langmuir 2019 35 33 10831 10837 10.1021/acs.langmuir.9b01373 31333024
    [Google Scholar]
  53. Means N. Elechalawar C.K. Chen W.R. Bhattacharya R. Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol. Aspects Med. 2022 83 100993 10.1016/j.mam.2021.100993 34281720
    [Google Scholar]
  54. Richards C.J. Burgers T.C.Q. Vlijm R. Roos W.H. Åberg C. Rapid internalization of nanoparticles by human cells at the single particle level. ACS Nano 2023 17 17 16517 16529 10.1021/acsnano.3c01124 37642490
    [Google Scholar]
  55. Zhang W. Taheri-Ledari R. Ganjali F. Mirmohammadi S.S. Qazi F.S. Saeidirad M. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: A review. Curr. Med. Chem. 2023 13 1 80 114
    [Google Scholar]
  56. Raj S. Khurana S. Choudhari R. Kesari K.K. Kamal M.A. Garg N. Ruokolainen J. Das B.C. Kumar D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021 69 166 177 10.1016/j.semcancer.2019.11.002 31715247
    [Google Scholar]
  57. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  58. Correia A.C. Monteiro A.R. Silva R. Moreira J.N. Sousa Lobo J.M. Silva A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv. Drug Deliv. Rev. 2022 189 114485 10.1016/j.addr.2022.114485 35970274
    [Google Scholar]
  59. Bahadur S. Jha M.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. J. Drug Deliv. Sci. Technol. 2022 78 103932 10.1016/j.jddst.2022.103932
    [Google Scholar]
  60. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  61. Lei S. Zhang X. Men K. Gao Y. Yang X. Wu S. Duan X. Wei Y. Tong R. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Mol. Pharm. 2020 17 9 3378 3391 10.1021/acs.molpharmaceut.0c00451 32787272
    [Google Scholar]
  62. Zahid J.A. Orhan A. Ekeloef S. Gögenur I. Myocardial injury after colorectal cancer surgery and postoperative 90-day mortality and morbidity: A retrospective cohort study. Dis. Colon Rectum 2021 64 12 1531 1541 10.1097/DCR.0000000000002061 34508013
    [Google Scholar]
  63. Russo S. Torrisi C. Cardullo N. Muccilli V. La Mantia A. Castelli F. Acquaviva R. Sarpietro M.G. Ethyl protocatechuate encapsulation in solid lipid nanoparticles: Assessment of pharmacotechnical parameters and preliminary in vitro evaluation for colorectal cancer treatment. Pharmaceutics 2023 15 2 394 10.3390/pharmaceutics15020394 36839716
    [Google Scholar]
  64. Mohamed J.M. Alqahtani A. Ahmad F. Krishnaraju V. Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym. 2021 252 117180 10.1016/j.carbpol.2020.117180 33183627
    [Google Scholar]
  65. Shakib Z. Mahmoudi A. Moosavian S.A. Malaekeh-Nikouei B. PEGylated solid lipid nanoparticles functionalized by aptamer for targeted delivery of docetaxel in mice bearing C26 tumor. Drug Dev. Ind. Pharm. 2022 48 2 69 78 10.1080/03639045.2022.2095398 35758194
    [Google Scholar]
  66. Alidadi H. Ashtari A. Samimi A. Karami M.A. Khorsandi L. Myricetin loaded in solid lipid nanoparticles induces apoptosis in the HT-29 colorectal cancer cells via mitochondrial dysfunction. Mol. Biol. Rep. 2022 49 9 8537 8545 10.1007/s11033‑022‑07683‑9 35767106
    [Google Scholar]
  67. Parvez S. Karole A. Mudavath S.L. Fabrication, physicochemical characterization and in vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids Surf. B. Biointerfaces 2022 215 112520 10.1016/j.colsurfb.2022.112520 35489319
    [Google Scholar]
  68. Smith T. Affram K. Nottingham E.L. Han B. Amissah F. Krishnan S. Trevino J. Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep. 2020 10 1 16989 10.1038/s41598‑020‑73218‑6 33046724
    [Google Scholar]
  69. Bhaskaran N.A. Jitta S.R. Salwa Cheruku S. Kumar N. Kumar L. Orally delivered solid lipid nanoparticles of irinotecan coupled with chitosan surface modification to treat colon cancer: Preparation, in-vitro and in-vitro evaluations. Int. J. Biol. Macromol. 2022 211 301 315 10.1016/j.ijbiomac.2022.05.060 35568152
    [Google Scholar]
  70. Xing R. Mustapha O. Ali T. Rehman M. Zaidi S.S. Baseer A. Batool S. Mukhtiar M. Shafique S. Malik M. Sohail S. Ali Z. Zahid F. Zeb A. Shah F. Yousaf A. Din F. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. BioMed Res. Int. 2021 2021 1 14 10.1155/2021/9968602 34285920
    [Google Scholar]
  71. Senthil Kumar C. Thangam R. Mary S.A. Kannan P.R. Arun G. Madhan B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym. 2020 231 115682 10.1016/j.carbpol.2019.115682 31888816
    [Google Scholar]
  72. Rajpoot K. Jain S.K. 99m Tc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J. Microencapsul. 2020 37 8 609 623 10.1080/02652048.2020.1829141 32985297
    [Google Scholar]
  73. Alajami H.N. Fouad E.A. Ashour A.E. Kumar A. Yassin A.E.B. Celecoxib-loaded solid lipid nanoparticles for colon delivery: formulation optimization and in vitro assessment of anti-cancer activity. Pharmaceutics 2022 14 1 131 10.3390/pharmaceutics14010131 35057027
    [Google Scholar]
  74. Lotfi N. Yousefi Z. Golabi M. Khalilian P. Ghezelbash B. Montazeri M. Shams M.H. Baghbadorani P.Z. Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front. Immunol. 2023 14 1077531 10.3389/fimmu.2023.1077531 36926328
    [Google Scholar]
  75. Mohamed J.M.M. Ahmad F. El-Sherbiny M. Al Mohaini M.A. Venkatesan K. Alrashdi Y.B.A. Eldesoqui M.B. Ibrahim A.E. Dawood A.F. Ibrahim A.M. El Deeb S. Optimization and characterization of quercetin-loaded solid lipid nanoparticles for biomedical application in colorectal cancer. Cancer Nanotechnol. 2024 15 1 16 10.1186/s12645‑024‑00249‑3
    [Google Scholar]
  76. Wang R. Qu J. Tang X. Zhang J. Ou A. Li Q. Chen G. Zheng C. Muhitdinov B. Huang Y. Lactoferrin-modified gambogic acid liposomes for colorectal cancer treatment. Mol. Pharm. 2023 20 8 3925 3936 10.1021/acs.molpharmaceut.3c00052 37505210
    [Google Scholar]
  77. Wang M. Rousseau B. Qiu K. Huang G. Zhang Y. Su H. Le Bihan-Benjamin C. Khati I. Artz O. Foote M.B. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. J. Nanobiotechnology 2023 21 1 12 37749267
    [Google Scholar]
  78. Wu S. Yun J. Tang W. Familiari G. Relucenti M. Wu J. Li X. Chen H. Chen R. Therapeutic m6A eraser ALKBH5 mRNA-loaded exosome-liposome hybrid nanoparticles inhibit progression of colorectal cancer in preclinical tumor models. ACS Nano 2023 17 12 11838 11854 10.1021/acsnano.3c03050 37310898
    [Google Scholar]
  79. Wang S. Gao S. Zeng Y. Zhu L. Mo Y. Wong C.C. Bao Y. Su P. Zhai J. Wang L. Soares F. Xu X. Chen H. Hezaveh K. Ci X. He A. McGaha T. O’Brien C. Rottapel R. Kang W. Wu J. Zheng G. Cai Z. Yu J. He H.H. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 2022 162 4 1183 1196 10.1053/j.gastro.2021.12.269 34968454
    [Google Scholar]
  80. Diao W. Yang B. Sun S. Wang A. Kou R. Ge Q. Shi M. Lian B. Sun T. Wu J. Bai J. Qu M. Wang Y. Yu W. Gao Z. PNA-modified liposomes improve the delivery efficacy of CAPIRI for the synergistic treatment of colorectal cancer. Front. Pharmacol. 2022 13 893151 10.3389/fphar.2022.893151 35784721
    [Google Scholar]
  81. Taciak B. Białasek M. Braniewska A. Sas Z. Sawicka P. Kiraga Ł. Rygiel T. Król M. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS One 2018 13 6 e0198943 10.1371/journal.pone.0198943 29889899
    [Google Scholar]
  82. Karkos P. Leong S. Karkos C. Sivaji N. Assimakopoulos D. Spirulina in clinical practice: Evidence‐based human applications. Evid. Based Complement. Alternat. Med. 2011 531053 10.1093/ecam/nen058 18955364
    [Google Scholar]
  83. ElFar O.A. Billa N. Lim H.R. Chew K.W. Cheah W.Y. Munawaroh H.S.H. Balakrishnan D. Show P.L. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered 2022 13 6 14681 14718 10.1080/21655979.2022.2100863 35946342
    [Google Scholar]
  84. Gu Z. Hao Y. Schomann T. Ossendorp F. ten Dijke P. Cruz L.J. Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation. J. Control. Release 2023 357 531 544 10.1016/j.jconrel.2023.04.011 37030544
    [Google Scholar]
  85. Azarifar Z. Amini R. Tanzadehpanah H. Afshar S. Najafi R. In vitro co-delivery of 5-fluorouracil and all-trans retinoic acid by PEGylated liposomes for colorectal cancer treatment. Mol. Biol. Rep. 2023 50 12 10047 10059 10.1007/s11033‑023‑08888‑2 37902908
    [Google Scholar]
  86. Yavari M. Jaafari M.R. Mirzavi F. Mosayebi G. Ghazavi A. Ganji A. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice. Iran. J. Basic Med. Sci. 2022 25 7 890 896 36033959
    [Google Scholar]
  87. Song L. Hao Y. Wang C. Han Y. Zhu Y. Feng L. Miao L. Liu Z. Liposomal oxaliplatin prodrugs loaded with metformin potentiate immunotherapy for colorectal cancer. J. Control. Release 2022 350 922 932 10.1016/j.jconrel.2022.09.013 36108810
    [Google Scholar]
  88. Janani B. Vijayakumar M. Priya K. Kim J.H. Prabakaran D.S. Shahid M. Al-Ghamdi S. Alsaidan M. Othman Bahakim N. Hassan Abdelzaher M. Ramesh T. EGFR-based targeted therapy for colorectal cancer - Promises and challenges. Vaccines 2022 10 4 499 10.3390/vaccines10040499 35455247
    [Google Scholar]
  89. Qi Q.-R. Tian H. Yue B.-S. Zhai B.-T. Zhao F. Research progress of SN38 drug delivery system in cancer treatment. Int. J. Nanomedicine 2024 19 945 964 10.2147/IJN.S435407
    [Google Scholar]
  90. Hodaei M. Varshosaz J. Cationic Okra gum coated nanoliposomes as a pH-sensitive carrier for co-delivery of hesperetin and oxaliplatin in colorectal cancers. Pharm. Dev. Technol. 2022 27 7 773 784 10.1080/10837450.2022.2119249 36040153
    [Google Scholar]
  91. Guo J. Huang L. Formulation of two lipid-based membrane–core nanoparticles for FOLFOX combination therapy. Nat. Protoc. 2022 17 8 1818 1831 10.1038/s41596‑022‑00698‑3 35650451
    [Google Scholar]
  92. Alrumaihi F. Khan M.A. Babiker A.Y. Alsaweed M. Azam F. Allemailem K.S. Almatroudi A.A. Ahamad S.R. Alsugoor M.H. Alharbi K.N. Almansour N.M. Khan A. Lipid-based nanoparticle formulation of diallyl trisulfide chemosensitizes the growth inhibitory activity of doxorubicin in colorectal cancer model: A novel in vitro, in vivo and in silico analysis. Molecules 2022 27 7 2192 10.3390/molecules27072192 35408590
    [Google Scholar]
  93. Keshavarz F. Soltanshahi M. Khosravani F. Bakhshiyan F. Ghanbari A. Hassanzadeh S. Amirpour M. Ghalamfarsa G. Thymol-loaded liposomes effectively induced apoptosis and decreased EGFR expression in colorectal cancer cells. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 7 5157 5165 10.1007/s00210‑024‑02945‑8 38240780
    [Google Scholar]
  94. Tefas L.R. Toma I. Sesarman A. Banciu M. Jurj A. Berindan-Neagoe I. Rus L. Stiufiuc R. Tomuta I. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. J. Liposome Res. 2023 33 3 234 250 10.1080/08982104.2022.2153139 36472146
    [Google Scholar]
  95. Ortiz A.C. Casas I. Mella P. Naranjo O. Pizarro N. Vega A. Cerda-Opazo P. García L. Morales J.O. Cepeda-Plaza M. Aptamer-functionalized lipid-core micelles loaded with rhenium tricarbonyl complex. Pharmaceutics 2021 13 114963
    [Google Scholar]
  96. Lu Y. Zhong L. Jiang Z. Pan H. Zhang Y. Zhu G. Bai L. Tong R. Shi J. Duan X. Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy. Nanoscale Res. Lett. 2019 14 1 193 10.1186/s11671‑019‑2985‑z 31165329
    [Google Scholar]
  97. Hu Y. He Y. Ji J. Zheng S. Cheng Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int. J. Nanomedicine 2020 15 1239 1252 10.2147/IJN.S232777 32110020
    [Google Scholar]
  98. Seiwert N. Fahrer J. Nagel G. Frank J. Behnam D. Kaina B. Curcumin administered as micellar solution suppresses intestinal inflammation and colorectal carcinogenesis. Nutr. Cancer 2021 73 4 686 693 10.1080/01635581.2020.1771384 32468854
    [Google Scholar]
  99. Barani M. Bilal M. Rahdar A. Arshad R. Kumar A. Hamishekar H. Kyzas G.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J. Nanobiotechnology 2021 23 1 25
    [Google Scholar]
  100. Kuai R. Yuan W. Son S. Nam J. Xu Y. Fan Y. Schwendeman A. Moon J. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 2018 4 4 eaao1736 10.1126/sciadv.aao1736 29675465
    [Google Scholar]
  101. Dane E.L. Belessiotis-Richards A. Backlund C. Wang J. Hidaka K. Milling L.E. Bhagchandani S. Melo M.B. Wu S. Li N. Donahue N. Ni K. Ma L. Okaniwa M. Stevens M.M. Alexander-Katz A. Irvine D.J. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 2022 21 6 710 720 10.1038/s41563‑022‑01251‑z 35606429
    [Google Scholar]
  102. Saber M.M. Al-mahallawi A.M. Nassar N.N. Stork B. Shouman S.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer 2018 18 1 822 10.1186/s12885‑018‑4727‑5 30111296
    [Google Scholar]
  103. Almoshari Y. Alam M.I. Bakkari M.A. Salawi A. Alshamrani M. Sabei F.Y. Safhi A.Y. Alamoudi J.A. Ibrahim I.M. Formulation, characterization, and evaluation of doxorubicin-loaded cubosome as a cytotoxic potentiator against HCT-116 colorectal cancer cells. Int. J. Pharm. 2022 56 723 731
    [Google Scholar]
  104. Salarieh Z. Esmaeili A. Pad M.H. Synthesis of cubosomes containing cerium oxide nanoparticles from Lactobacillus acidophilus loaded with glatiramer acetate and carboxymethylcellulose coating. Int. J. Biol. Macromol. 2023 231 123215 10.1016/j.ijbiomac.2023.123215 36642361
    [Google Scholar]
  105. Nemati M. Singh B. Mir R.A. Nemati M. Babaei A. Ahmadi M. Rasmi Y. Golezani A.G. Rezaie J. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges. Cell Commun. Signal. 2022 20 1 69 10.1186/s12964‑022‑00889‑1 35606749
    [Google Scholar]
  106. Ashfaq R. Rasul A. Asghar S. Kovács A. Berkó S. Budai-Szűcs M. Lipid nanoparticles: An effective tool to improve the bioavailability of nutraceuticals. Int. J. Mol. Sci. 2023 24 21 15764 10.3390/ijms242115764 37958750
    [Google Scholar]
  107. Yang C. Zhang M. Sung J. Wang L. Jung Y. Merlin D. Isolation and characterization of exosomes from mouse feces. Bio Protoc. 2020 10 8 e3584 10.21769/BioProtoc.3584 32440530
    [Google Scholar]
  108. Yang C. Zhang M. Sung J. Wang L. Jung Y. Merlin D. Autologous exosome transfer: A new personalized treatment concept to prevent colitis in a murine model. J. Crohn’s Colitis 2020 14 6 841 855 10.1093/ecco‑jcc/jjz184 31710674
    [Google Scholar]
  109. Liang G. Zhu Y. Ali D.J. Tian T. Xu H. Si K. Sun B. Chen B. Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology 2020 18 1 10 10.1186/s12951‑019‑0563‑2 31918721
    [Google Scholar]
  110. Wei X. Yang Z. Chen G. Huang J. VMP1 promotes exosome secretion and enhances 5-FU resistance in colon cancer cells. Tissue Cell 2022 77 101851 10.1016/j.tice.2022.101851 35696974
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327576241201145252
Loading
/content/journals/cmc/10.2174/0109298673327576241201145252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test