Skip to content
2000
image of Evaluation of Antiseptic Drug Candidate Pyridosept in Preclinical in Vitro Studies

Abstract

Introduction

This work provides preclinical studies of an innovative antimicrobial agent named pyridosept, belonging to the quaternary bis-ammonium salts and synthesized on the base of pyridoxine. Since the wide spread of pathogens with tolerance to both antibiotics and antiseptics challenges the development of new antimicrobials providing high efficiency against fungi and microorganisms with multiple resistance.

Method

This work presents studies of pyridosept, such as antibacterial and antifungal activities (determination of minimal inhibitory concentration and quantitative suspension test method), as well as antibacterial activity of metal surface test, sporicidal and spermicidal activities, formation of resistance (to bacteria and fungi), Skin-PAMPA (study of membrane transdermal permeability), mutagenicity assays (in Ames test and SOS-chromotest), cytotoxicity (MTT-assay) and comet assay in human skin fibroblasts.

Results

Pyridosept demonstrates advantageous antibacterial and antifungal activity in both suspension and metal surface tests; it has anti-SARS-CoV-2, spermicidal and sporicidal activities (comparable to chlorhexidine digluconate). On the other hand, it demonstrates a low frequency of bacterial resistance development (no more than 2-4-fold increase of the MIC in 30 passages, with MIC values fluctuating within 1-8 µg/ml for Gram-positive bacteria and 4-32 µg/ml for Gram-negative bacteria) and membrane transdermal permeability (Skin-PAMPA, 500-fold less compared to progesterone). While cytotoxicity (in MTT- and comet assay) of pyridosept is comparable with those for bezalkonium chloride and chlorhexidine, our results suggest that pyridosept represents an advantageous structure for the design of new antiseptics.

Conclusion

The information obtained during the studies demonstrated that pyridosept has a good efficacy and safety profile, which allows us to consider it as a potential antiseptic and disinfectant, for which it is necessary to conduct additional studies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673356654250122063321
2025-02-18
2025-04-01
Loading full text...

Full text loading...

References

  1. Gerba C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015 81 2 464 469 10.1128/AEM.02633‑14 25362069
    [Google Scholar]
  2. McDonnell G. Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999 12 1 147 179 10.1128/CMR.12.1.147 9880479
    [Google Scholar]
  3. Thomas L. Russell A.D. Maillard J.Y. Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J. Appl. Microbiol. 2005 98 3 533 543 10.1111/j.1365‑2672.2004.02402.x 15715855
    [Google Scholar]
  4. Tischer M. Pradel G. Ohlsen K. Holzgrabe U. Quaternary ammonium salts and their antimicrobial potential: Targets or nonspecific interactions? ChemMedChem 2012 7 1 22 31 10.1002/cmdc.201100404 22113995
    [Google Scholar]
  5. Bloomberg Lysol Sales Are Surging. Available from: https://www.bloomberg.com/news/articles/2020-04-30/lysol-maker-reckitt-benckiser-raises-outlook-after-sales-surge (Accessed 16 November 2023). 2020
    [Google Scholar]
  6. Grand View Research, Antiseptic And Disinfectant Market Size & Share Report Available from: https://www.grandviewresearch.com/industry-analysis/antiseptics-and-disinfectants-market (Accessed 16 November 2023). 2023
    [Google Scholar]
  7. Fedorowicz J. Sączewski J. Advances in the synthesis of biologically active quaternary ammonium compounds. Int. J. Mol. Sci. 2024 25 9 4649 10.3390/ijms25094649 38731869
    [Google Scholar]
  8. Vereshchagin A.N. Frolov N.A. Egorova K.S. Seitkalieva M.M. Ananikov V.P. Quaternary ammonium compounds (qacs) and ionic liquids (ils) as biocides: From simple antiseptics to tunable antimicrobials. Int. J. Mol. Sci. 2021 22 13 6793 10.3390/ijms22136793 34202677
    [Google Scholar]
  9. Mohapatra S. Yutao L. Goh S.G. Ng C. Luhua Y. Tran N.H. Gin K.Y.H. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. J. Hazard. Mater. 2023 445 130393 10.1016/j.jhazmat.2022.130393 36455328
    [Google Scholar]
  10. Shtyrlin Y.G. Petukhov A.S. Strelnik A.D. Shtyrlin N.V. Iksanova A.G. Pugachev M.V. Pavelyev R.S. Dzyurkevich M.S. Garipov M.R. Balakin K.V. Chemistry of pyridoxine in drug design. Russ. Chem. Bull. 2019 68 5 911 945 10.1007/s11172‑019‑2504‑5
    [Google Scholar]
  11. Shtyrlin N.V. Sapozhnikov S.V. Galiullina A.S. Kayumov A.R. Bondar O.V. Mirchink E.P. Isakova E.B. Firsov A.A. Balakin K.V. Shtyrlin Y.G. Synthesis and antibacterial activity of quaternary ammonium 4-deoxypyridoxine derivatives. Biomed. Res. Int. 2016 2016 3864193 10.1155/2016/3864193
    [Google Scholar]
  12. Shtyrlin N. Sapozhnikov S. Koshkin S. Iksanova A. Sabirov A. Kayumov A. Nureeva A. Zeldi M. Shtyrlin Y. Synthesis and antibacterial activity of novel quaternary ammonium pyridoxine derivatives. Med. Chem. 2015 11 7 656 665 10.2174/1573406411666150504122930 25938426
    [Google Scholar]
  13. Sapozhnikov S.V. Shtyrlin N.V. Kayumov A.R. Zamaldinova A.E. Iksanova A.G. Nikitina Е.V. Krylova Е.S. Grishaev D.Y. Balakin K.V. Shtyrlin Y.G. New quaternary ammonium pyridoxine derivatives: Synthesis and antibacterial activity. Med. Chem. Res. 2017 26 12 3188 3202 10.1007/s00044‑017‑2012‑9
    [Google Scholar]
  14. Antiseptic drug. Patent RU 2641309. 2012
  15. Shtyrlin N.V. Pugachev M.V. Sapozhnikov S.V. Garipov M.R. Vafina R.M. Grishaev D.Y. Pavelyev R.S. Kazakova R.R. Agafonova M.N. Iksanova A.G. Lisovskaya S.A. Zeldi M.I. Krylova E.S. Nikitina E.V. Sabirova A.E. Kayumov A.R. Shtyrlin Y.G. Novel bis-ammonium salts of pyridoxine: Synthesis and antimicrobial properties. Molecules 2020 25 18 4341 10.3390/molecules25184341 32971844
    [Google Scholar]
  16. Schrank C.L. Minbiole K.P.C. Wuest W.M. Are quaternary ammonium compounds, the workhorse disinfectants, effective against severe acute respiratory syndrome-coronavirus-2? ACS Infect. Dis. 2020 6 7 1553 1557 10.1021/acsinfecdis.0c00265 32412231
    [Google Scholar]
  17. Kazakova R.R. Agafonova M.N. Kazakova F.F. Iksanova A.G. Questions of the pre-clinical research of antiseptics. Russian Journal of Biopharmaceuticals 2019 11 1 56 60
    [Google Scholar]
  18. FDA, Safety and Effectiveness for Health Care Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use (Final Rule). Available from: https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/safety-and-effectiveness-health-care-antiseptics-topical-antimicrobial-drug-products-over-counter (accessed 16 November 2023). 2019
    [Google Scholar]
  19. World Health Organization, eEML - Electronic Essential Medicines List. Available from: https://list.essentialmeds.org/ (Accessed 16 November 2023). 2023
    [Google Scholar]
  20. Method of producing 5,8-(bis(methylene(n,n-dimethyl-n-dodecylammonium))-2-ethyl-4h-[1,3]dioxino[4,5-c]pyridinium dichloride. Patent RU2697848 2017
  21. The State Pharmacopoeia of Russian Federation Ministry of public health of Russian Federation. 14th ed Moscow 2018
    [Google Scholar]
  22. CLSI document M07-A9, 2012. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. Wayne. J. Biosc. Med. 2012 5 1
    [Google Scholar]
  23. Agafonova M.N. Antibacterial activity profile of miramistin in in vitro and in vivo models. Microb. Pathog. 2020 142 104072 10.1016/j.micpath.2020.104072
    [Google Scholar]
  24. Chemical disinfectants and antiseptics — Quantitative suspension test for the evaluation of bactericidal activity in the medical area— Test method and requirements (phase 2, step 1) EN 13727+A2:2015 2015
  25. Chemical disinfectants and antiseptics, Basic bactericidal activity-test method and requirements (phase 1) German version. EN 1040:1997 1997
  26. Chemical disinfectants and antiseptics ― Application of European Standards for chemical disinfectants and antiseptics. EN 14885:2015 2015
  27. Müller G. Kramer A. In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate. Chem. Biol. Interact. 2000 124 2 77 85 10.1016/S0009‑2797(99)00142‑8 10670820
    [Google Scholar]
  28. Guidance 4.2.1890-04 Determination of the sensitivity of microorganisms to antibacterial drugs. Available from: https://docs.cntd.ru/document/1200038583 (Accessed 16 November 2023). 2008
    [Google Scholar]
  29. Guidance R. Methods of laboratory research and testing of disinfectants to assess their effectiveness and safety. 2010 Available from: https://docs.cntd.ru/document/1200086231 (Accessed 16 November 2023).
    [Google Scholar]
  30. Methodological recommendations №2 Mycological examination of environmental objects and determination of antifungal activity of various substances. St. Petersburg: Ed. SPbMAPO House. 2008
    [Google Scholar]
  31. Chemical disinfectants and antiseptics — Quantitative suspension test for the evaluation of fungicidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic, and institutional areas — Test method and requirements (phase 2, step 1). EN 1650:2013 2013
  32. Chemical disinfectants and antiseptics — Quantitative non-porous surface test for the evaluation of bactericidal and/or fungicidal activity of chemical disinfectants used in food, industrial, domestic and institutional areas — Test method and requirements without mechanical action (phase 2, step 2). BS EN 13697:2015 2015
  33. Merkuleva I.A. Shcherbakov D.N. Borgoyakova M.B. Isaeva A.A. Nesmeyanova V.S. Volkova N.V. Aripov V.S. Shanshin D.V. Karpenko L.I. Belenkaya S.V. Kazachinskaia E.I. Volosnikova E.A. Esina T.I. Sergeev A.A. Titova K.A. Konyakhina Y.V. Zaykovskaya A.V. Pyankov O.V. Kolosova E.A. Viktorina O.E. Shelemba A.A. Rudometov A.P. Ilyichev A.A. Are hamsters a suitable model for evaluating the immunogenicity of rbd-based anti-COVID-19 subunit vaccines? Viruses 2022 14 5 1060 10.3390/v14051060 35632800
    [Google Scholar]
  34. Sachs L. Statistische Auswertungsmethoden. Berlin/Heidelberg, Germany Springer 1972 10.1007/978‑3‑662‑10037‑0
    [Google Scholar]
  35. Erny R. Porte H. [Efficacy of spermicides]. Contracept. Fertil. Sex. 1991 19 4 289 291 12343221
    [Google Scholar]
  36. Joynson J.A. Forbes B. Lambert R.J.W. Adaptive resistance to benzalkonium chloride, amikacin and tobramycin: The effect on susceptibility to other antimicrobials. J. Appl. Microbiol. 2002 93 1 96 107 10.1046/j.1365‑2672.2002.01667.x 12067378
    [Google Scholar]
  37. Rittié L. Fisher G.J. Isolation and Culture of Skin Fibroblasts. Fibrosis Research. Varga J. Brenner D.A. Phan S.H. Totowa, NJ Humana Press 2005 83 98 10.1385/1‑59259‑940‑0:083
    [Google Scholar]
  38. McCann J. Ames B.N. A simple method for detecting environmental carcinogens as mutagens. Ann. N. Y. Acad. Sci. 1976 271 1 5 13 10.1111/j.1749‑6632.1976.tb23086.x 793475
    [Google Scholar]
  39. Bogachev M.I. Volkov V.Y. Markelov O.A. Trizna E.Y. Baydamshina D.R. Melnikov V. Murtazina R.R. Zelenikhin P.V. Sharafutdinov I.S. Kayumov A.R. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One 2018 13 5 e0193267 10.1371/journal.pone.0193267 29715298
    [Google Scholar]
  40. Oda Y. Nakamura S. Oki I. Kato T. Shinagawa H. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat. Res. Envir. Mutag. Relat. Subj. 1985 147 5 219 229 10.1016/0165‑1161(85)90062‑7 3900709
    [Google Scholar]
  41. Miller J. Experiments in Molecular Genetics: Assay of β-Galactosidase. Cold Spring Harbor Laboratory Press New York 1972
    [Google Scholar]
  42. Fedorova K. Kayumov A. Woyda K. Ilinskaja O. Forchhammer K. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis. FEBS Lett. 2013 587 9 1293 1298 10.1016/j.febslet.2013.03.015 23535029
    [Google Scholar]
  43. Singh N.P. McCoy M.T. Tice R.R. Schneider E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988 175 1 184 191 10.1016/0014‑4827(88)90265‑0 3345800
    [Google Scholar]
  44. Nikitina E.V. Zeldi M.I. Pugachev M.V. Sapozhnikov S.V. Shtyrlin N.V. Kuznetsova S.V. Evtygin V.E. Bogachev M.I. Kayumov A.R. Shtyrlin Y.G. Antibacterial effects of quaternary bis-phosphonium and ammonium salts of pyridoxine on Staphylococcus aureus cells: A single base hitting two distinct targets? World J. Microbiol. Biotechnol. 2016 32 1 5 10.1007/s11274‑015‑1969‑0 26712620
    [Google Scholar]
  45. Wessels S. Ingmer H. Modes of action of three disinfectant active substances: A review. Regul. Toxicol. Pharmacol. 2013 67 3 456 467 10.1016/j.yrtph.2013.09.006 24080225
    [Google Scholar]
  46. Cay M.P.H. Sosa O.A.A. Fleming G.T.A. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology 2010 156 1 30 38 10.1099/mic.0.029751‑0 19815578
    [Google Scholar]
  47. Pang Z. Raudonis R. Glick B.R. Lin T.J. Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019 37 1 177 192 10.1016/j.biotechadv.2018.11.013 30500353
    [Google Scholar]
  48. He G.X. Landry M. Chen H. Thorpe C. Walsh D. Varela M.F. Pan H. Detection of benzalkonium chloride resistance in community environmental isolates of staphylococci. J. Med. Microbiol. 2014 63 5 735 741 10.1099/jmm.0.073072‑0 24586033
    [Google Scholar]
  49. Hegstad K. Langsrud S. Lunestad B.T. Scheie A.A. Sunde M. Yazdankhah S.P. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug Resist. 2010 16 2 91 104 10.1089/mdr.2009.0120 20370507
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673356654250122063321
Loading
/content/journals/cmc/10.2174/0109298673356654250122063321
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: in vitro ; Pyridosept ; miramistin ; chlorhexidine digluconate ; antiseptics ; benzalkonium chloride
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test