Skip to content
2000
image of NADPH Oxidase: A Potential Therapeutic Target to Reduce Primary Sclerosis Cholangitis Following Liver Transplantation

Abstract

The molecular mechanisms and causes of primary sclerosis cholangitis (PSC) post-liver transplantation are still unclear. PSC is a progressive cholestatic hepatobiliary disease that happens in about 25% of patients post-liver transplantation and requires re-transplantation. Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase or Nox) is a family of transmembrane proteins whose main function is producing reactive oxygen species (ROS). ROS generation as a result of NADPH oxidase activity of Kupffer cells and polymorphonuclear leukocytes has been implicated in the pathogenesis of ischemia-reperfusion injuries after liver transplantation, and is related to intra- and/or extrahepatic non-anastomotic biliary stenosis or PSC. In addition, Nox-derived ROS upregulates several molecular pathways to induce hepatocyte apoptosis and hepatic stellate cell (HSC) activation to promote hepatobiliary fibrogenesis. Understanding the multiple molecular aspects of Nox in the development of PSC post-transplantation may help identify new drugs to prevent this disorder.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673356252250213105931
2025-02-26
2025-04-01
Loading full text...

Full text loading...

References

  1. Rabiee A. Silveira M.G.J.T.g. Primary sclerosing cholangitis. Transl. Gastroenterol. Hepatol. 2021 6 29
    [Google Scholar]
  2. Kim Y.S. Primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD): A condition exemplifying the crosstalk of the gut–liver axis. Exp. Mol. Med. 2023 55 7 1380 1387
    [Google Scholar]
  3. Takinami M. Comparison of clinical features between immune-related sclerosing cholangitis and hepatitis. Invest. New. Drugs. 2021 39 6 1716 1723 10.1007/s10637‑021‑01136‑z
    [Google Scholar]
  4. Ronca V. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis. J. Leukoc. Biol. 2020 108 2 689 671 10.1002/JLB.5MR0320‑200R
    [Google Scholar]
  5. Dyson J.K. Beuers U. Jones D.E.J. Lohse A.W. Hudson M. Primary sclerosing cholangitis. Lancet 2018 391 10139 2547 2559 10.1016/S0140‑6736(18)30300‑3 29452711
    [Google Scholar]
  6. Egawa H. Ueda Y. Ichida T. Teramukai S. Nakanuma Y. Onishi S. Tsubouchi H. Risk factors for recurrence of primary sclerosing cholangitis after living donor liver transplantation in Japanese registry. Am. J. Transplant. 2011 11 3 518 527 10.1111/j.1600‑6143.2010.03402.x 21219581
    [Google Scholar]
  7. Alexander J. Lord J.D. Yeh M.M. Cuevas C. Bakthavatsalam R. Kowdley K.V. Risk factors for recurrence of primary sclerosing cholangitis after liver transplantation. Liver Transpl. 2008 14 2 245 251 10.1002/lt.21394 18236405
    [Google Scholar]
  8. Miki C. Harrison J.D. Gunson B.K. Buckels J A C. McMaster P. Mayer A.D. Inflammatory bowel disease in primary sclerosing cholangitis: An analysis of patients undergoing liver transplantation. Br. J. Surg. 1995 82 8 1114 1117 10.1002/bjs.1800820836 7648169
    [Google Scholar]
  9. Trivedi P.J. Adams D.H. Mucosal immunity in liver autoimmunity: A comprehensive review. J. Autoimmun. 2013 46 97 111 10.1016/j.jaut.2013.06.013 23891169
    [Google Scholar]
  10. Goldaracena N. Gorgen A. Sapisochin G. Current status of liver transplantation for cholangiocarcinoma. Liver Transpl. 2018 24 2 294 303 10.1002/lt.24955 29024405
    [Google Scholar]
  11. Lambeth J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004 4 3 181 189 10.1038/nri1312 15039755
    [Google Scholar]
  12. Cross A.R. Segal A.W. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta Bioenerg. 2004 1657 1 1 22 10.1016/j.bbabio.2004.03.008 15238208
    [Google Scholar]
  13. Gough D.R. Cotter T.G. Hydrogen peroxide: A Jekyll and Hyde signalling molecule. Cell Death Dis. 2011 2 10 e213 10.1038/cddis.2011.96 21975295
    [Google Scholar]
  14. Koulis C. Watson A.M.D. Gray S.P. Jandeleit-Dahm K.A. Linking RAGE and Nox in diabetic micro- and macrovascular complications. Diabetes Metab. 2015 41 4 272 281 10.1016/j.diabet.2015.01.006 26323666
    [Google Scholar]
  15. Zulato E. Ciccarese F. Nardo G. Pinazza M. Agnusdei V. Silic-Benussi M. Ciminale V. Indraccolo S. Involvement of NADPH oxidase 1 in liver kinase b1-mediated effects on tumor angiogenesis and growth. Front. Oncol. 2018 8 195 10.3389/fonc.2018.00195 29915721
    [Google Scholar]
  16. Paik Y.H. Kim J. Aoyama T. Minicis D.S. Bataller R. Brenner D.A. Role of NADPH oxidases in liver fibrosis. Antioxid. Redox Signal. 2014 20 17 2854 2872 10.1089/ars.2013.5619 24040957
    [Google Scholar]
  17. Invernizzi P. Carbone M. Jones D. Levy C. Little N. Wiesel P. Nevens F. study investigators Setanaxib, a first-in-class selective NADPH oxidase 1/4 inhibitor for primary biliary cholangitis: A randomized, placebo-controlled, phase 2 trial. Liver Int. 2023 43 7 1507 1522 10.1111/liv.15596 37183520
    [Google Scholar]
  18. Panday A. Sahoo M.K. Osorio D. Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015 12 1 5 23 10.1038/cmi.2014.89 25263488
    [Google Scholar]
  19. Bedard K. Lardy B. Krause K. NOX family NADPH oxidases: Not just in mammals. Biochimie 2007 89 9 1107 1112 10.1016/j.biochi.2007.01.012 17400358
    [Google Scholar]
  20. Lapouge K. Smith S.J. Groemping Y. Rittinger K. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J. Biol. Chem. 2002 277 12 10121 10128 10.1074/jbc.M112065200 11796733
    [Google Scholar]
  21. Guichard C. Moreau R. Pessayre D. Epperson T.K. Krause K.H. NOX family NADPH oxidases in liver and in pancreatic islets: A role in the metabolic syndrome and diabetes? Biochem. Soc. Trans. 2008 36 5 920 929 10.1042/BST0360920 18793162
    [Google Scholar]
  22. Kabirifar R. Ghoreshi Z. Safari F. Karimollah A. Moradi A. Eskandari-nasab E. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats. Hepatob. Pancreat. Dis. Int. 2017 16 1 88 95 10.1016/S1499‑3872(16)60164‑9 28119263
    [Google Scholar]
  23. Wang F.T. Hassan M. Ansari K. Xu G.L. Li X.P. Fan Y.Z. Upregulated NOX1 expression in gallbladder cancer‑associated fibroblasts predicts a poor prognosis. Oncol. Rep. 2019 42 4 1475 1486 10.3892/or.2019.7249 31364740
    [Google Scholar]
  24. Zhan M. Wang H. Chen T. Chen W. Yang L. He M. Xu S. Wang J. NOX1 mediates chemoresistance via HIF1α/MDR1 pathway in gallbladder cancer. Biochem. Biophys. Res. Commun. 2015 468 1-2 79 85 10.1016/j.bbrc.2015.10.161 26545779
    [Google Scholar]
  25. Dar W.A. Sullivan E. Bynon J.S. Eltzschig H. Ju C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 2019 39 5 788 801 10.1111/liv.14091 30843314
    [Google Scholar]
  26. Epstein F.H. McCord J.M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 1985 312 3 159 163 10.1056/NEJM198501173120305 2981404
    [Google Scholar]
  27. Lemasters J.J. DiGuiseppi J. Nieminen A.L. Herman B. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 1987 325 6099 78 81 10.1038/325078a0 3099216
    [Google Scholar]
  28. Pretzsch E. Nieß H. Khaled N.B. Bösch F. Guba M. Werner J. Angele M. Chaudry I.H. Molecular mechanisms of ischaemia-reperfusion injury and regeneration in the liver-shock and surgery-associated changes. Int. J. Mol. Sci. 2022 23 21 12942 10.3390/ijms232112942 36361725
    [Google Scholar]
  29. Kaltenmeier C. Wang R. Popp B. Geller D. Tohme S. Yazdani H.O. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells 2022 11 14 2222 10.3390/cells11142222 35883665
    [Google Scholar]
  30. Choi E.K. Lim D.G.J.J.o.Y.M.S. Hepatic ischemia-reperfusion injury with respect to oxidative stress and inflammatory response: A narrative review. J. Yeungnam. Med. Sci. 2022 40 2 115 122
    [Google Scholar]
  31. Jaeschke H. Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am. J. Physiol. 1991 260 3 Pt 1 G355 G362 2003603
    [Google Scholar]
  32. Tang S. Mao X. Chen Y. Yan L. Ye L. Li S. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death. Front. Immunol. 2022 13 870239 10.3389/fimmu.2022.870239 35572532
    [Google Scholar]
  33. Liu Y. Qin X. Lei Z. Chai H. Huang Z. Wu Z. Tetramethylpyrazine inhibits neutrophil extracellular traps formation and alleviates hepatic ischemia/reperfusion injury in rat liver transplantation. Exp. Cell Res. 2021 406 1 112719 10.1016/j.yexcr.2021.112719 34273405
    [Google Scholar]
  34. Marden J.J. Zhang Y. Oakley F.D. Zhou W. Luo M. Jia H.P. McCray P.B. Jr Yaniv M. Weitzman J.B. Engelhardt J.F. JunD protects the liver from ischemia/reperfusion injury by dampening AP-1 transcriptional activation. J. Biol. Chem. 2008 283 11 6687 6695 10.1074/jbc.M705606200 18182393
    [Google Scholar]
  35. Bengtsson S.H.M. Gulluyan L.M. Dusting G.J. Drummond G.R. Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin. Exp. Pharmacol. Physiol. 2003 30 11 849 854 10.1046/j.1440‑1681.2003.03929.x 14678249
    [Google Scholar]
  36. Ellmark S. Dusting G. Ngtangfui M. Guzzopernell N. Drummond G. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc. Res. 2005 65 2 495 504 10.1016/j.cardiores.2004.10.026 15639489
    [Google Scholar]
  37. Kimura K. Shirabe K. Yoshizumi T. Takeishi K. Itoh S. Harimoto N. Ikegami T. Uchiyama H. Okano S. Maehara Y. Ischemia-reperfusion injury in fatty liver is mediated by activated NADPH oxidase 2 in rats. Transplantation 2016 100 4 791 800 10.1097/TP.0000000000001130 26950726
    [Google Scholar]
  38. Harada H. Hines I.N. Flores S. Gao B. McCord J. Scheerens H. Grisham M.B. Role of NADPH oxidase-derived superoxide in reduced size liver ischemia and reperfusion injury. Arch. Biochem. Biophys. 2004 423 1 103 108 10.1016/j.abb.2003.08.035 14871473
    [Google Scholar]
  39. Guichelaar M.M.J. Benson J.T. Malinchoc M. Krom R.A.F. Wiesner R.H. Charlton M.R. Risk factors for and clinical course of non-anastomotic biliary strictures after liver transplantation. Am. J. Transplant. 2003 3 7 885 890 10.1034/j.1600‑6143.2003.00165.x 12814481
    [Google Scholar]
  40. DeOliveira M.L. Jassem W. Valente R. Khorsandi S.E. Santori G. Prachalias A. Srinivasan P. Rela M. Heaton N. Biliary complications after liver transplantation using grafts from donors after cardiac death: Results from a matched control study in a single large volume center. Ann. Surg. 2011 254 5 716 723 10.1097/SLA.0b013e318235c572 22042467
    [Google Scholar]
  41. Heidenhain C. Pratschke J. Puhl G. Neumann U. Pascher A. Veltzke-Schlieker W. Neuhaus P. Incidence of and risk factors for ischemic-type biliary lesions following orthotopic liver transplantation. Transpl. Int. 2010 23 1 14 22 10.1111/j.1432‑2277.2009.00947.x 19691661
    [Google Scholar]
  42. Jaeschke H. Farhood A. Kupffer cell activation after no-flow ischemia versus hemorrhagic shock. Free Radic. Biol. Med. 2002 33 2 210 219 10.1016/S0891‑5849(02)00867‑5 12106817
    [Google Scholar]
  43. McKeown C.M.B. Edwards V. Phillips M.J. Harvey P.R.C. Petrunka C.N. Strasberg S.M. Sinusoidal lining cell damage: The critical injury in cold preservation of liver allografts in the rat. Transplantation 1988 46 2 178 190 10.1097/00007890‑198808000‑00001 3043774
    [Google Scholar]
  44. Cursio R. Gugenheim J. Panaia-Ferrari P. Lasfar A. Tovey M. Chastanet S. Saint-Paul M.C. Ferré C. Mouiel J. Improvement of normothermic rat liver ischemia/reperfusion by muramyl dipeptide. J. Surg. Res. 1998 80 2 339 344 10.1006/jsre.1998.5445 9878335
    [Google Scholar]
  45. Pirenne J. Gelder V.F. Coosemans W. Aerts R. Gunson B. Koshiba T. Fourneau I. Mirza D. Steenbergen V.W. Fevery J. Nevens F. McMaster P. Type of donor aortic preservation solution and not cold ischemia time is a major determinant of biliary strictures after liver transplantation. Liver Transpl. 2001 7 6 540 545 10.1053/jlts.2001.24641 11443584
    [Google Scholar]
  46. op den Dries S. Sutton M.E. Lisman T. Porte R.J. Protection of bile ducts in liver transplantation: Looking beyond ischemia. Transplantation 2011 92 4 373 379 10.1097/TP.0b013e318223a384 21629175
    [Google Scholar]
  47. Foley D.P. Fernandez L.A. Leverson G. Chin L.T. Krieger N. Cooper J.T. Shames B.D. Becker Y.T. Odorico J.S. Knechtle S.J. Sollinger H.W. Kalayoglu M. D’Alessandro A.M. Donation after cardiac death: The University of Wisconsin experience with liver transplantation. Ann. Surg. 2005 242 5 724 731 10.1097/01.sla.0000186178.07110.92 16244547
    [Google Scholar]
  48. Buis C.I. Verdonk R.C. Van der Jagt E.J. van der Hilst C.S. Slooff M.J.H. Haagsma E.B. Porte R.J. Nonanastomotic biliary strictures after liver transplantation, part 1: Radiological features and risk factors for early vs. Late presentation. Liver Transpl. 2007 13 5 708 718 10.1002/lt.21166 17457932
    [Google Scholar]
  49. Cursio R. Gugenheim J. Ischemia-reperfusion injury and ischemic-type biliary lesions following liver transplantation. J. Transplant. 2012 2012 1 17 10.1155/2012/164329 22530107
    [Google Scholar]
  50. Busquets J. Figueras J. Serrano T. Torras J. Ramos E. Rafecas A. Fabregat J. Lama C. Xiol X. Baliellas C. Jaurrieta E. Postreperfusion biopsy changes predict biliary complications after liver transplantation. Transplant. Proc. 2002 34 1 256 258 10.1016/S0041‑1345(01)02750‑6 11959272
    [Google Scholar]
  51. Minicis D.S. Seki E. Paik Y.H. Österreicher C.H. Kodama Y. Kluwe J. Torozzi L. Miyai K. Benedetti A. Schwabe R.F. Brenner D.A. Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 2010 52 4 1420 1430 10.1002/hep.23804 20690191
    [Google Scholar]
  52. Paik Y.H. Iwaisako K. Seki E. Inokuchi S. Schnabl B. Österreicher C.H. Kisseleva T. Brenner D.A. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91phox mediate hepatic fibrosis in mice. Hepatology 2011 53 5 1730 1741 10.1002/hep.24281 21384410
    [Google Scholar]
  53. Friedman S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008 88 1 125 172 10.1152/physrev.00013.2007 18195085
    [Google Scholar]
  54. Jiang J.X. Chen X. Serizawa N. Szyndralewiez C. Page P. Schröder K. Brandes R.P. Devaraj S. Török N.J. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic. Biol. Med. 2012 53 2 289 296 10.1016/j.freeradbiomed.2012.05.007 22618020
    [Google Scholar]
  55. Sancho P. Mainez J. Crosas-Molist E. Roncero C. Fernández-Rodriguez C.M. Pinedo F. Huber H. Eferl R. Mikulits W. Fabregat I. NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 2012 7 9 e45285 10.1371/journal.pone.0045285 23049784
    [Google Scholar]
  56. Bettaieb A. Jiang J.X. Sasaki Y. Chao T.I. Kiss Z. Chen X. Tian J. Katsuyama M. Yabe-Nishimura C. Xi Y. Szyndralewiez C. Schröder K. Shah A. Brandes R.P. Haj F.G. Török N.J. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology 2015 149 2 468 480.e10 10.1053/j.gastro.2015.04.009 25888330
    [Google Scholar]
  57. Jiang J.X. Venugopal S. Serizawa N. Chen X. Scott F. Li Y. Adamson R. Devaraj S. Shah V. Gershwin M.E. Friedman S.L. Török N.J. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 2010 139 4 1375 1384.e4 10.1053/j.gastro.2010.05.074 20685364
    [Google Scholar]
  58. Cui W. Matsuno K. Iwata K. Ibi M. Matsumoto M. Zhang J. Zhu K. Katsuyama M. Torok N.J. Yabe-Nishimura C. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology 2011 54 3 949 958 10.1002/hep.24465 21618578
    [Google Scholar]
  59. Bataller R. Schwabe R.F. Choi Y.H. Yang L. Paik Y.H. Lindquist J. Qian T. Schoonhoven R. Hagedorn C.H. Lemasters J.J. Brenner D.A. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J. Clin. Invest. 2003 112 9 1383 1394 10.1172/JCI18212 14597764
    [Google Scholar]
  60. Espinosa-Sotelo R. Fusté N.P. Peñuelas-Haro I. Alay A. Pons G. Almodóvar X. Albaladejo J. Sánchez-Vera I. Bonilla-Amadeo R. Dituri F. Serino G. Ramos E. Serrano T. Calvo M. Martínez-Chantar M.L. Giannelli G. Bertran E. Fabregat I. Dissecting the role of the NADPH oxidase NOX4 in TGF-beta signaling in hepatocellular carcinoma. Redox Biol. 2023 65 102818 10.1016/j.redox.2023.102818 37463530
    [Google Scholar]
  61. Carmona-Cuenca I. Roncero C. Sancho P. Caja L. Fausto N. Fernández M. Fabregat I. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J. Hepatol. 2008 49 6 965 976 10.1016/j.jhep.2008.07.021 18845355
    [Google Scholar]
  62. Herrera B. Fernández M. Álvarez A.M. Roncero C. Benito M. Gil J. Fabregat I. Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor β in rat fetal hepatocytes. Hepatology 2001 34 3 548 556 10.1053/jhep.2001.27447 11526541
    [Google Scholar]
  63. Ramjaun A.R. Tomlinson S. Eddaoudi A. Downward J. Upregulation of two BH3-only proteins, Bmf and Bim, during TGFβ-induced apoptosis. Oncogene 2007 26 7 970 981 10.1038/sj.onc.1209852 16909112
    [Google Scholar]
  64. Caja L. Sancho P. Bertran E. Iglesias-Serret D. Gil J. Fabregat I. Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-beta-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Cancer Res. 2009 69 19 7595 7602 10.1158/0008‑5472.CAN‑09‑1482 19773433
    [Google Scholar]
  65. Vlăduţ C. An overview on primary sclerosing cholangitis. J. Clin. Med. 2020 9 3 784
    [Google Scholar]
  66. Aoyama T. Paik Y.H. Watanabe S. Laleu B. Gaggini F. Fioraso-Cartier L. Molango S. Heitz F. Merlot C. Szyndralewiez C. Page P. Brenner D.A. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 2012 56 6 2316 2327 10.1002/hep.25938 22806357
    [Google Scholar]
  67. Hecker L. Vittal R. Jones T. Jagirdar R. Luckhardt T.R. Horowitz J.C. Pennathur S. Martinez F.J. Thannickal V.J. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 2009 15 9 1077 1081 10.1038/nm.2005 19701206
    [Google Scholar]
  68. Green D.E. Murphy T.C. Kang B.Y. Kleinhenz J.M. Szyndralewiez C. Page P. Sutliff R.L. Hart C.M. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am. J. Respir. Cell Mol. Biol. 2012 47 5 718 726 10.1165/rcmb.2011‑0418OC 22904198
    [Google Scholar]
  69. Yoshida T. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. Exp. Toxicol. Pathol. 2017 69 1 9 16 10.1016/j.etp.2016.10.003
    [Google Scholar]
  70. Wagner A.H. Köhler T. Rückschloss U. Just I. Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol. 2000 20 1 61 69 10.1161/01.ATV.20.1.61 10634801
    [Google Scholar]
  71. Lan T. Kisseleva T. Brenner D.A. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS One 2015 10 7 e0129743 10.1371/journal.pone.0129743 26222337
    [Google Scholar]
  72. Vandierendonck A. Degroote H. Vanderborght B. Verhelst X. Geerts A. Devisscher L. Vlierberghe V.H. NOX1 inhibition attenuates the development of a pro-tumorigenic environment in experimental hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2021 40 1 40 10.1186/s13046‑021‑01837‑6 33485364
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673356252250213105931
Loading
/content/journals/cmc/10.2174/0109298673356252250213105931
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test